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A B S T R A C T

Within the spin-fermion model for cuprate superconductors, the influence of the intersite Coulomb interactions
V2 andV′2 between holes located at the next-nearest-neighbor oxygen ions of CuO2 plane on the implementation
of the d x y2− 2-wave pairing is studied. It is shown that d-wave pairing can be suppressed only for unphysically
large values of V2 and V′2.

1. Introduction

It is known that the real structure of CuO2 plane is characterized by
the spatial separation of the subsystem of holes located at oxygen ions
and the subsystem of spins localized at copper ions (Fig. 1). Besides, a
number of features is caused by the presence of two oxygen ions in the
unit cell of copper-oxygen plane. The minimal realistic microscopic
model for cuprates is the three-band p d− model (the Emery model)
[1,2]. This model takes into account the dx y−2 2-orbitals of copper ions
and px- and py-orbitals of oxygen ions. However, along with the
realism, the multiband character of the Emery model leads to
cumbersome analysis of cuprates physics. That is why a number of
studies in this direction is carried out in the framework of the Hubbard
model and its effective low-energy variants, such as t J− and t J− *
models on the simple square lattice. In these models, the same
fermions form the charge and the spin subsystems.

Along with the number of important results, such an approach has a
serious disadvantage: the Cooper pairing of fermions caused by the
kinematic [3], exchange [4,5], and spin-fluctuation mechanisms con-
sidered in the Hubbard [6,7], t J− [4,5], or t J− * [8,9] models is
suppressed by the intersite Coulomb repulsion V1 of charge carriers
located at the neighboring sites. This effect is most pronounced in the d
channel [10] and, as a result, the Cooper instability disappears
completely at V1 ranging from 1 to 2 eV.

In our previous paper [11], it has been shown that, because of the
two-orbital character of the subsystem of holes located at oxygen sites
and the spatial separation of this subsystem from that of spins at
copper ions, the superconducting phase in high-Tc cuprates is stable
with respect to the strong Coulomb repulsion of holes located at the
nearest-neighbor oxygen sites if the order parameter has the

dx y−2 2-symmetry. This effect is due to the symmetry properties of the
Coulomb potential.

Note that in Ref. [11] the stability of the d-wave pairing was proved
only for the case of the intersite Coulomb repulsion of holes located at
the nearest-neighbor oxygen ions,V1, while the role of the Coulomb
repulsion between holes located at the more distant oxygen ions, V2, is
still unclear (the possibility of influence of V2 on the superconducting
d-wave pairing has been also mentioned in Ref. [12]). In this paper, we
study the role of the Coulomb interaction between holes located at the
next-nearest-neighbor oxygen ions on CuO2-plane in the implementa-
tion of the superconducting dx y−2 2-wave pairing.

2. Model

In the strongly correlated regime, when the Hubbard repulsion
energy Ud is large, i.e.,U Δ t> ⪢d pd pd , the p d− model is reduced to the
spin-fermion model [13,14] describing the subsystem of oxygen holes
interacting with the spins located at copper ions. The Hamiltonian of
the spin-fermion model is represented in the form
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The Hamiltonian H0 describes the oxygen holes in the momentum
representation. Here a a( )kα kα

† are the hole creation (annihilation)
operators in the oxygen subsystem with the px-orbitals (Fig. 1),
α = ± 1/2 is the spin projection. Similarly, b b( )kα kα

† are operators in
the oxygen subsystem with the py-orbitals. The bare one-site energy of
oxygen holes is εp, μ is the chemical potential, and t is the hopping
integral. The operator J describes the exchange interaction between
the subsystem of oxygen holes and the subsystem of the spins localized
at copper ions. Here, Sf is the operator of a spin localized at site with
index f and σ σ σ σ→ = ( , , )x y z is the vector of the Pauli matrices. The
operator I describes the superexchange interaction between the
neighboring spins at copper ions. The intersite Coulomb interaction
between holes is described by the operator V. As far as the role of the
Coulomb repulsion V1 between holes located at the nearest oxygen sites
was clarified in Ref. [11], here we do not take into account the
corresponding term in the Hamiltonian V and restrict ourselves to a
treatment of the interactions V2 and V ′2 between the next-nearest
neighbors (Fig. 1). In the Hamiltonian, n n= ∑f x y σ f x y σ+ ( )/2 + ( )/2,  is the
operator of the number of holes at the oxygen site f x y+ ( )/2, where
x = (1, 0) and y = (0, 1) are the lattice basis vectors in the units of the
lattice parameter.

When writing the Hamiltonian (1), we take into account that the
hopping integrals in the first and the second terms can have different
signs for different hopping directions owing to the different phases of
the wave functions.

Below we use the commonly accepted set of parameters of the
model: t = 1.3 eVpd , Δ = 3.6 eVpd , U = 10.5 eVd , V = 1.2 eVpd [15–17].
Note that for this set, the parameter of superexchange energy
I = 0.136 eV(1570 K) agrees well with the experimental data on cuprate
superconductors [17]. For the hopping integral of the holes, we use the
value t = 0.1 eV [18], and we suppose that the parameters of the

intersite Coulomb interactions V V= ′2 2 are ranging from 0.5 to 1.5 eV.
It is important that the exchange energy between the localized and

itinerant spins calculated using the expression (3) is large, namely,
J τ= 3.4 eV⪢ ≈ 0.1 eV. Therefore, to describe the oxygen holes dy-
namics it is necessary to take into account the exchange interaction
rigorously. We solve this problem using the following basis set of
operators [18,19]
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where the third operator describes the strong spin-charge coupling.

3. Equations for Green's functions

For consideration of the conditions for the Cooper instability, we
supplement the basis set (4) by the operators (α α= − )
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−
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−
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The equations for the normal Gij and the anomalous Fij Green's
functions obtained by the method [20,21] can be represented in the
form ( j = 1, 2, 3)
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Here, G a a= 〈〈 | 〉〉k k11 ↑ ↑
† , G b a= 〈〈 | 〉〉k k21 ↑ ↑

† , and G L a= 〈〈 | 〉〉k k31 ↑ ↑
† . The

functions Gi2 and Gi3 are determined in a similar way with the only
difference that ak↑

† is replaced by bk↑
† and Lk↑

† , respectively. The
anomalous Green's functions are defined as
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the same type of notation regarding the second index is used. The
functions involved in (6) are determined by the expressions
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Here, γjk are the square lattice invariants:
γ k k γ k k γ k k= (cos + cos )/2, = cos cos , = (cos 2 + cos 2 )/2k x y k x y k x y1 2 3 .
In the course of deriving (6), we assume that the state of localized
moments corresponds to the quantum spin liquid. Therefore, the spin
correlation functions C S S= 〈 〉j r0 j satisfy the relations
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where rj is the position of a copper ion within the coordination sphere j.
Besides, S S S〈 〉 = 〈 〉 = 〈 〉 = 0f

x
f
y

f
z .

From (6), it follows that the spectrum of the Fermi excitations in
the normal phase is determined by the solution of the dispersion
equation

ω ω ξ ω ξ ω ξ J J t K
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det ( ) = ( − )( − )( − )−2
−( − ) −( − ) −( − ) = 0.
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The spectrum is characterized by three bands ϵ k1 , ϵ k2 and ϵ k3 [22]. The
branch ϵ1k with the minimum at a point close to (π /2, π /2) of the
Brillouin zone arises owing to the strong spin-fermion coupling. At the
low value of the number of holes per one oxygen ion np, the dynamics
of holes is determined by the characteristics of the lower band ϵ1k. This
band is separated by an appreciable gap from the upper bands ϵ2k and
ϵ3k [22].

Fig. 1. Structure of CuO2 plane. Here V1 denotes the Coulomb interaction between holes
located at the nearest-neighbor oxygen sites and V2 and V′2 correspond to the Coulomb

interactions of holes located at the next-nearest-neighbor oxygen sites.
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The introduced order parameters Δj k, are related to the anomalous
averages as follows
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4. Equations for the superconducting order parameters

For the analysis of the conditions for the appearance of the Cooper
instability, we express the anomalous Green's functions in terms of the
Δ*lk parameters in the linear approximation
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Using the spectral theorem [23], we find the expressions for the
anomalous averages and finally arrive at the closed set of uniform
integral equations for the superconducting order parameters
(l = 1, 2, 3)
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Below, we use the system (14) to find the critical superconducting
temperature.

In the Fig. 2, we illustrate the results obtained by solving Eq. (14)
for the dx y−2 2-wave pairing, where

Δ Δ k k Δ k k= ·(cos − cos ) + ·(cos 2 − cos 2 ).lk l x y l x y1 2

One can see from Fig. 2 that an increase in V2 and V ′2 leads to
suppression of the d-wave pairing, however superconductivity is
maintained up to unphysically large values V V= ′ = 1.52 2 eV of the
Coulomb interaction between holes located at the next-nearest-neigh-
bor oxygen ions (for comparison, the intensity of the Coulomb
interaction between nearest-neighbor oxygen ions V1 is ranging from
1 to 2 eV [16]).

5. Conclusion

To conclude, we have shown that the intersite Coulomb repulsion
between holes located at the next-nearest-neighbor oxygen ions of
CuO2 plane suppresses the dx y−2 2-wave pairing only at unphysically
large values of the Coulomb interaction V V= ′ = 1.52 2 eV. Taking into
account our previous result [11] on cancelation of the effect of the
Coulomb interaction V1 for the nearest-neighbor oxygen sites on the d-
wave pairing, we conclude that an account for the real structure of
CuO2 plane leads to stability of the dx y−2 2-wave pairing towards the
strong intersite Coulomb repulsion. It is obvious that an account for the
Coulomb interaction V3 does not effect on the superconducting d-wave
pairing because of the same “symmetry reason” as that for V1 [11].
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