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A B S T R A C T

Development of the interpretation of the phenomenon of the lift of the magnetic resonance frequencies
degeneracy caused by the magnetostatic interaction in assemblies of nanodisks has been done. The difference of
the resonance behavior of magnetic vortexes in a round and rectangular nanodots has been studied
experimentally and explained.

1. Introduction

It is known, at certain ratios between the thickness and width
(diameter) of nanodots, the stable distribution of the magnetization
occurs in the form of a vortex with the Bloch point in the center of a
magnet. The theory for describing the dynamics of the magnetization
was developed on the basis of the Thiel equation (in terms of collective
variables [1–6]). It was shown that the core of magnetic vortex
executes gyrotropic motion around the axis of a nanodisk similar to
the Larmor motion of a charged particle around the magnetic field
lines.

The experimental tools for studying nanodots are also widely
developed (e.g., in [7,8]). The cited works present the results of
experimental studies of the magnetic properties of the individual
nanodots. However, most experiments deal with films, i.e. arrays of
fairly separated nanodots. For this reason, the interaction between the
magnetic subsystems of elements of an array is usually disregarded [9].
At the same time, the long-term magnetostatic interaction can affect at
least collective modes of rotational motion of the core if not the static
or quasistatic characteristics of magnetization [10–12].

We would like also mention the works, where the magnetostatic
interaction in assemblies of magnetic nanoparticles was studied
[13,14], and the problem of the oscillatory modes in a pair of coaxial
magnetostatically interacting nanodisks was analytically solved [15].

2. Experimental equipment and samples

The arrays of circular and square nanodots for our studies were
formed by the “lift-off” technique from a continuous film prepared with
thermal sputtering from an 80HXC alloy on silicon substrate [16].

The morphology and the magnetic relief of the films surface were
studied with a the “Veeco MultiMode NanoScope IIIa SPM System”.
The chirality direction q = ± 1 was determined from the distribution of
the gradient of the magnetic forces acting on the probe of the
cantilever. Diameter and thickness of the particles were 3 µm and
100 nm, correspondingly.

The magnetic resonance properties of the nanodot array were
studied with the ferromagnetic resonance (FMR) spectrometer operat-
ing at the frequency of 373 MHz and 415 MHz. The sample was placed
in the antinode of a magnetic field of the cavity, which was of a short-
circuited quarter-wave waveguide with a 4-mm wide central strip. The
differential absorption curves were obtained for the sample in depen-
dence of the base field (Fig. 1). The absorption curves in Fig. 1 have the
form of superposition of curves with different absorption widths and
resonance frequencies. This means the splitting of the resonance
frequency of the gyrotropic motion of vortices.

3. Magnetostatic interacting nanodisks

Below, we consider the model situation that will help us qualita-
tively understand the origin of the lift of the degeneracy of the
resonance frequency. Here we present a refinement of the calculations
from works [16] for 2D-array of nanodots. Let us consider a square 2D
array of cylindrical nanodots with the centers separated by equal
distance d.

It is known, one of the equilibrium magnetization distributions in
circular nanocylinders is the vortex structure [17–20]. Below, we use
an approximation in which the profile of the magnetization of the
vortex changes rigidly at the displacement of the core from the center
(rigid magnetic vortex model). The behavior of the core is described by
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the equation of motion in the form

UG v F× − + = 0.∇∇ (1)

Here, G is the gyrovector, v is velocity of the core the magnetic vortex,
U is the potential energy of the magnetization (its variation at the
displacement of the core from the disk center is attributed, as a rule, to
an increase in the magnetostatic energy). According to (1) if F = 0, the
vortex core involves in the complex motion with the gyroforce [21–26].
We added this equation with the force F caused by the magnetostatic
interaction between array elements.

Consider the mechanism of the magnetostatic interaction by the
example of two neighboring disks. As was shown in [27], the magnetic
field configuration beyond the nanodot is similar to the configuration of
the field of a magnetic dipole with the satisfactor accuracy. Therefore,
below we can use the dipole approximation to estimate the energy of
interaction between cylinders. In [28], the collective modes were
thoroughly analytically calculated using the model where only the
magnetizations of identically oriented cores interact.

We approximate the interaction between nanodisks by parabolic
potential well U κr=∇∇ , where κ is the so-called effective rigidity of a
magnetic subsystem. In this case, in the projections onto the system of
coordinates, equations for n-th disk is

Gy κx F Gx κy F− ˙ − + = 0, ˙ − + = 0.n n xn n n yn (2)

Let us estimate the force F. In the dipole approximation, the energy
of magnetostatic interaction between disks distant from each other by i
periods along the x axis and by j periods along the y axis can be
presented
as W i j d i j dM M M r M r= ( − 3( )( )/( + ) )/( + )n m i j n m n i m j n m i j n i m j i j, , , , + , + , , + , + ,

2 2 2 2 2 3/2 3.
Here, ri j, is the radius vector connecting centers of nanodisks. We will

seek for the solution of system (2) in the form
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Here, the parameter q = ± 1n m, , p = ± 1n m, is the chirality and polarity
of the vortex with the number (n,m), X Y,n m n m, , are the nanodots center
coordinates, and kx,ky are the projections of the wave number onto the
coordinate axes. Now, let us consider the case when one array contains
disks with only two possible implementations ((q,p) or q p( ′, ′)), which
are arranged in the staggered order.

Although the chosen model is somewhat artificial, it allows us to
qualitatively explain the phenomenon of the lift of the degeneracy of
the resonance frequency. Substituting the probe solutions to Eq. (2) for
disks of two different kinds, we obtain biquadratic equation for the
unknown ω. The solution for the modes of resonance motions
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Parameters G, G′, and κ are taken from the works [2,8,26]:
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Here, L is the nanodisk thickness and γ is the gyromagnetic ratio. The
dimensionless field h H H= / S is applied perpendicular to the disk plane.

In the limit case d R⪢ , when disks do not interact, Eq. (4) yields the
well-known result for the core gyrotropic motion frequency in the
solitary disk: Ω κ G= /0 è Ω κ G′ = / ′0 . The presence of a multiplet in the
FMR absorption curve in zero external field was predicted in [29] and
confirmed in part in the experiment [27], were a system of two or four
interacting disks.

Fig. 1 shows differential absorption curves obtained by us in the
FMR experiment. It is seen that practically one resonance curve is
observed, when the distance between disks is 4 µm (a). The splitting of
this curve onto several resonance peaks occur, when the distance
between the disks became 2 µm (b). We interpret this splitting as the
lift of the degeneracy of the resonance frequency. The maximum
splitting calculated using formula (4) in the long-wavelength limit is
about hΔ ≈ 0.2. This is in satisfactory agreement with the experimental
data presented in Fig. 1a.

The theory of the shape of the splitting resonance curve is not
developed yet. That is why we describe the experimental data illu-
strated in Fig. 1, introducing a fitted formula. Assume the absorbed
power to be determined by characteristic the sum of the independent
Lorentz resonance curves

∑P ω h
ρ ωΓ h

ω ω h ω Γ h
( , ) ∼

( )
( − ( ) ) + 4 ( )

.
i

i

i
2 2 2 2 2 (8)

Fig. 1. Differential absorption curves obtained in the FMR experiment with the circular
nanodots for arrais with the distance between the disks 2 µm (a), and 4 µm (b).
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Here ρi is a weighting coefficient and ω is a frequency. We used the
dissipation coefficient in the form [2]: Γ h κD G D( ) = /( + )2 2 . D is the
coefficient of quasi-viscous friction of the magnetic vortex core [2]. The
total absorbed power at the fixed frequency of the experimental facility
ω can be considered as a sum of terms with different ω h( )i correspond-
ing to different polarity and chirality combinations

Fig. 2 shows the comparison of the integral absorption curve
obtained from the experimental data corresponding to Fig. 1a and
the phenomenological curve obtained using expression (8) in the long-
wavelength limit (k k, → 0x y ). In this formula, the sum of four terms
corresponding to the frequencies of the modes of the formula (4). The
weighting coefficients ρi we choose so that a phenomenological curve of
best fit of the experimental curve.

4. Circular and square nanospots

We carried out the experimental study of an array of square
nanodots with the following characteristics. The size of the nanopar-
ticles is 3×3 µm the thickness is 50 nm, and the distance between
particles is 3 µm. Fig. 3 shows the effect of the parallel component of
the field (H ) on the perpendicular resonance field (H⊥). The results of
the experiment are shown in Fig. 3.

We believe that the enhanced sensitivity of the resonance frequency
of the magnetization in a square magnet is related to the shape of the
effective potential well where the vortex core is located as a quasi-
particle. In a circular nanomagnet, the well has the form of a

paraboloid of revolution; therefore, the gyrotropic frequency of the
core is almost independent of the radius of its revolution around the
disk center and, consequently, on amplitudes of the applied ac and dc
magnetic fields.

The situation is different in square nanomagnets. Let us consider a
simplified model of the rigid magnetic core. The displacement of the
vortex core induces charges with a density σ at the lateral surface,
which interact with each other. Let us calculate the energy of their pair
interaction. For the total energy of interaction between side surface of a
square, we can write ∫ ∫E σ σ ds ds r r= /| − |μ

π4 1 2 1 2 1 2
0 . The integration is

performed on the surface area of the lateral nanodots, as it has been
done in the work [10] for the circular nanodots. The results of the
numerical integration in the region of small displacements of the core
( a< /4, where a is the length of the square) is approximated well by the

function W = 5 (( ) − )(( ) − )b
μ M L a

π
x
a

y
a

2 1
4

2 1
4

S0 2 2
.

In the planar dc magnetic field, the vortex core shifts from the
center and appears in the potential region with the smaller quasi-
rigidity coefficient. This reduces the velocity of the core and frequency
of its revolution. This also explains the high sensitivity of the resonance
curves to the orientation of the sample relative to the direction of the
planar magnetic field. In the circular nanodots, this effect is much
weaker, since the effective rigidity of the magnetic subsystem in
circular magnets is nearly independent of the core displacement.

5. Conclusion

The phenomenon of lift of the degeneracy of the resonance
frequency is due to magnetostatic interaction nanodots. Disks with a
combination of different polarities and chiral drives provide various
magnetization oscillations modes.

The square nanodots revealed a strong dependence of the reso-
nance frequency of the planar magnetic field. The round disks, this
dependence is weaker. We believe that the reason for this difference in
the profile of the potential well of parabolic in square nanodots.
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