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A B S T R A C T

A new universal method is developed for determination of nanostructure kinetic stability (KS) at high
temperatures, when nanostructures can be destroyed by chemical bonds breaking due to atom thermal
vibrations. The method is based on calculation of probability for any bond in the structure to stretch more than
a limit value Lmax, when the bond breaks. Assuming the number of vibrations is very large and all of them are
independent, using the central limit theorem, an expression for the probability of a given bond elongation up to
Lmax is derived in order to determine the KS. It is shown that this expression leads to the effective Arrhenius
formula, but unlike the standard transition state theory it allows one to find the contributions of different
vibrations to a chemical bond cleavage. To determine the KS, only calculation of frequencies and eigenvectors of
vibrational modes in the groundstate of the nanostructure is needed, while the transition states need not be
found. The suggested method was tested on calculating KS of bonds in some alkanes, octene isomers and narrow
graphene nanoribbons of different types and widths at the temperature T=1200 K. The probability of breaking
of the C–C bond in the center of these hydrocarbons is found to be significantly higher than at the ends of the
molecules. It is also shown that the KS of the octene isomers decreases when the double C˭C bond is moved to
the end of the molecule, which agrees well with the experimental data. The KS of the narrowest graphene
nanoribbons of different types varies by 1–2 orders of magnitude depending on the width and structure, while
all of them are by several orders of magnitude less stable at high temperature than the hydrocarbons and
benzene.

1. Introduction

Nowadays, following the development of nanotechnologies, nanoe-
lectronics, modern catalysts, etc., a problem of determination of
stability of different nanostructures as well as the surface of solids is
becoming more and more topical. Estimates of thermodynamic stabi-
lity, based on the Hibbs free energy Ebind, often fail to predict
experimental yields of various nanostructures in their synthesis
because of the importance of the factors that determine kinetic stability
against cleavage of the nanostructure bonds. A classic example of this is
the permanent existence of diamond despite higher stability of the
graphitic phase; another example is formation of buckminsterfullerene
C60 in carbon–helium plasma. Although the nC , > 60n fullerenes have
higher energies per atom, mainly C60 has the largest experimental
yields.

Using different versions of molecular dynamics (MD) to determine
KS is very computationally expensive, since it implies simulating
systems for times, much longer than the inverse of characteristic

thermal vibration frequencies (≈10 s−13 ), which requires more than
millions of standard timesteps (≈1 fs). For determination of KS of a
system under transition from one stable state to another, one can
calculate the frequency (or the probability) of the transition from one
geometry to another with the help of standard transition state theory
developed in [1], where the generalized Arrhenius equations is derived
ν ν= exp(− )E

kT0
barrier , where k is the Boltzmann constant, T is the

temperature, Ebarrier is the potential barrier for system passing from
one stable state to another through a transitional state. The preexpo-
nential factor (the effective vibrational frequency) ν0 for an isolated
structure is calculated with the well-known Eiring formula [1], which
also considers zero-point energy:
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where ν′i are the vibrational frequencies of N atoms of the system in the
saddle point and νi in the minimum.

Unfortunately, application of Arrhenius-type equation requires
calculations of the transition barrier Ebarrier and determination of
the system's potential energy surface. In the case of systems consisting
of hundreds of atoms, this becomes practically impossible, even if
empirical potentials are used. The theory assumes that system over-
comes the potential barrier along the path determined by only one
(soft) vibrational mode, however it is quite obvious that cleavage of a
bond may be caused by a combination of several vibrations.

At present there is no effective method for determination of kinetic
stability of nanostructures as well as the surfaces of solids at high
temperatures, when the chemical bonds can be broken due to atom
thermal vibrations.

2. Theory

A new method to calculate KS based on the probabilities of any
bond in the structure to stretch more than a limit value Lmax, when the
bond breaks, was suggested in our previous work [2]. It is assumed that
this probability describes the KS against destruction due to thermal
vibrations. The proposed method was successfully used to calculate the
KS of various fullerenes. In the present work we develop this approach
for calculation of KS of carbonaceous heteroatomic molecules and
nanostructures.

The approach is based on finding the probability for any chemical
bond in the nanostructure to stretch more than a limit value of Lmax

with the help of central limit theorem (CLT) of probability theory.
Assuming all of vibrational modes are independent and their number is
large, CLT states that the probability of every atom displacement in
every direction is distributed normally, thus the probability of a bond
between any atoms elongation up to Lmax can be calculated.

Then summing the contributions from harmonic vibration normal
modes k gives the displacement vector for every atom n at time t:

∑n t n n i ω t ϕR R X( , ) = ( ) + ( )exp( ( + ))
k

N

k k k0
=1
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(2)

where nR ( )0 is the vector of n-th atom equilibrium coordinates, ωk is
the k-th vibration mode eigenfrequency, nX ( )k is the eigenvector of
atom displacement in the k-th vibration mode, and ϕk is the initial
phase of the vibration mode. Hereinafter N3 − 6 stands for the total
number of the molecules vibration modes without translations and
rotations. Apparently, the total energies of all atoms for a given mode
are:
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where mk is the reduced mass and Xk is a vector of amplitudes in the
space of atom numbers for the k-th mode. Using Boltzmann's
equipartition theorem, which gives the mean energy of one degree of
freedom of a given mode, the expression for the vibration mode's vector
amplitude is easily derived:
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It is necessary to clarify the applicability of the three formulas
stated above to describe the harmonic oscillation contribution at high
temperatures T( ≈ 1000 K) when the anharmonic contribution to the
lattice vibrations can be considerable. Using (4), we can easily estimate
the displacements of atoms within the harmonic approximation

n mR|Δ ( , )|. For T n mR= 1000 K|Δ ( , )| ≈ 0.4 A. The contribution of an-
harmonic effects may be estimated from equation of thermal expansion

αT=n m
n m

R
R

|Δ ( , )|
| ( , )| , where α is the thermal expansion coefficient, which has

typical values of α ∼ 10 –10 K−4 −5 −1. Therefore, at T = 1000 K the mean

changes of the chemical bond lengths due to anharmonicity is
n mR|Δ ( , ) | ∼ 10 –10 Aunharm

−2 −1 , which is significantly smaller than the
contribution from harmonic oscillations.

Further, having various vibration modes the time-dependent vector
connecting two atoms, n and m, is equal to:
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As a first approximation of the displacements of the two atoms,
after projecting the changes in the atom coordinates on the vector
connecting the two atoms, the change in the distance between them is:

n m t n m t n m t nmR R R RΔ ( , , ) = Δ ( , , ) × cos(Δ ( , , ), ( ))0 (6)

Given the displacements of every atom is a result of a big number of
independent thermal vibration normal modes (5) and the contribution
of each mode is relatively small, one can use CLT, which states that the
distribution of atom displacements nX( ), being a sum of small shifts

nX ( )k by independent normal modes, represents a normal distribution
D:
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where the mean atom displacement X n( ) = 0 and the total dispersion
of atom displacement σ2 can be found from the Lindeberg CLT:
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The dispersion of n-th atom displacements due to k-th vibration
normal mode is:

σ n n i ω t ϕ nX X( ) = ( )exp( ( + )) = ( )k k k k k
2 2 2

(9)

Similar expression gives the dispersion of n-th and m-th atoms' relative
displacement:

σ n m n m i ω t ϕ

n m n m

X X

X X X

( , ) = ( ( ) − ( ))exp( ( + ))

= ( ) − ( ) = ( , )
k k k k k

k k k

2 2

2 2 (10)

Using Eqs. (5)–(10) and assuming that a chemical bond between
two atoms n andm breaks if the distance between them becomes bigger
than Lmax, an expression for probability Pnm of the bond cleavage is:
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where the total dispersion σ n m( , )2 is calculated from (8), and erfc(x) is
the complementary error function, which is decreasing rapidly and
erfc x( ) ≈ 0 for x > 2. An expansion is known for such values:
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Using (11), the probability of bond cleavage is:
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Using (4) and (9), Eq. (12) is reduced to an expression that is
similar to the Arrhenius equation for the probability of overcoming
potential barrier Ueff while breaking the bond:
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where the determinative exponential factor in (12) and the possibility
to divide the total atom relative displacement dispersion into partial
contributions from the independent vibration dispersions (8) make it
possible to distinguish the contributions of each vibration mode to the
probability of the given bond cleavage, which is important in analysis of
the structure's stability against different vibrati on modes.

3. Results

In this work, we have investigated KS to be more precise the
probability of chemical bonds breaking at high temperature by example
of normal (n-) and branched alkanes: n-C H4 10, C H6 14 (both normal and
branched), n-C H8 18, n-C H10 22, as well as zigzag and armchair narrow
periodic graphene nanoribbons with the width of 3, 4, and 5 hexagons.
The calculations of ground state geometric structure with vibration
spectrum and the eigenvectors of the normal vibrations for the
hydrocarbons molecules were conducted using the GAMESS code
within the DFT formalism using B3LYB exchange-correlation func-
tional and cc pVDZ basis. This modern basis set has been specifically
designed for post Hartree–Fock calculations, but it also works well for
DFT calculations. For calculations of periodic graphene nanoribbons
VASP 5.3.5 [3,4] software package was used in combination with the
PBE exchange-correlation functional and PAW formalism [5,6]. At the
prestage, the geometry optimization of the nanoribbons was conducted,
as well as the optimization of the length of the translational vector
along the direction of their periodicity. To isolate the nanoribbons from
their periodic images in the neighboring cells, which are necessarily
present when the periodic boundary conditions are applied, vacuum
spacings of 20 Å were made along the normal to the nanoribbon's plane
and in the plane along a perpendicular to the nanoribbon's directions.
The stopping criteria for geometry optimization in all cases was that the
maximal force acting on atoms were not more than 0.01 eV/Å.
Integrations on the first Brillouin zone (1BZ) were done on a
12 × 1 × 1 Monkhorst–Pack [7] k-point grid. The vibration normal
modes were calculated in the Γ point only, within the analytical frozen
phonon method by the density functional perturbation theory (DFPT)
[8].

The maximum increase in length Lmax of C–C bonds was defined
as 0.98 Å. To find this value by the example of n-hexane C H6 14, the total
energy U(r) profile was calculated while two C H3 7 fragments were
moved apart along the line connecting two carbon atoms inside these
fragments, see Fig. 1. During that, at each separation distance r ≤ 6 Å
both fragments were fully optimized. Having the energy profile, the
potential barrier for chemical bond breaking U = 6.59 eVpot was

obtained.
Next, fitting the U(r) profile (gray thin line in Fig. 1) at small C–C

bond extensions rΔ ≤ 0.5 Å with a quadratic function and using the
value of Upot, L = 0.98 Åmax was finally obtained. In the same way, the
value of L = 1.05 Åmax for the pair of C and H atoms was found from
extension of the tertiary C–H bond in n-hexane. These values of Lmax

were used in all the calculations.
Apparently, while extending a chemical bond up to Lmax before it

breaks, the bond can be described as in an excited state. One of the
features of the proposed method for KS determination is that there is
no need to find the transition states of all bonds in the nanostructure,
which is obviously a very complex job. Instead of it, we use Lmax

obtained from reference systems. The proposed method was used to
calculate the data on the KS of alkane molecules, the results are
summarized in Table 1. The temperature in the calculations was set to
1200 K, the temperature of the onset of hydrocarbon thermal dissocia-
tion.

The table displays probabilities of C–C and C–H bonds breaking, as
well as the corresponding interatomic distances, in the center and at
the edges of molecules. It can be seen that for all the molecules the
probability of destroying the least stable bonds (C–C) in the center of
the molecules is significantly higher than probability of breaking the
bonds at the edges. The difference is bigger for the longer carbon
chains; this agrees well with available experimental data on the stability
of n-alkanes with different chain lengths [9]. The same relation can be
seen for the C–H bonds. In the branched isohexane, the probability of
the central CH group tearing off the central carbon atom is two orders
of magnitude higher than probability of breaking of the central C–C
bond in n-hexane. The same behavior is observed for the C–H bond
with only one order of magnitude difference. In all the cases, the
probability of bond cleavage strongly correlates with the bond length –

the longer the interatomic distance, the higher the probability of bond
breaking.

While analyzing the KS of the alkanes, it was found that the decisive
role in the molecule destruction falls not on a single, but on a group of
some valent vibrations that have maximum contribution in the exten-
sion/compression of the weakest bond. For example, the main role of
C–C bonds cleavage in the hexane C H6 14 is shared between six different
vibrations.

The same approach was applied to KS evaluation for narrow
periodic graphene nanoribbons with their edges terminated by hydro-
gen atoms. It was shown for T=1200 K that probabilities of breaking of
the C–H bonds on the edges of armchair nanoribons with the widths of
3, 4, 5 hexagons (ANR7, ANR8 and ANR9 in standard notation) are
equal to 3.48*10 , 4.86*10 , 2.32*10−24 −23 −22, respectively. The corre-
sponding values for zigzag type nanoribbons (ZNR4, ZNR5 and
ZNR6 in standard notation) are 2.81*10 , 4.65*10 , 5.96*10−24 −22 −20,
respectively. At the same time, the probabilities of breaking of the C–
C bonds in all considered nanoribbons were significantly lower than
≈10−32. The obtained results claim that the KS of the narrowest
armchair nanoribbons of 3 hexagon width are significantly (1–2 orders
of magnitude) higher than the KS of the nanoribbons with bigger, 4 or
5 hexagons, width. In addition to this, the KS of zigzag nanoribbons is
an order of magnitude lower than the KS of armchair nanoribbons.

In order to compare the stability of the nanoribbons with stable
hydrocarbons, having hydrogen atoms at the molecule edge, the KS of
benzene molecule was calculated as well. At T=1200 K the probabilities
of breaking of the C–H bonds equals to 0.27*10−36, which indicates that
nanoribbon thermal stability at high temperature is inferior relative to
benzene.

Summing up, a universal method is developed for determination of
nanostructure kinetic stability at high temperatures, when the nanos-
tructure gets destroyed by chemical bonds breaking due to atom
thermal vibrations. It is shown that the method gives an effective
Arrhenius formula. The examples of several normal and branched
alkanes show good correlation of calculated KS with available experi-

Fig. 1. Dependence of the total energy in n-C H6 14 on the extension of the corresponding

bond. Lines marked as GO corresponds to the energies calculated with full optimization
of both fragments.
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mental data. The method needs only the spectrum of normal vibrations
to be known, and allows one to distinguish the contributions of each
vibration mode to the KS of the given chemical bond.
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ν d ν d ν d ν d
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C H10 18 1.67*10−27 1.543 5.17*10−29 1.532 6.53*10−35 1.107 3.01*10−36 1.103
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