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A B S T R A C T

The algorithm of approximate solution was developed for the differential equation describing the anharmonical
change of the spin orientation angle in the model of ferromagnet with the exchange competition between
nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The equation was obtained
from the collinearity constraint on the discrete lattice. In the low anharmonicity approximation the equation is
resulted to an autonomous form and is integrated in quadratures. The obvious dependence of the angle velocity
and second derivative of angle from angle and initial condition was derived by expanding the first integral of the
equation in the Taylor series in vicinity of initial condition. The ground state of the soliton solutions was
calculated by a numerical minimization of the energy integral. The evaluation of the used approximation was
made for a triple point of the phase diagram.

1. Introduction

The theoretical description of incommensurate magnetic structures
(IMS) in antiferromagnetic dielectrics in the framework of Landau
phenomenological theory of the phase transition was elaborated by
Dzyaloshinskii [1]. For helimagnet with the Dzialoshinskii–Moria
antisymmetrical exchange leading to a Lifshitz invariant in a free
energy expansion (relativistic mechanism of forming IMS) the energy
minimization for the solutions within the anisotropic plane is reduced
to the solution of static sine-Gordon equation. The equation has the
anharmonic solutions in the form of elliptical integrals describing the
inhomogeneous helical structure with the step changing when moving
along the helix vector – the so-called soliton lattice [2]. The inhomo-
geneous magnetoelectric interaction also leads to the Lifshitz invariant
and, hence, to the sine-Gordon equation with the same solutions as
shown for the thorough investigated multiferroic BiFeO3 [3,4]. For
helimagnets with competing exchange interactions between the nearest
and further magnetic neighbors (the exchange mechanism of incom-
mensurability) it is necessary to take into consideration the second
derivatives (and higher ones in the general case) of an order parameter.
So the energy minimization cannot be reduced to an analytically
integrable differential equation.

The aim of the present work is to develop the algorithm of

approximate solution for the differential equation describing the
anharmonical change of the spin orientation angle in the model of
easy axis ferromagnet with the exchange competition between the
nearest and next nearest magnetic neighbors. We consider the mag-
netic structure with the spin orientation within the anisotropy plane
(the flat anharmonic helix) and depending on the one coordinate. As
the initial equation the constraint of the spin collinearity to the total
exchange field from the neighboring spins is used. The application of
such an approach for the frustrated ferrimagnet on the discrete lattice
allowed us to describe the flat and conical IMS and to obtain the phase
diagrams [5,6]. The second order differential equation is obtained from
the general one containing all the derivatives of the spin orientation
angle in the approximation of slow variation of the helical step (the low
helix anharmonicity). To analytically solve the equation with regard to
the first derivative of the angle (the angle velocity) the first integral of
the differential equation (the solution in quadratures) is expanded to
the Taylor series over the square of the velocity up to the second power.
All anharmonic solutions are parametrized by the value of velocity in
the expansion point, in our case at the spin orientation along the easy
axis. The ground state is chosen through the numerical minimization of
the energy of spins on the quarter of period.
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2. Model and approach

The Hamiltonian of the model with the ferromagnetic and anti-
ferromagnetic exchanges between nearest and next nearest neighbors
and the easy axis exchange anisotropy (XXZ-model) has a form
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where Si is a unit vector on the site i. In this model the same relative
anisotropy of the exchanges between the nearest and next nearest
exchanges is considered. This variant of anisotropy allows us to reduce
the number of model parameters and simply separate an effect of
frustration and anisotropy on the IMS energy. The case of general-
ization on different anisotropy is easy realized and does not essentially
change the result. The orientation of the spin Si in the plane with the
easy axis z is determined by the total exchange field from neighbor
spins Si±1 and Si±2. At T=0 all spins have the equal length equal to
saturation one and the field normalized on the exchange J1 has the
components
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where h0z is the z-component of exchange field without anisotropy, θ is
a polar angle and R J J= / < 02 1 is a frustration parameter. The transi-
tion to the continual description is carried out by the Taylor series
expansion of the neighbor spins angles for the each site i
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where Σαβ are the sums of odd and even derivatives of the variable θ:

∑ ∑

∑ ∑

Σ θ
n

Σ θ
n

Σ θ
n

Σ θ
n

=
(2 − 1)!

, = 2
(2 )!

,

=
(2 )!

, = 2
(2 − 1)!

.

n

n

n

n n

n

n

n

n n

11
=1

∞ (2 −1)

22
=1

∞ 2 (2 )

12
=1

∞ (2 )

21
=1

∞ 2 −1 (2 −1)

After substituting (3) the components (2) take the forms
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The longitudinal field on the spin is equal to an energy density on the
single interval in coordinate space (on one spin)
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where ϵ0 is an energy in the isotropic case δ = 0. An orientation of each
spin is uniquely determined by the collinearity condition of spins and
local fields from the neighbor spins [7]. This constraint allows to avoid
the nonphysical states and to determine all allowable states including
the excited ones. So, the transverse field on the spin must be equal to
zero
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Taking into account the collinearity constraint (5) the magnetic energy
density takes a multiplicative form – the anisotropic and frustration
contributions are contained as product terms

δ
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Rewriting the general Eq. (5) in the following form:
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one can make a general conclusion that anharmonicity in the change of
angle θ (the derivatives of the second order and higher) appeared at
δ > 0, takes a maximum value at intermediate angles θ n π≈ (2 + 1) /4
and vanishes at θ nπ= /2.

Further solution of Eq. (7) will be made in the linear anharmonicity
approximation (θ″ ≪ 1), neglecting the derivatives which are higher
than second order. In this approach Eq. (7) takes an autonomous form
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and at the substitution z θ= ( ′) /22 is integrated in quadratures
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where C z z R z z z R z( ) = cos 2 + 4 cos2 2 , ϵ ( ) = cos 2 + cos2 2 .0 The
variable z changes in the range z z{ , }max0 at θ π∈ {0, /2}. Expanding
the integral in the Taylor series in vicinity of z0 and taking into account
that I z z( = ) = 00 we obtain the series
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At the low anharmonicity keeping first two nonzero terms of series (10)
(the quadratic approximation) we obtain the obvious dependence of the
angle velocity from angle and initial condition z0:
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Fig. 1. The angle dependences of the variable z, the step of IMS θ′ and the second
derivative θ″. The line π /3 corresponds to the constant IMS step at R = − 1/2 and δ = 0.
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As the energy (6) and the angle velocity (11) depend on θsin2 the
energy over the quarter of period divided by the corresponding length
is equal to the average energy of one spin:
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The ground state of the solutions is determined by an extreme of the
function (the maximum in our case, because fields and energy density
are normalized on the J < 01 ). The corresponding initial condition
z z= extr0 parametrizes the ground state solution for each set of the
parameters δ and R and after substituting into Eq. (11) determine the
functional dependence of z on the angle θ in the ground state (Fig. 1).
Note that to determine the average energy of the spins and hence to
compare it with the energy of the collinear states the dependence of θ
on the coordinate r is not required.

3. Discussion

We discuss the properties of the solutions corresponding to the
soliton-like ground state. The solutions with increasing spiral step
upon changing the angle between the spin and easy axis θ from zero to
π /2 (θ″ > 0) exist when the numerator of fraction in the left part of (8)
is positive-defined. Developing the cosines in the series up to second
power of θ′ we obtain the condition imposed on the initial spin velocity

z z R
R

≥ = 1 + 4
1 + 16

≥ 0.min0 (13)

The solutions can be obtained when the general classical condition
R| | ≥ 1/4 is fulfilled [8]. It is impossible for the IMS wave vector to tend
to zero at the phase transition from the incommensurate to commen-
surate state, which also follows from the phenomenological analysis
based on the Landau theory [2]. It means that the transition on the

model parameters δ and R is accompanied by a step-like change of the
magnetic structure vector and hence is the first order phase transition.

The application of the first integral expansion in series over the
powers of z z− 0 (10) impose, in general, a limitation on the anisotropy
parameter value δ inducing the anharmonicity. The range of the z
variation from zextr to zmax is increased with increasing δ and takes a
maximal value on the phase boundary with collinear phases. The
difference z z−max extr takes the maximum value equal to 0.4 in the triple
point R δ= 1/2, ≈ 1.34 where the energy of the soliton phase is equal to
the energies of ferromagnetic and “up-up-down-down” phases [9]. To
assess the application of the quadratic approximation at the expansion
of the first integral (9) one makes a numerical integration in the triple
point and compares the result with the quadratic and cubic decom-
position (10) (Fig. 2). The coefficients a1 and a2 are positive. The third
coefficient a3 is negative and together with the next terms of expansion
forms an alternate series which provides a fast expansion convergence
to the numerical integration result even for the limit difference in the
triple point of the phase diagram. The autonomous differential
equation (8) was obtained in the linear approximation on the second
derivative θ″. The limit value of the second derivative in the triple point
is equal to 0.45 (Fig. 1) which allows one to argue that the used
approach provides at least a qualitatively correct description of the
soliton ground states in the whole range of their existence. Note, that
the present approach does not impose a limitation on the absolute
value of the angle change velocity (the helix step) and it is applicable
both for long-period IMS and for the structures with a comparatively
short period.

In summary, the continual approach based on the collinearity of the
spins and corresponding total fields allows one to solve in quadratures
the differential equation on the spiral step in the anisotropic plane. The
decomposition of the first integral in Taylor series shows the fast
convergence to the result of numerical integration and leads to the
angle dependences of the solution parameters in a simple analytical
form. The phase transition over the frustration and anisotropy para-
meters between the anharmonical spiral (soliton) phase and collinear
ferromagnetic and “up–up–down–down” phases is a first order one.
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