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A B S T R A C T

A quadruple quantum-dot (QQD) cell is proposed as a spin filter. The transport properties of the QQD cell were
studied in linear response regime on the basis of the equations of motion for retarded Green's functions. The
developed approach allowed us to take into account the influence of both intra- and interdot Coulomb
interactions on charge carriers' spin polarization. It was shown that the presence of the insulating bands in the
conductance due to the Coulomb correlations results in the emergence of spin-polarized windows (SPWs) in
magnetic field leading to the high spin polarization. We demonstrated that the SPWs can be effectively
manipulated by gate fields and considering the hopping between central dots in both isotropic and anisotropic
regimes.

1. Introduction

The generation of tunable highly spin polarized current is vital for
spintronic applications [1,2]. To achieve this aim the variety of systems
has been already proposed from semiconductor heterostructures to
mesoscopic samples [3,4]. In the former the electron spins are
controlled by the Rashba spin–orbital coupling (SOC) [5,6]. The
strength of the SOC in turn can be regulated by an electric field
perpendicular to 2D electron gas [7]. Along with the SOC in mesoscopic
devices, having at least a few Feynman paths, quantum interference in
phase-coherent transport regime plays an important role [8]. In some
works it was demonstrated that the interplay between the Aharonov–
Bohm (AB) flux [9] and the Rashba SOC results in a substantial spin-
polarized conductance [10,11]. However, the experimental implemen-
tation of such low dimensional nanosystems, in particular, varying the
SOC strength by electric field or penetrating the AB ring with magnetic
field seems to be rather difficult.

It is known that the structures having the AB geometry or the
networks consisting of quantum dots (QDs) are able to exhibit the
Fano–Feshbach resonance [12,13] in their transport characteristics as
well. As a result, the Zeeman splitting of spin-dependent conductances
in the region of such an asymmetric peak leads to the emergence of the
so-called spin-polarized window (SPW) when there is high probability
of tunneling for the electrons with spin σ and close-to-zero one for the
electrons with spin σ [14–17]. For the QD-networks previously

proposed as spin-filter prototypes in [15–17] it is highly preferable
to have many QDs considering the Coulomb correlations inside each
QD but not between them. In this article we will show that the
nanosized diamond-shaped cell composed of just four QDs, a quad-
ruple quantum-dot cell (QQD cell), can display perfect spin filtering
properties. This behavior is achieved by taking into account both intra-
and interdot Coulomb interactions. It is shown that its spin polariza-
tion can be effectively manipulated by different kinetic processes in the
cell and gate fields. It is important to note that the transport properties
of the cells containing three and four QDs have been already
considered earlier [18–21]. In particular, Ozfidan et al. [21] showed
that the QQD cell having the same geometry can experience the spin
blockade (SB) since the spin of the three- and seven-electron states
becomes 3/2 under certain conditions. Thus, SB can serve as an
indicator of spin polarized state of the QQD cell. As it will be seen
below, our results are based on another, more general definition of SB
when the transmission for electrons of one spin direction is strongly
suppressed relative to the other due to Zeeman splitting [22].

2. The model

The system under consideration is a QQD cell between paramag-
netic contacts in external magnetic field H depicted in Fig. 1. It is
modeled by the Hamiltonian H H H H H= + + +L R D T . The term HL R( )
describes the left (right) lead,
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where cL R kσ( )
+ is the creation operator in the left (right) lead with

quantum number k, spin σ and spin-dependent energy ξ μ= ϵ −kσ kσ ;
μ is the chemical potential of the system. The third term describes the
QQD cell
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where ajσ annihilates the electron with spin σ and energy
ξ ε σh μ= − −jσ j on the jth QD; h μ H= B is the Zeeman energy;
σ = ± 1 or ↑, ↓; ti (i = 0, 1, 2) is a hopping matrix element between
the QDs; U is the intensity of the intradot Coulomb interaction; V is the
intensity of the interdot Coulomb interaction between the electrons in
the 2nd and 3rd QDs.

The interaction between the leads and the QQD cell is determined
by the last term in the Hamiltonian
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where tL R( ) is a hopping matrix element between the left (right) lead and
the 1st (4th) QD.

3. Conductance of the QQD cell with Coulomb correlations

It is convenient to introduce new second quantization operators,
ψ a a= ( … )σ σ σ

T
1 4 , for the QQD cell which allow us to consider the cell

effectively as a one-level QD. In this article we present the investigation
of the transport properties of the QQD cell in the linear response
regime and at low temperatures. This case is correctly described in
terms of spin-dependent transmission, Tσ , by the Landauer–Buttiker
formula,
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where G e h= /0
2 is the conductance quantum and f ω( ) is the Fermi

distribution function. The matrix ΓL R( ) describing the coupling between
the left (right) lead and the device is supposed to be spin- and
frequency-independent since the paramagnetic leads are treated at
the wide-band limit. The first (last) diagonal element of the matrix,
Γ πt ρ=L R L R L R( ) ( )

2
( ) (ρL R( ) is the constant density of states of the leads), is

the only nonzero one.
In order to find the components of the retarded matrix Green's

functions of the cell taking into account the intra- and interdot
Coulomb interactions we solved the equations of motion for its
components, G ω a a′( ) = 〈〈 | ′〉〉iσjσ

r
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where z ω iδ= + . In general the presence of nonlinear terms in HD

gives rise to infinite set of equations which includes the hierarchy of the
all-order Green's functions, such that n a a〈〈 | 〉〉jσ jσ jσ

+ , n a a〈〈 | 〉〉iσ jσ jσ
+ ,

n a a〈〈 | 〉〉iσ jσ jσ
+ and so on. To truncate this set and get closed one we

employ the procedure used by You and Zheng [23,24]. This decoupling
scheme allows to consider the Coulomb correlations beyond the
Hartree–Fock approximation. At the same time spin-flip processes
leading, in particular, to the Kondo physics are neglected [25]. The final
system of equations involves the first, second and third order Green's
functions (for details see [26]). The retarded Green's functions, the
occupation numbers and correlators are calculated self-consistently
using additionally the kinetic equations,
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In this article we focus on spin filtering properties of the QQD cell in
the presence of the Coulomb interactions. The corresponding spin
polarization coefficient is

P
G G
G G

=
−
+

.↑ ↓

↑ ↓ (7)

We study here a symmetrical transport situation in strong coupling
regime, t t= 1, and use Γ Γ t= =L R in energy units.

4. Isotropic QQD

Initially we analyze the transport properties of the isotropic QQD
cell when t t=1 2 and ε ε=j D. As it is clearly seen from Figs. 2a–c the
application of the magnetic field on the cell causes the separation of the
spin-up (solid curves) and spin-down (dashed curves) conductances.
Consequently, at some gate and magnetic fields perfect spin filtering
can be achieved when the conductance of electrons with the spin σ is
close to zero but the conductance for opposite spin σ is significant and
even approaches unity (in units of quantum conductance G0). In this
desirable spintronic applications case, according to (7), P = ± 1. When
only the intradot Coulomb interactions are taken into account we get
two triple-peak structures (TPSs) due to the electron–hole symmetry
(Fig. 2a) [27]. The number of the resonances in each TPS corresponds
to the number of the QDs in top and bottom paths for electronic waves.
Between two TPSs there is the insulating band with steep edges. As a
result, the step-like feature emerges in P at gate fields ε ≈ − 5D to −1
(see dotted curve at Fig. 2d). At upper and lower plateaus of P we
receive perfect spin polarization of charge carriers with opposite sign
due to the appearance of SPWs in the conductance. The most
interesting situation takes place if the interdot Coulomb interaction
between the electrons of the 2nd and 3rd QDs is considered along with
the intradot correlations. In this regime additional wide low-conduc-
tance band is induced by the Fano–Feshbach resonance after half
filling (see e.g. G↑ at gate fields ε ≈ − 8D to −6 in Fig. 2b) [26]. The
Zeeman shift of the spin-dependent conductance, such that the Fano
antiresonance of G↓ coincides with the corresponding peaks of G↑, leads
to new step-like feature in P at ε ≈ − 7D to −5 (see dashed line in
Fig. 2d). Integrally, three zones with high spin-up polarization
(P > 0.5) and four zones with high spin-down one (P < − 0.5) are
generated by the Coulomb correlations in the cell. The unequal number
of the zones for Psgn( ) = ± 1 and their difference before and after half
filling (ε ≈ − 3D for G↑) is explained by the breaking of the electron–
hole symmetry due to the interdot repulsion [27]. Moreover, we
considered two more ways to manipulate P by creating additional
SPWs, namely by means of the hopping between central QDs, t0, and
making the energy levels of the central QDs nonidentical by using gate
fields, ξ ξ Δ= + 2σ σ2 3 . In Fig. 2c the total effect of both factors is
demonstrated. It is clearly seen that there are more spin-up and
spin-down SPWs due to new Fano–Feshbach resonances. Thus, the
spin polarization is consecutively switched between the conducting

Fig. 1. The QQD cell between paramagnetic leads.
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channels with P ≈ ± 1 as εD is swept (see solid line at Fig. 2d).

5. Anisotropic QQD

From experimental point of view, it is natural to consider an
anisotropic QQD cell where the transfer integrals differ from each
other. In particular, we suppose here the top path is more transparent
than the bottom one, i.e. t t t≫ ,1 2 0. Additionally, it is worth to remark
that such a system is to some extent analogous to the two-band
Hubbard systems with one narrow band, especially exhibiting electron
polaron effect [28,29]. The decreasing of t2 and t0 leads to the
suppression of narrow conductance peaks in comparison with the
isotropic case (see Figs. 3a and 2c respectively). Consequently, six
explicit SPWs (three for each spin projection) are formed by the
Zeeman shift and the spin polarization at Fig. 3b has a set of the zones
with high P . Therefore, it is rigorously shown that the QQD cell in both

isotropic and anisotropic configuration can be used as a perfect spin
filter. This feature is based on the presence of the intra- and interdot
Coulomb interactions in the structure.

6. Conclusion

In this article the spin filtering properties of the QQD cell in the
presence of the external magnetic field have been analyzed. Using the
equation-of-motion technique for retarded Green's functions we
showed that intra- and interdot Coulomb interactions of the charge
carriers in the cell lead to the appearance of SPWs in the conductance.
They correspond to the zones of high spin polarization of the current.
The width and quantity of the SPWs can be controlled by gate fields and
the ratio of the transfer integrals in the cell. The switching between the
perfectly spin-polarized transport channels was demonstrated in both
isotropic and anisotropic QQD cells.

Fig. 2. The spin-up, G↑, and spin-down, G↓, conductance of the isotropic QQD cell: (a) U=6,V t Δ= = = 00 ; (b) U=6,V U= /6, t Δ= = 00 ; (c) U=6,V U= /6, t Δ= = 10 ; and (d) the spin

polarization. Other parameters: k T = 0.01B , h=0.5.

Fig. 3. (a) The spin-dependent conductance of the anisotropic QQD cell for parameters of Fig. 2(c), t2=0.1, t0=0.2, Δ = 0.5 and (b) the spin polarization.
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