
Physics Letters A 381 (2017) 720–724
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Accidental bound states in the continuum in an open Sinai billiard

A.S. Pilipchuk a,b, A.F. Sadreev a,∗
a Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
b Siberian Federal University, 660080 Krasnoyarsk, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 September 2016
Received in revised form 3 November 2016
Accepted 17 November 2016
Available online 25 November 2016
Communicated by P.R. Holland

Keywords:
Bound states in the continuum
Open chaotic Sinai billiard

The fundamental mechanism of the bound states in the continuum is the full destructive interference 
of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide 
class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example 
of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show 
that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental 
decoupling of the eigenstates of the billiard from the waveguides.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

If waveguides are attached to a resonator, a billiard, or a quan-
tum dot, etc. the bound states of the resonator residing in the 
propagation band of waveguides become resonant states with fi-
nite resonant widths. There could be, however, an exception to this 
widely accepted rule. According to Friedrich and Wintgen [1] if two 
eigenlevels pass each other as a function of continuous parame-
ter one of the states can acquire zero resonance width. Thus, this 
resonance state becomes a bound state in the continuum (BSC). 
BSCs are localized solutions which correspond to discrete eigen-
values coexisting with extended modes of continuous spectrum in 
resonator-waveguide configurations. The existence of such modes 
was first reported in Ref. [2] at the dawn of quantum mechanics. 
To the best of our knowledge, the term bound state (embedded) in 
the continuum was introduced in [3] in the context of resonance re-
actions in the presence continuous channels. Since then bound state 
in the continuum has been universally used to designate an BSC in 
quantum mechanics [4].

An equivalent explication of the BSCs is that a degeneracy of 
the bound states of the same symmetry occurs under variation of 
some parameter of the resonator, for example at discrete points of 
the length of integrable rectangular resonator [5,6]. Then the state 
superposed from two degenerate eigenstates a1ψ1 + a2ψ2 can be 
decoupled from the waveguides by variation of the superposition 
coefficients a1 and a2 [5]. Importantly, the full destructive inter-
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ference of two degenerate eigenmodes of resonator represents a 
generic mechanism of BSC formation [1,7] whose implementations 
go far beyond the above two resonance arguments [5,8–14]. Re-
cently such BSCs were experimentally observed in microwave set-
ups [15,16] and around a vertical surface-piercing circular cylinder 
placed symmetrically between the parallel walls of a water waveg-
uide [17]. The generic model of two interfering resonances was 
also exploited for electron bound states in the ionized continuum 
in atomic systems [18–21].

The degeneracy is, however, inherent only to integrable sys-
tems. In the present paper we consider the non-integrable Sinai 
billiard which, as a chaotic system, has only avoided crossings of 
the eigenlevels [22]. Then the Friedrich–Wintgen mechanism of the 
BSC due to degeneracy of eigenstates of closed billiard is not ap-
plicable. There is another way to realize a BSC by decoupling an 
individual eigenstate from the waveguides [9,13]. We assume that 
a circular potential

V (x, y) = V g exp

[
− (x − x0)

2 + (y − y0)
2

R2

]
(1)

is imposed onto the rectangular billiard as shown in Fig. 1. Then 
irrespective to the parameters of the potential the separable rect-
angular billiard becomes a nonseparable analog of the chaotic Sinai 
billiard which we will refer to as the soft Sinai billiard.

We demonstrate in this paper that under the effect of the finger 
gate potential V g the eigenfunctions of the Sinai billiard undergo 
transformations so that one of them can acquire zero overlapping 
with the propagating functions of the waveguides. As a result the 
resonance width proportional to the squared coupling constant be-
comes equal to zero [23].
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Fig. 1. (Color online.) Potential of circular symmetry (1) with negative V g is applied 
onto the open rectangular billiard transforming it into the soft Sinai billiard. The 
geometrical parameters of the system are Lx = 3, L y = 4, R = 1.5, x0 = 0, y0 = 1 in 
terms of the waveguide width.

2. Effective non-hermitian Hamiltonian

The unambiguous tool for detection of the BSCs is the effec-
tive non-Hermitian Hamiltonian obtained by the Feshbach projec-
tion [25] of the total Hamiltonian onto the inner states of the 
closed billiard [7,5]. Then, neglecting the dispersion properties of 
the waveguides the effective non-Hermitian Hamiltonian takes the 
following Weisskopf–Wigner form [25,28,27,26]

Ĥef f = Ĥ B − iŴ Ŵ +, (2)

where Ĥ B is the Hamiltonian of closed billiard and Ŵ is the cou-
pling matrix [29–31]

Wb,pC =
√

1

kp

d∫
0

dyφp(y)
∂ψb(x, y)

∂x

∣∣∣∣∣∣
x=xb

, (3)

where C = L, R enumerates the interfaces between the left and 
right waveguides shown in Fig. 1 by dashed lines, ψb are the 
eigenfunctions of the closed billiard. The scattering state within 
the billiard is given by the Lippmann–Schwinger equation [30,31]

(Ĥef f − E)ψc = Ŵ ψin, (4)

where ψin is the wave injected via, say, the left waveguide. The 
solution in the waveguides is given by the reflection and transmis-
sion amplitudes of the scattering matrix. The last is given by

Ŝ = Ŵ + 1

Ĥef f − E + i0
Ŵ . (5)

The resonant properties of open billiards are studied numeri-
cally as a rule by the use of the finite difference method. That 
leads to the tight-binding formulation of the effective Hamiltonian 
[32,30,31]
Ĥef f = Ĥ B − v2
∑

C=L,R

∑
p

NW∑
j y=1

exp(ikpa0)φp( j y)φp( j y)
+δ jx, jC .

(6)

Here Ĥ B is the Hamiltonian of the soft Sinai billiard, the vector 
j = ( jx, j y) runs over discretized space x = a0 jx , y = a0 j y where 
jx = 1, 2, . . . Nx , j y = 1, 2, . . . N y , Nx , N y are numerical sizes of the 
rectangular billiard and NW = 1/a0 is the numerical width of the 
waveguide, jL = 1, jR = Nx . Wave functions

φp( j) =
√

2

NW + 1
sin

(
kp j

NW + 1

)
are the transverse waveguide solutions with corresponding propa-
gating subbands

E = [4 − 2 cos kpa0 − 2 cos(π p/(NW + 1)]/a2
0. (7)

The effective Hamiltonian (6) coincides with the Hamiltonian of 
the billiard everywhere except the interfaces with the waveguides.

3. The Sinai billiard symmetrical relative to x → −x

The eigenfunctions are classified as even and odd ψ(x, y) =
±ψ(−x, y). Respectively, the eigenvalues in each irreducible rep-
resentation undergo avoided crossings with variation of V g as 
illustrated in Fig. 2. For clarity we show some patterns of the 
eigenfunctions at V g = 50. A variation of different parameter of 
the potential (1), for example, the radius or position shows a sim-
ilar result. Thus, we have no degeneracy of the eigenfunctions of 
the same irreducible representation in the soft Sinai billiard.

Fig. 3 shows the transmission probability calculated via Eq. (5). 
For the peaks of the transmittance to follow the eigenvalues of the 
closed billiard we reduce the coupling between the waveguides 
and the billiard by choosing v = 0.5. Then the resonance widths 
scale as v2 [30,33] as clearly seen from Eq. (6). In microwave bil-
liards that is achieved by implementation of diaphragms between 
the waveguides and the billiard [34].

The BSC occurs if the resonance width turns to zero [1,7]. The 
resonant width is defined by the imaginary part of the complex 
eigenvalue zr of the effective non-Hermitian Hamiltonian (2)

Ĥef f |λ) = zλ|λ) (8)

The corresponding eigenmode of the effective non-Hermitian 
Hamiltonian is a BSC. Fig. 4 shows multiple events of the reso-
nant widths turning to zero, i.e., BSCs in the soft Sinai billiard. The 
even BSCs sorted by their energies are shown in Fig. 2 (a) by open 
circles and listed in Table 1. Respectively the odd BSCs are shown 
in Fig. 2 (b) and listed in Table 2. Besides these BSCs one can see 
Fig. 2. (Color online.) Eigenvalues of the soft Sinai billiard vs height of the potential (1). The corresponding eigenfunctions are even (a) and odd (b) relative to x → −x. Open 
circles mark the BSC points listed in Tables 1 and 2.
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Fig. 3. (Color online.) Transmission probability of the Sinai billiard in Log scale.

Fig. 4. (Color online.) Evolution of the resonant widths for variation of the potential. 
Red open circles mark numerous BSCs.

in Fig. 4 numerous symmetry protected BSCs at the point V g = 0
which are the odd eigenfunctions of the rectangular billiard.

Fig. 3 clearly demonstrates that the BSC points are positioned 
at those points in the parametric space of E and V g where the 
transmission zero coalesces with the transmission unit similar to 
the BSCs due to the Friedrich–Wintgen mechanism [5], i.e., the 
collapse of Fano resonance occurs [24]. The phenomenon of BSCs 
stimulated by potential (1) is a result of deformation of the eigen-
functions of the closed billiard [13]. With variation of the potential 
some of the coupling matrix elements (3) can turn to zero as illus-
trated in Fig. 5. Let us choose for example the eigenfunction of the 
closed billiard b = 3 with the eigenvalue E3 < 4π2, i.e., below the 
second propagating band. We have for the coupling matrix (3)

Wb,C = (W1 W2 0 W4 . . .). (9)

Then there is a vector

ψ+
3 = (0 0 1 0 . . .) (10)

which is the eigen null vector of the matrix W W +ψB SC = 0. On 
the other hand, the vector (10) is the eigenvector of the closed 
billiard with the Hamiltonian

Ĥ B =

⎛⎜⎜⎜⎜⎜⎝
E1 0 0 0 · · ·
0 E2 0 0 · · ·
0 0 E3 0 · · ·
0 0 0 E4 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ , (11)
Table 1
BSCs even relative to x → −x marked by open circles in 
Fig. 2 (a).

Number of the even BSC E V g

1 12.550 4.5
2 13.029 34.45
3 13.244 −36.65
4 14.026 −19.2
5 19.709 −40.7
6 21.025 33.05
7 22.355 −47.7
8 25.541 −22.8
9 28.236 46.7
10 29.608 16.05
11 30.181 39.35
12 31.418 −31.55
13 31.960 −34.2
14 32.002 27.75
15 34.333 6.00
16 38.495 17.15

Table 2
BSCs odd relative to x → −x marked by open circles in 
Fig. 2 (b).

Number of the odd BSC E V g

1 13.133 −29.6
2 14.155 37.1
3 20.882 −2.4
4 21.307 −34.8
5 22.927 25.85
6 28.844 26.25
7 31.099 48.95
8 33.063 −40.9
9 33.189 −33.5

Fig. 5. (Color online.) Evolution of the coupling matrix element (3) with V g .

with the eigenlevel E3. Thus the null eigenvector (10) is the eigen-
state of the effective non-Hermitian Hamiltonian (2) with real 
eigenenergy E3, i.e., the BSC with energy E3. We emphasize that 
this statement is true if the coupling matrices (3) coincide for both 
left and right waveguides, i.e., for the present case of the symme-
try relative to x → −x. That result does not depend on choice of 
the coupling strength v . Following Refs. [9,13,35] we term such 
eigenstates accidental BSCs. The above consideration is correct only 
until the evanescent modes p > 1 are neglected in Eq. (6). The 
evanescent modes give an additional Hermitian contribution into 
the effective Hamiltonian in the form

̂̃H B = Ĥ B − v2
∑
p>1

∑
C=L,R

NW∑
j y=1

exp(−|kp|a0)φp( j y)φp( j y)
+δ jx, jC .

(12)
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Fig. 6. (Color online.) Patterns of even BSCs 6 (left) and 7 (right) according to Table 1 with coefficients of the modal expansions. Position of potential (1) is shown by dash 
green circle.

Fig. 7. (Color online.) Patterns of odd BSCs 6 (left) and 7 (right) according to Table 2 with coefficients of the modal expansions.
Then the above arguments for the BSCs in the non-integrable bil-
liard are applicable except that we should identify which eigen-
states of the modified Hamiltonian (12) acquire zero coupling with 
the first propagating mode φ1 under variation of the potential. Re-
spectively such an eigenstate of ̂̃H B becomes the BSC with energy 
equal to the eigenenergy Ẽb . Obviously, this eigenenergy differs 
from former eigenenergy E3 to give rise to the BSC points slightly 
different from the eigenenergies in Fig. 2. Some patterns of these 
BSCs are shown in Figs. 6 and 7 with the modal expansions which 
clearly show that the BSCs are given by a single dominant eigen-
function of the closed soft Sinai billiard.

4. Summary and conclusions

There are obvious measurement problems associated with BSCs 
in a quantum billiard. In the case of 2D quantum billiards there 
is, however, a beautiful way out. It turns out that single-particle 
states in a hard-wall quantum billiard obey the same stationary 
Helmholtz equation and same boundary condition as states in a 
flat microwave resonator [22]. That means a quantum billiard can 
be emulated by microwave analogs in which the perpendicular 
electric field plays the role of the wave function. The above said is 
correct until we include the potential shown in Fig. 1. Nevertheless 
there is a limited analogy between the quantum mechanical poten-
tial (1) and a dielectric disk with dielectric constant ε of radius R
placed inside the rectangular resonator. Then the Helmholtz equa-
tion for the electric field Ez = ψ(x, y) takes the following form

−∇ 1

ε(x, y)
∇ψ = ω2ψ (13)

where the light velocity is omitted. After projection of this equa-
tion onto the eigenbasis of the rectangular resonator the effective 
Hamiltonian (2) will take the following form

Ĥef f = Ĥ B + V̂ − iŴ Ŵ +, (14)

where the matrix elements of perturbation caused by the dielectric 
disk can be easily evaluated according to Eq. (13) as follows

〈mn|V |m′n′〉 =
(

1 − 1

ε

)∫
dxdy∇ψmn(x, y)∇ψm′n′(x, y), (15)

where integration is performed over the disk. In quantum mechan-
ical billiard with implied potential we would have

〈mn|V |m′n′〉 =
∫

dxdyψmn(x, y)V (x, y)ψm′n′(x, y). (16)

Although there is no exact equivalence between two types of the 
perturbation matrices it is clear effect of deformation of the eigen-
modes of microwave resonator under the dielectric disk is similar 
to the effect of the potential (1). In both cases the overlapping of 
the eigenmodes with the propagating mode in waveguides can be 
canceled to give rise to the accidental BSC.
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