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A B S T R A C T

Induced spin polarization of π-conjugated carbon and h-BN low dimensional fragments at the interfaces formed
by deposition of pentacene molecule and narrow zigzag graphene and h-BN nanoribbons on MnO2-terminated
LSMO(001) thin film was studied using GGA PBE+U PAW D3-corrected approach. Induced spin polarization of
π-conjugated low-dimensional fragments is caused by direct exchange with Mn ions of LSMO(001) MnO-
derived surface. Due to direct exchange, the pentacene molecule changes its diamagnetic narrow-band gap
semiconducting nature to the ferromagnetic semiconducting state with 0.15 eV energy shift between spin-up
and spin-down valence bands and total magnetic moment of 0.11 μB. Direct exchange converts graphene
nanoribbon to 100% spin-polarized half-metal with large amplitude of spin-up electronic density at the Fermi
level. The direct exchange narrows the h-BN nanoribbon band gap from 4.04 to 1.72 eV in spin-up channel and
converts the h-BN ribbon semiconducting diamagnetic nature to a semiconducting magnetic one. The electronic
structure calculations demonstrate a possibility to control the spin properties of low-dimensional π-conjugated
carbon and h-BN fragments by direct exchange with MnO-derived LSMO(001) surface for spin-related
applications.

1. Introduction

The roles of indirect and double exchange interactions in manga-
nites was elucidated in several experimental and theoretical publica-
tions (see, for example [1,2]). In particular [2], it was found that
magnetism of La0.9Sr0.1Mn1-xGaxO3+γ is caused by Ruderman, Kittel,
Kasuya, Yosida (RKKY, [3–5]) mechanism of indirect exchange. Using
photoemission and X-ray spectroscopy it was found that in La1-
xSrxMnO3 (0.2≤x≤0.6) the oxygen holes are antiferromagnetically
bounded with high spin configurations of Mn3+ ions [6,7]. The
electron-hole excitation leads to charge transfer from O2p subband
to Mn3+ ion with the formation of Mn4+ configuration through double
exchange mechanism [8]. The LDA electronic structure calculations [9]
confirmed the experimental results revealing strong hybridization of
Mnd- and O2p subbands.

In recent years, carbon-based materials attract much attention as
promising building blocks for spintronic applications [10–12] because
of their extremely high mobility of electrons together with long spin
transport length [13,14] caused by weak spin-orbit interactions of
carbon atoms. Such remarkable properties allow one to design
graphene-based spintronic and spincaloritronic nanodevices.

Many ferromagnetic supports cause strong induced spin polariza-
tion of deposited π-conjugated organic media [15,16]. with high
magnetoresistance [17,18]. Perovskite manganites are well known as
an advantage class of functional with rich variety of magnetic and
electric properties, such as half-metallic ferromagnetism, high magne-
toresistance, perfect spin polarization and charge/orbital ordering [19–
21]. Half-metallic La1−xSrxMnO3 (LSMO), which is characterized by
colossal magnetoresistance, low-density of charge carriers, high Curie
temperature and partial transparency [21,22] is one of the most
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promising materials for magnetic tunnel junctions and effective spin
injection in graphene and related π-conjugated organic media. The role
of surface magnetization of LSMO was underlined in Refs. [22–24] and
it was shown that in the LSMO/Alq3/Co magnetic tunnel junction,
which exhibits magnetoresistance up to 300%, the interfacial spin-
dependent metal-organic media hybridization causes an enhancement
and even a sign reversal of injected spins. It was also found that the
coupling of the electronic states of graphene with Mn ions is very high
[25]. The unique magnetic properties of LSMO allow one to develop
spin-polarized organic light emitting diodes [26,27] and spin-valve
[28,29]. nanodevices. Another example is a spin valve device consisting
of carbon nanotube deposited on La0.7Sr0.3MnO3 electrodes [30],
which demonstrates a long spin lifetime and high Fermi velocity in
the nanotube. Recent photoemission study of the evolution of the
electronic structure at C60/LSMO exhibits 0.61 eV interface barrier for
the electrons to be injected from LSMO to C60[31].

Due to the long spin lifetime of charge carriers, π-conjugated
organic media is considered as promising materials for spintronics
nanodevices [32,33] and pentacene molecule C22H14 is one of them.
This highly conjugated organic molecule exhibits semiconducting
electronic properties due to the narrow HOMO-LUMO gap and exciton
generation upon absorption of ultra-violet or visible light. It was
demonstrated that vertical pentacene-based spintronic devices with
La0.7Sr0.3MnO3 and Co electrodes retain magnetoresistive effects up to
room temperature [34]. Pentacene binds with Au substrate by weak
van der Waals interactions, while Cu and Ag substrates cause chemical
interfragment bonding [35]. Recently, spin-dependent molecular sym-
metries associated with p–d hybridization between pentacene and
cobalt nanoscale islands deposited on Cu(111) was studied by SP-
STM technique [36]. which allows to predict and control induced spin
polarization of π-conjugated molecule on magnetic substrates.

Zigzag h-BN (ZBNNRs) [37,38] and graphene nanoribbons
(ZGNRs) are other examples of the key π-conjugated media to promote
spin injection through tunneling junctions, chemical passivation and
create insulating layers. It was shown that ZGNRs are antiferromag-
netic semiconductors [39] with ferromagnetic spin ordering at each
edge [40–42]. Zigzag graphene nanoribbons can be used in spintronics
as spin-FET [43] spin logic gates and spin filtering devices [42]. A new
highly efficient spin caloritronics MR devices can be fabricated using
ZGNR with heterojunctions consisting of single (or double) hydrogen-
terminated ZGNR [44]. It is worth to note that ZGNRs demonstrate
single-channel room temperature ballistic conductivity on a length
scale equal to ten micrometers, which is greater the theoretically
predicted value for perfect graphene [45,46]. The unique properties
of graphene nanoribbons open unique possibility to create novel
LSMO-based heterostructures with induced half-metallic ferromag-
netic nature for promising spintronics and spin caloritronics applica-
tions.

In this paper, the mechanism of induced spin polarization of
pentacene, narrow zigzag graphene and h-BN nanoribbons at the
interfaces through the direct exchange with MnO2-terminated
LSMO(001) thin film was studied by electronic structure calculations.
The surface induces asymmetry causes formation of 2D electron gas
localized at the interfaces and lift of spin degeneracy of low-dimen-
sional fragments. The types of coordination of the fragments, the
nature of bonding, the degrees of spin polarization of low-dimensional
π-conjugated carbon and h-BN fragments are predicted and theoreti-
cally studied. It was found that weak dispersion forces determine the
nature and energy of bonding between the fragments and LSMO(001)
substrate.

2. Computational methods

To run all electronic structure calculations of pentacene, graphene-
and h-BN zigzag nanoribbons deposited on MnO2-terminated
LSMO(001) surface, ab initio Density Functional Theory (DFT) within

the projector augmented wave (PAW) [47] method and GGA+U [48,49]
exchange-correlation functional proposed by Perdew, Burke and
Ernzerhof (PBE) [50] were used. The empirical D3 Grimme corrections
[51] and periodic boundary conditions (PBC) was employed. The U=2
and J=0.7 eV parameters and cutoff energy Ecutoff=450 eV were
adopted from earlier LSMO calculations [52–54]. For unit cell calcula-
tion the Brillouin zone reciprocal space was sampled by 12×12×12 k-
points using Monkhorst-Pack scheme [55]. To perform all electronic
structure calculations, VASP code was used [56,57]. The electronic
structure calculations of bulk La0.67Sr0.33MnO3 reveal a translation
vector equal to 3.886 Å which is in a good agreement with experimental
data (a=3.876 Å [58] and a=3.87 Å [59]) and previous theoretical
calculations (a=3.89 Å [52]).

The atomic structure of La0.67Sr0.33MnO3 is presented in Fig. 1.
Following the experimental data [60–65], the MnO2 terminal layer
could be employed to design the slab model of LSMO(001) thin film to
introduce direct exchange mechanism for induced spin polarization of
low-dimensional π-conjugated nanofragments. The structure of
LSMO(001) contains six layers: one SrO layer formed by tetrahedrally
coordinated Sr ions on the bottom of the plate, two MnO layers formed
by octahedrally coordinated Mn ions, one top surface MnO layer
formed by MnO5 pyramids and two LaO layers formed by tetrahedral
La ions. The La and Sr ions occupy the centers of the cubes formed by
Mn ions.

To simulate the LSMO(001)-based heterostructures zigzag gra-
phene and h-BN nanoribbons were used as well as highly conjugated
pentacene molecule (C22H14, five linearly-fused benzene rings). The
supercells of narrow zigzag graphene and h-BN nanoribbons consist of
three C6 or B3N3 hexagons in width and three hexagons in length
(C24H6 and B12N12H6 supercells) with standard notations 4-ZGNR and
4-ZBNNR, respectively. Since the Mn ions make dominant contribution
to the magnetic properties of LSMO and provide a high degree of
induced spin polarization of low-dimensional π-conjugated fragments,
the MnO-terminated LSMO(001) surface was used to design low-
dimensional heterostructures, namely pentacene/LSMO(001), 4-
ZGNR/LSMO(001) and 4-ZBNNR/LSMO(001). The 5×2×1
(La20Sr10Mn30O90) and 8×2×1 (La32Sr16Mn48O144) supercells were
used to simulate the pentacene/LSMO(001) and 4-ZGNR/
LSMO(001) and 4-ZBNNR/LSMO(001) heterostructures, respectively.
To avoid artificial interactions between the supercell images, the
vacuum interval of 17 Å along c direction was used. 2×6×1 and
1×6×1 Г-centered Monkhorst-Pack k-point Brillouin zone sampling

Fig. 1. Atomic structure of La0.67Sr0.33MnO3. The oxygen, manganese, lanthanum and
strontium atoms are presented in red, purple, yellow and grey-pink respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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scheme were set to calculate the atomic and electronic structure of
pentacene/LSMO(001) and 4-ZGNR (4-ZBNNR)/LSMO(001) compo-
sites, respectively.

The cohesive energies of 4-ZGNR, pentacene and 4-ZBNNR with
LSMO(001) thin film substrate were calculated using the following
equation:

E E E E= − −C T LSMO frag

where ET is the total energy of the composites, ELSMO is the energy of
pristine LSMO slab and Efrag is the energy of freestanding low-
dimension fragment, either 4-ZGNR, pentacene molecule or 4-ZBNNR.

To define coordination types of 4-ZGNR, 4-ZBNNR and pentacene
on MnO-terminated layer, standard notations of coordination sites (η1,
η2, η3 and η6) are used throughout the text to denote the coordination
of Mn ions to a single atom (η1), middle of C-C and B-N bonds (η2), C3,
BN2 and NB2 triangles (η3) and middle of C6 and B3N3 hexagons (η6)
of the low-dimensional carbon- and h-BN nanofragments.

3. Results and discussion

The electronic structure calculations of all LSMO slabs reveal small
rotations of MnO6 octahedrons which coincide well with previous
experimental [66] and theoretical [67] publications. The interaction of
2D fragments with LSMO leads to visible modifications of the atomic
and electronic structure of the constituent low-dimensional parts, like
curvature of the nanofragments and substrate top layers.

3.1. Structure and energetic stability of pentacene/LSMO(001)
interface

Three possible configurations of pentacene on MnO-terminated
(001) surface of LSMO thin film (Fig. 2, Table 1) were revealed,
namely: a) η1; b) η1−3 and c) η2−6. The first η1 configuration is
characterized by Mn ions coordinated atop C atom (Fig. 2a). The
second η1–3 is characterized by coordination of Mn ions to C atoms
and C3 fragments (Fig. 2b). Pentacene molecule in the third η2−6

configuration (Fig. 2c) is coordinated by Mn ions through the middle of
C-C bonds and C6 hexagon. The η1−3 configuration is energetically
preferable among all three heterostructures with almost the same
interplanar distances (3.240–3.250 Å).

3.2. Structure and energetic stability of 4-ZGNR/LSMO(001)
interface

Three possible 4-ZGNR/LSMO(001) interfaces (Fig. 3, Table 2),
namely η1–2–3–6 (Fig. 3a), η1 (Fig. 3b) and η3 (Fig. 3c) were revealed
and studied using the electronic structure calculations. As in the case of
pentacene/LSMO(001) heterostructure, energetically preferable
η1−2−3−6 configuration has both η1 and η3 coordinations of surface
Mn ions to hexagonal carbon lattice. Two other positions (η1 and η3)
are energetically metastable. The η1−2−3−6 configuration is charac-
terized by 2.892 Å distance between LSMO and 4-ZGNR fragments,

which is significantly shorter than pentacene – MnO interplanar
distance of 3.242 Å, and smaller cohesive energy per carbon atom
(−0.011 eV/carbon atom) in comparison with −0.086 eV/carbon atom
(Table 1) for pentacene.

3.3. Structure and energetic stability of 4-ZBNNR/LSMO(001)
interface

Similarly to 4-ZGNR heterostructure, the most preferable config-
uration of 4-ZBNNR (Table 3, Fig. 4b) is η1–2–3–6. The cohesive
energies per BN pair of all 4-ZBNNR configurations are much stronger
than the energies per carbon dimer for 4-ZGNR (Table 2, Fig. 3). The
interplanar distances for 4-ZBNNR on LSMO are equal to 2.873–
3.093 Å, which is comparable to those for 4-ZGNR and relatively
smaller than interplanar distances for pentacene/LSMO(001). The
stronger bonding and shorter distances between the 4-ZBNNR and
MnO-terminated LSMO(001) thin film in comparison with 4-ZGNR/
LSMO(001) heterostructure could be explained by attractive electro-
static interactions between LSMO(001) surface Mn and O ions and
positively (B) and negatively (N) charged atoms of h-BN.

The binding energies of energetically favorable configurations of
pentacene/LSMO(001), 4-ZGNR/LSMO(001) and 4-ZBNNR/
LSMO(001) heterostructures are very close to the upper limit of van
der Waals (vdW) energy, which indicates negligible role of chemical
binding (either covalent, complex or ionic) between LSMO and low-
dimensional nanofragments. For all heterostructures η1 and η3

coordinations are responsible for formation of the most stable inter-
faces (Tables 1–3), which is not typical for complex compounds of d-
elements with π-conjugated ligands.

3.4. Electronic structure of pentacene, 4-ZGNR and 4-ZBNNR
deposited on MnO-terminated LSMO(001) surface

Total and partial density of states of pentacene/LSMO(001) (η1−3

configuration), 4-ZGNR/LSMO(001) (η1−2−3−6) and 4-ZBNNR/
LSMO(001) (η1–2–3–6) are presented in Fig. 5. All heterostructures
are half-metals due to the major contribution of half-metallic LSMO
thin film support to the electronic properties of the composites. The
η1–2–3–6 configuration of 4-ZGNR/LSMO(001) demonstrate 100%
spin polarization of 4-ZGNR with large spin-up PDOS at the Fermi
level. At the same time, pentacene and 4-ZBNNR fragments exhibit
visible spin-up and spin-down PDOS energy splitting caused by the lift
of spin-degeneracy. The freestanding pentacene molecule has diamag-
netic closed-shell electronic structure with HOMO-LUMO gap equal to

Fig. 2. Pentacene/LSMO(001) interfaces. (a), (b) and (c) are η1, η1−3 and η2−6 configurations, respectively.

Table 1
Cohesive energies and interplanar distances of pentacene/LSMO(001) composite.

Configuration η1 η1–3 η2–6

Cohesive energy, eV/supercell −1.848 −1.900 −1.838
(Cohesive energy, eV/carbon atom) (−0.084) (−0.086) (−0.083)
Average interplanar distance, Å 3.240 3.242 3.250
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0.9 eV (Fig. 5a). Direct exchange interactions with LSMO cause
narrowing of the spin-up HOMO-LUMO gap up to 0.75 eV with
keeping spin-down band gap intact, which leads to 0.15 eV shift of
both spin-down HOMO and LUMO states towards low energy region.
The total magnetic moment of pentacene in pentacene/LSMO(001)
heterostructure is become equal to 0.11 μB. Near the Fermi level, PDOS
of pentacene fragment is characterized by weak dispersion due to its
quasi-molecular nature of the electronic states.

The direct exchange interactions of LSMO electronic subsystem
with antiferromagnetic 4-ZGNR generate 100% spin-up polarization of
the fragment with spin-down valence band maximum (VBM) –

conduction band minimum (CBM) gap equal to 0.44 eV (Fig. 5b).
The spin polarization of 4-ZGNR follows positive sign of the substrate.
The preservation of spin polarization sign shows that the spin transport
in the 4-ZGNR/LSMO composite should be strong [67]. Since LSMO
exhibits colossal magnetoresistance, the organic spin valves based on
LSMO should also carry large MR.

Freestanding diamagnetic 4-ZBNNR is characterized by wide band
gap (4.04 eV, Fig. 5c). The unique magnetic and conducting properties

of LSMO film are determined by spin-up electronic density near the
Fermi level, where 4-ZBNNR PDOS is equal to zero. Direct exchange
interactions of electronic subsystems are responsible for the shrink of
the gap in 4-ZBNNR PDOS up to 1.72 eV and dramatic reshape of both
spin-up and spin-down channels of the fragment electronic subsystem.

The electronic structure calculations reveal no considerable change
of LSMO electronic structure subsystem (Fig. 5).

Spatial spin density distribution of 4-ZGNR/LSMO(001) is pre-
sented in Fig. 6. In contrast with Mn bulk ions (Mnbulk), spatial
distribution of partial spin-density of surface Mn ions (Mnsurface) is
visibly shifted toward the interface. Mostly, spin density in 100% spin-
polarized half-metallic LSMO fragment is localized on Mn and, in less
extent, on oxygen ions. The Bader analysis [68–70] reveals 0.02 e, 0.41
e and 0.02 e charge transfer from LSMO support to 2D nanostructure
for pentacene/LSMO(001), 4-ZGNR/LSMO(001) and 4-ZBNNR/
LSMO heterostructures, respectively. Edge effect also causes visible
differences of magnetic moments of surface and bulk ions: The
Mnsurface(Mnbulk) and O magnetic moments equal to 3.70–3.90
(3.22–3.29) μB and 0.05–0.07 μB, respectively. It is necessary to note
that magnetic moments localized on La and Sr ions are very small
(0.01and 0.005 μB, respectively).

Direct exchange interaction of LSMO and 4-ZGNR electronic
subsystems leads to induced 0.064 μB magnetic moments localized
on 4-ZGNR edge carbon atoms. The spatial spin density distribution
map (Fig. 6) directly demonstrates the localization of induced magnetic
moments on the edge carbon atoms of 4-ZGNR, which would be
responsible for transport properties of the composite.

Deposition of low-dimensional fragments also change the magnetic
moments of surface manganese ions through the direct exchange
mechanism. For example, η1 coordinated Mn ions bear 3.70 μB instead
of 3.89 μB for clean surface. This phenomenon can be caused by strong
exchange interactions of Cpz and Mndz2 orbitals with positive net spin
on ZGNR, which means strong spin injection at the interface. Direct
exchange interactions of LSMO and 4-ZGNR electronic subsystems
lead to induced 0.064 μB magnetic moments localized on 4-ZGNR edge
carbon atoms. The spatial spin density distribution map (Fig. 6)

Fig. 3. 4-ZGNR/LSMO(001) interface. (a), (b) and (c) are η1–2–3–6, η1 and η3 configurations, respectively.

Table 2
Cohesive energies and interplanar distances of 4-ZGNR/LSMO(001) composites.

Configuration η1–2−3–6 η1 η3

Cohesive energy, eV/supercell −0.263 0.022 0.292
(Cohesive energy, eV/carbon atom) (−0.011) (0.001) (0.012)
Average interplanar distance, Å 2.892 2.830 2.985

Table 3
Cohesive energies and interlayer distances of 4-ZBNNR/LSMO(001) composites.

Configuration η1 η1−2−3−6 η2−6 η3

Cohesive energy, eV/supercell −1.585 −1.724 −1.596 −1.647
(Cohesive energy, eV/BN pair) (−0.132) (−0.144) (−0.133) (−0.137)
Average interplanar distance, Å 2.873 2.873 2.880 3.093

Fig. 4. 4-ZBNNR/LSMO(001) interface. (a), (b) and (c) are η1, η1−2−3−6, η2−6 and η3 configurations.
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directly demonstrates the localization of induced magnetic moments on
the edge carbon atoms of 4-ZGNR, which are responsible for nanor-
ibbon transport properties. Magnetic moments localized on La and Sr
ions are very small (0.016 and 0.005 μB, respectively). The average
magnetic moments of N atoms in the 4-ZBNNR/LSMO lie in the range
of 0.005–0.026 μB, whereas B atoms reveal 0 μB.

4. Conclusions

The atomic and electronic structure and induced spin polarization
of pentacene molecule, 4-ZGNR and 4-ZBNNR at MnO-terminated
LSMO(001) surface was studied using ab initio GGA+U approach. It
was found that the interface formation leads to distinctive lift of spin
degeneracy (pentacene and 4-ZBNNR) or asymmetric shift of spin-up
and spin-down bands (4-ZGNR) through the direct exchange with Mn
ions at LSMO surface, localization of 2D electron gas between the
heterostructure fragments and charge transfer of 0.02–0.41 e from
LSMO substrate to quantum well region. It was found that in all

heterostructures the weak dispersion interactions are responsible for
the binding of the fragments. The interactions of 2D fragments with
LSMO lead to visible deformations of the π-conjugated fragments and
LSMO surface layer. The direct exchange interactions between the
electronic subsystems of 100% spin-polarized LSMO and ZGNR lead to
transition of ZGNR narrow-band gap antiferromagnetic electronic
structure to 100% spin-polarized half-metal. The spin polarization of
4-ZGNR keeps the same sign of polarization as the substrate resulting
in strong spin transport and large magnetoresistance. Direct exchange
interactions between pz orbitals of nanofragments and dz2 orbitals of
Mn top layer cause a decreasing of the magnetic moments of Mn ions.
Our results demonstrate a possibility to use MnO-terminated 4-ZGNR/
LSMO(001) heterostructure as half-metallic fragments for promising
spin-related applications.
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