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A B S T R A C T

We discuss the conditions under which Majorana zero modes can be implemented in the coexistence phase of
chiral superconductivity and 120°-type noncollinear spin structure on the triangular lattice. It is shown that the
gapless elementary excitations exist on the finite region in the parameter space consisting of the effective
exchange field, the chemical potential, and the superconducting order parameter. The range of parameters
supporting Majorana edge states with exactly zero excitation energy has also been found.

1. Introduction

In the high-energy physics a Majorana fermion has its own
antiparticle [1]. In recent years the interest in the Majorana problem
has grown due to implementing the elementary excitations in the
condensed matter which are similar to the Majorana fermions.

Among the promising systems supporting Majorana zero modes,
there are quantum superfluid liquids [2] and topological superconduc-
tors [3–5]. In the majority of topological superconductors a spin–orbit
interaction plays a significant role in the formation of Majorana bound
states [6].

Recently, an alternative mechanism for the creation of Majorana
zero modes has been proposed which is not connected with a spin–
orbit interaction but is caused by the coexistence of superconductivity
and magnetism [7,9,10]. In Ref. [7] the coexistence phase of chiral
d id+x y xy−2 2 -wave superconductivity and noncollinear stripe-type spin
ordering on the triangular lattice has been considered. It has been
shown that the edge states with almost zero excitation energy appear
when the Fermi contour crosses the nodal points of the chiral super-
conducting order parameter. However, in the t J V− − model the
solution of the self-consistent integral equation for the superconduct-
ing order parameter in the presence of stripe-type magnetic ordering
does not have the chiral structure [11]. This means that the state
considered in [7] with coexisting chiral superconducting and noncol-
linear magnetic orders does not satisfy the self-consistent equations for
the order parameters due to symmetry reasons. Furthermore, con-
sideration of the real quasimomentum dependence of the supercon-
ducting order parameter in the above-mentioned coexistence phase
significantly complicates searching for the Majorana zero modes.

The chiral structure of the superconducting order parameter

remains valid in the case of 120°-type magnetic order on the triangular
lattice [11]. Such structure of noncollinear magnetic ordering has also
been considered in [8] to create the Majorana modes, but only in the
particular case of the model parameters. Therefore, in this paper the
formation of the Majorana zero modes in the coexistence phase of
chiral d id+x y xy−2 2 -wave superconductivity and 120°-type noncollinear
spin order is analyzed. As a result, a wide range of the parameters
supporting the Majorana zero modes is obtained. At the borders of this
parameter region the bulk spectrum is gapless.

2. Model and method

We consider the Hamiltonian describing the coexistence phase of
chiral superconductivity and noncollinear magnetic order on the
triangular lattice in the mean-field approximation:
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where μ is the chemical potential, tfm is the electron hopping
amplitude. By analogy with Ref. [7], the formation of noncollinear
magnetic order is considered in the mean-field approximation where
the on-site spin average is MS QR QR= (cos( ), −sin( ), 0)f f f . The
effective exchange field parameter is defined as follows:

∑h M I iQ Q R R( ) = /2 exp(− ( − )),
m

fm f m
(2)

where M is the magnetization, Ifm is the exchange integral.
Hereinafter, the coordinates in real and quasimomentum space are
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defined in the basis: n mR a a= +f 1 2, k kk b b= +1 1 2 2, where ai are the
basic vectors of the triangular lattice, bi are the basic reciprocal vectors.

In the case of the 120°-type magnetic order (3×3-type) the
magnetic structure vector is Q QQ = ( , ), Q π= 2 /3 and
h M I IQ( ) = /2(−3 + 6 )1 2 . Here I1 and I2 are the exchange parameters
for the first and second coordination spheres, respectively.

It is assumed that a pairing interaction leading to superconductivity
with the anomalous amplitude Δfm is developed between the next
nearest neighbors. This can be achieved when the pairing interaction
between nearest neighbors is suppressed by the inter-site Coulomb
interaction [7,12]. Then the superconducting order parameter is well
defined by the d id+x y xy−2 2 -wave chiral invariant for the second
coordination sphere on the triangular lattice:

Δ Δ k k e k k e k k= 2 [cos(2 + ) + cos(2 + ) + cos( − )].i π i π
k2, 22 1 2

2 /3
2 1

4 /3
1 2 (3)

In order to simplify calculations, we will consider the periodic
boundary conditions along a2. This corresponds to description of the
triangular lattice folded on a cylinder. Then the task of calculation of
elementary excitations (for the fixed value k2) is solved using the
Bogoliubov transformation:
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where j N= 1, 2,…,4 ,1 N1 is a total number of sites along a1.

3. The parameter region for the bulk gapless excitations

The parameter regions supporting Majorana zero modes are well
described based on the analysis of the bulk spectrum. At the borders of
the different topological phases a gap in the bulk excitation spectrum
should disappear [13]. To find such region we analyze the expression
for the bulk spectrum in the presence of coexisting superconductivity
and noncollinear magnetic order:
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The following notations have been introduced: ξ t μ= −k k , tk is a
Fourier-transform of the hopping integral.

Remarkably, that the quasimomentum dependence of the super-
conducting order parameter (3) with regard to the 120°-type spin
ordering satisfies the relation Δ Δ=k Q k2, − 2, . Then, the parameters at
which the bulk excitation spectrum Ek

± is equal to zero are defined by
the equation:

h ξ ξ Δ= + .k k Q k
2

− 2,
2 (7)

In the case k π≠ −2 /32 in Eq. (7), the quasimomentum components
k1 and k2 of the gapless points in the Brillouin zone are connected by
the relation:
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In the case k π= −2 /32 , the bulk spectrum is equal to zero for the family
of curves (7) each of which is labeled by the quasimomentum
component k π π∈ [− , )1 . For further consideration the equation for
the envelope curve is quite essential:
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4. Majorana zero modes on the triangular lattice

The system of equations for the coefficients of the Bogoliubov
transformation (4) has a form:
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Here
t t k t k= 2 cos( ) + 2 cos(2 )k 1 3 ,
T t ik t i k ik= (1 + exp( )) + (exp( 2 ) + exp(− ))k 1 2 ,
Γ t ik t i k= exp( ) + (1 + exp( 2 ))k 2 3 ,
Ψ i π i k i π ik= exp( 2 /3)(exp( 2 ) + exp( 2 /3 − ))k , t1, t2, t3 are the electron
hopping amplitudes for the first three coordination spheres. We now
use for brevity the notation k k= 2. The equations for the coefficients
Ck(n), Dk(n) can be obtained from the presented ones by the replace-
ment: A n C n( ) ↔ ( )k k , B n D n( ) ↔ ( )k k , ε ε→ − , Δ Δ→ − *22 22, Ψ Ψ→ *k k− .

In order to study the conditions supporting the Majorana zero
modes we solve the system of Eq. (10) at ε = 0. The most wide
parameter region, in which the zero modes are realized, corresponds
to k π= −2 /3. In what follows, only hoppings between nearest neigh-
bors are considered for simplicity. Taking into account the next nearest
neighbors hoppings does not change the obtained results on the
qualitative level.

In Fig. 1 the set of curves h μ( ) is shown, for which the gapless
elementary excitations occur. We consider the triangular lattice folded
on a cylinder with the length L a= 301 and k π= −2 /3. The super-
conducting order parameter is Δ t= 0.3| |22 1 . The borders of the region
within which there exist the bulk gapless elementary excitations are
shown by the bold red curve. This curve is described by Eqs. (7) and
(9). The edge states with exactly zero energy corresponding to the
Majorana zero modes are found for the parameter lines which lie
beyond this region. In the figure one of the points supporting the

Fig. 1. Conditions for the implementation of the zero excitation energy on the triangular
lattice with open boundaries along the unit vector a1 (blue lines). Here h is the effective

exchange field induced by noncollinear magnetic order, μ is the chemical potential, t1 is
the nearest-neighbors hopping amplitude. L a= 301 is the cylinder length, Δ t= 0.3| |22 1 .

Quasimomentum k π= −2 /3 is connected with the periodic boundary conditions along a2.

The bold red line shows the border of the region for the bulk gapless excitations. For the
parameter line beyond this area depicted by a red star the Majorana zero modes occur.
(For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Majorana zero mode is depicted by a star. For those lines, which are
bounded by the above-mentioned region, the states with exactly zero
energy have a band character and their densityprofile is distributed on
the whole cylinder length.

The Majorana zero modes exist also for k π= /3. However, in this
case the Majorana zero modes are found only in the vicinity of Δ t= | |22 1 .

Due to the fact that the Fermi operators cn k Q σ,− + 2 , cn kσ, for the values
k π π= −2 /3, /3 describe fermions with equivalent quasimomentum it is
possible to introduce the Majorana operators in the well-known form
[14]:

γ c c γ i c c= + , = − ( − ).Anσ nkσ nkσ Bnσ nkσ nkσ
† † (11)

As a result, the spatial distribution of the Majorana operators can be
analyzed, using the new Bogoliubov coefficients: wnσ is for γAnσ and znσ is
for γBnσ .

The density profile of the Majorana modes on the lattice sites is
shown in Fig. 2 for the parameters h and μ depicted in Fig. 1 by a star.
It is seen that the distribution corresponds to the edge states with
exactly zero energy. It can also be seen that the zero excitation energy
can be implemented even when the distributions of the Majorana
modes belonging to the different edges of the cylinder overlap. With
increasing the cylinder length the tendency of the Majorana modes to
be localized near the edges becomes more apparent. This is confirmed
by Fig. 3 where the density of the Majorana states for the length
L a= 1201 is shown.

It should be noted that recently [15] the parameter lines supporting
the Majorana zero modes have been obtained in the framework of the
Kitaev model [14]. It is shown that a passage through these lines is
accompanied by a change of the fermionic parity of the ground state.

In the considered model as well as in the Kitaev model there exist the
elementary excitations which energy exponentially decreases with increas-
ing the length L1. The parameter region for such excitations is much wider
compared with the region for which the Majorana zero modes are found.
Moreover these conditions are not restricted by the quasimomentum
values k π π= −2 /3, /3. One of such examples is given in [8].

The parameter lines supporting the Majorana zero modes for
different values of the superconducting order parameter are shown in
Fig. 4. The solid red (upper) line is for Δ t= 0.5| |22 1 , the solid purple line
is for Δ t= 0.3| |22 1 , and the results for Δ t= 0.1| |22 1 are shown by the solid
blue (lower) line. The dashed red (upper) and blue (lower) lines in the
figure enclose the parameter regions, for which the bulk spectrum does
not exhibit an energy gap in the cases of Δ t= 0.5| |22 1 and Δ t= 0.1| |22 1 ,
respectively. These lines are obtained from Eq. (9). It is seen that in the
case Δ t= 0.5| |22 1 the solid line, supporting the realization of the
Majorana zero modes, lies well below the border of such region.

The tendency for the Majorana modes to be localized near the edges
is more pronounced when their parameter line greatly differs from the
border of the region of bulk gapless excitations. It is seen that the lines
in the case of Δ t= 0.1| |22 1 describing the implementation of the zero
excitation energy for the periodic and open boundary conditions are

almost the same (compare lower solid and dashed lines). Then the vast
majority of the Majorana zero modes on the triangular lattice are
realized in the parameter region enclosed by the dashed lines in Fig. 4.

5. Conclusions

As has been shown in [11], the coexistence phase of chiral super-
conductivity and noncollinear spin ordering is realized in the case of
120°-type magnetic structure. In the presence of stripe-type magnetic
order the superconducting order parameter is modified and it does not
correspond to the chiral d id+x y xy−2 2 -wave symmetry of the triangular
lattice. Thus, in this paper we consider the 120°-type spin state in the
coexistence phase for searching for the Majorana zero modes.

We describe the conditions under which the edge states with exactly
zero excitation energy appear in the coexistence phase of chiral
superconductivity and 120°-type noncollinear magnetic structure on
the triangular lattice. Such edge states correspond to the Majorana zero
modes. The edge states have zero excitation energy even in the case
when distributions of the Majorana modes belonging to different edges
overlap. The expressions describing the conditions for the implementa-
tion of the Majorana zero modes have been obtained analytically.
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Fig. 2. The distribution of the Majorana modes on the lattice sites along a1 for the

parameters depicted in Fig. 1 by a star.

Fig. 3. The distribution of the Majorana modes for the parameters: Δ t= 0.3| |22 1 ,

L a= 1201 , h t= 0.55 1, μ t= 1.86| |1 .

Fig. 4. The evolution of the parameter lines supporting Majorana zero modes (solid
lines) upon changing the superconducting order parameter amplitude: Δ t= 0.5| |22 1 ,

Δ t= 0.3| |22 1 , Δ t= 0.1| |22 1 (from the upper line to the lower line), L a= 301 , k π= −2 /3. The
dashed lines bound the region of the gapless excitations of the bulk spectrum. (For
interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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