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ABSTRACT: We show that a deliberately engineered
dispersive metamaterial slab can enable the coexistence and
phase matching of ordinary fundamental and contra-
propagating backward second harmonic electromagnetic
waves. Energy flux and phase velocity are contra-directed in
the backward waves, which is the extraordinary phenomenon
that gives rise to unique nonlinear optical propagation
processes. We demonstrate that frequencies, phase, and
group velocities, as well as the losses inherent to the guided
electromagnetic modes supported by such metamaterial, can
be tailored to maximize the conversion of frequencies and to reverse the propagation direction of the generated second harmonic
wave. Such a possibility, which is of paramount importance for nonlinear photonics, is proven using a numerical model describing
the hyperbolic metamaterial made of carbon nanotubes standing on the metal surface. Extraordinary properties of the backward-
wave second harmonic generation in the reflection direction and of the corresponding frequency doubling metareflector in the
THz are investigated with a focus on the pulsed regime.
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Metamaterials (MMs) can enable exotic electromagnetic
waves with contra-directed phase velocity and energy

flux. Such waves are commonly referred to as backward
electromagnetic waves (BEMWs). In the further consideration,
the waves with co- and contra-directed Poynting and wave
vectors will be referred to as ordinary and extraordinary waves
correspondingly. It was earlier predicted that BEMWs can pave
the way to remarkable advances and extraordinary features in
nonlinear optics such as greatly enhanced optical parametric
amplification and frequency up- or down-shifted nonlinear
reflectivity,1 unusual features in the second harmonic
generation (SHG),1,2 and extraordinary transient processes in
the three-wave mixing of ordinary and BEMWs in the pulsed
regime.3 The possibility to achieve phase matching, that is,
equality of the phase velocities of the coupled ordinary and
BEMWs, is the prerequisite of a fundamental importance for
realizing such advances. Current mainstream in producing the
BEMWs grounds on the use of the negative-index MMs
(NIMs).4 The negative-index resonance is usually narrow, and
phase matching of the ordinary and BEMWs present a
significant challenge.5 The possibility of the birefringent type
phase matching of ordinary EMWs in hyperbolic MMs was
investigated recently in ref 6. Quasi-phase-matching of contra-
propagating ordinary waves is limited to the spatially

periodically modulated nonlinear crystals. An alternative
paradigm for phase matching of backward-wave SH and
ordinary fundamental EMW was proposed in ref 7. The
suggested approach was based on the employment of the
negative spatial dispersion ∂ω/∂k < 08,9 and on the possibility
of realizing such a dispersion in the MM made of carbon
nanotubes (CNTs).10,11 In this paper, we present the
investigations that prove the possibility to fulfill a set of the
above outlined requirements along with the negative dispersion
in order to achieve BWSHG. The focus is on the tailored
nanoengineering of the MMs, which can support opposite sign
of the spatial dispersion at the fundamental and its doubled
frequencies while providing for their phase matching. The
indicated properties are of a paramount importance for the
coherent nonlinear optics and for the related fields of
photonics. The dispersion, group velocities, and losses
pertinent to such modes, unusual properties, and advantages
of SHG in such MMs, as well as properties of the
corresponding frequency-doubling metareflector in the THz,
are demonstrated through numerical simulations.
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1. ELECTROMAGNETIC WAVES IN THE CARBON
NANOFOREST

The underlying physical principle is based on the relationship S
= vgU between the Poynting vector S, group velocity vg =
gradkω(k) and the energy density U. In the case of waves
propagating along the axis x, it reads S = (S/k)(∂ω/∂kx). It is
seen that the energy flux S becomes directed against the
wavevector k if the dispersion becomes negative: ∂ω/∂kx < 0.
To realize such the opportunity, we propose the MM model as
follows. Consider finite-thickness slab of metallic CNTs of
height h embedded into a host matrix with relative permittivity
ϵh standing on a metal surface and open to the upper dielectric
layer with relative permittivity ϵs (Figure 1). The nanotubes

form a two-dimensional periodic structure in the xy-plane with
a square lattice (for simplicity) and a lattice constant d. Space-
time dependence of the fields and the currents is taken as
exp[−i(ωt − kxx)]. Dispersion ω(kx) of the waves propagating
in the given uniaxial slab while attenuating exponentially from
the interface to the upper subspace is described by equation
(see Supporting Information)

= ϵ ϵ − ϵ⊥k k h k ktan( ) ( / )z z s x s
2 2

(1)

where = ϵ − ϵ⊥k k k[ ( / )]z x zz
2 2 , k is the wavenumber in the

vacuum, kx
2 > k2, ϵ⊥ = ϵxx = ϵyy. Relative permittivity ϵzz is given

by the equation11

ξ μϵ = − + =k k i k k d L1 /( ), /( )zz p
2 2

p
2

0
2

0 (2)

where kp is the effective plasma wavenumber, L0 is the effective
inductance of the CNTs per unit length, the parameter
ξ μ τ= ϵ /0 0 is responsible for losses, and τ is the electron

relaxation time. Radius of the CNTs r and the lattice constant d
are taken to be r = 0.82 nm and d = 15 nm. Then the indicated
parameters are estimated as L0 = 3.7 × 10−3 H/m, kp

2 = 1.51 ×
1012 m−2, τ = 3 ps.11 The effective plasma frequency is
calculated as ωp/2π = 58.7 THz. The effective medium model
is employed which is valid here because a period of the lattice d
= 15 nm is much less than the wavelengths of both fundamental
and second harmonics. Thus, the MM can be thought of as a
uniaxial free-electron plasma where electrons can move only
along z-direction. Hence, it can be viewed as a medium with
hyperbolic dispersion at frequencies below the plasma
frequency ωp=kpc because ϵzz < 0, whereas ϵ⊥ > 0. Transverse
polarizability of the CNTs can be neglected because electric
fields do not interact with very thin CNTs. This assumption
agrees with the conclusions of ref 12 for the filling factor f <
0.07. In our case, it is f = 0.0094. The same concerns the
approximation μ ≈ 1. In our numerical simulations, we assume
ϵ⊥ = ϵs = 1, which correspond to air.
We have calculated the complex propagation constant kx = kx′

+ ikx″ by numerically solving eq 1. Dispersion diagram for two
lowest modes for the two different thicknesses of the CNT

layer is shown in Figure 2. Here, reduced wave vector kx′/k =
c/vph = nph is a slow-wave factor which represents effective

refraction index nph. Real part of the normalized propagation
constant kx′/k is shown for h = 1.05 μm (the solid lines) and h =
0.85 μm (the dashed lines). Vertical lines mark frequencies of
the phase matched ordinary fundamental and backward SH
waves. The dotted line shows real part of the normalized
propagation constant for complex wave, existing in the stop
band and calculated for h = 1.05 μm. It is seen that frequencies
and dispersion of the allowed propagating EMW (eigenmodes)
are determined by the height, spacing, diameter, and by the
electric parameters of the nanotubes. Hence, they can be
tailored. Figure 2a demonstrates the possibility of adjusting the
eigenmodes so that the ordinary wave at frequency f1 and the
contra-propagating backward wave at frequency f 2 travel with
the equal phase velocities. As stressed above, the latter is a
requirement of a fundamental importance which gives rise to
the extraordinary SHG process. A group delay factor ngr = c/vg
for both modes is shown in Figure 3. It is seen that at c/vph,1 =
c/vph,2 ≈ 1.5, which corresponds to phase matching, ng,1 ≈ 5.5
and ng,2 ≈ 8.9.

The dispersion displayed in Figure 2a contrasts with that in
an unbounded uniaxial crystal13

= ϵ − = +⊥ ⊥k k k k k k( ),zz z x y
2 2 2 2 2 2

(3)

which in the given case takes the form

Figure 1. Geometry of free-standing CNTs.

Figure 2. (a) Dispersion of two lowest eigenmodes in the slabs of
standing CNTs with open ends. ϵh = ϵs = 1; h = 1.05 μm (the solid
lines) and h = 0.85 μm (the dashed lines). (b) Attenuation factor kx″
for the lower-frequency mode (the ascending red plot) and for the
higher-frequency second mode (the descending blue plot) at h = 1.05
μm.

Figure 3. Group velocity vs phase velocity for the same two modes as
in Figure 2 for h = 1.05 μm. The split red plot is for the lower-
frequency mode, the ascending blue one is for the higher-frequency
mode.
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ξ= − + −k k k ik k k[1 /( )]( )x z
2

p
2 2 2 2

(4)

It also contrasts with the case of the MM made of CNTs
standing between two perfectly conducting planes:

π= ϵ −k k m h[ ( /2 ) ]x zz
2 2 2

(5)

Here, kz = mπ/(2h), h is the height of the waveguide, and m is a
positive integer determining the number of field variations
along CNTs. It is seen that in the latter case only BW
propagation (dkx

2/dk2 < 0) is allowed at ϵzz < 0 and k < mπ/2h.
The appearance of the positive dispersion for small slow-wave
factors and the appearance of the stop-light regime vg → 0 in
Figures 2a and 3 are explained by the fact that the Poynting
vector in the upper bounding dielectric (here, air) is always
codirected with the wave vector, whereas inside the metaslab
they can be contra-directed. Hence, the overall energy flow
inside the metaslab depends on the field variation across the
metaslab. The latter depends on the relation between kz and kx,
which is different for different eigenmodes. The dependence of
the phase-matched frequencies on the nanotubes height can be
used for validation of the dispersion properties.
Attenuation of EMWs along the x-axis is represented by

imaginary part of the propagation constant kx = kx′ + ikx″. A
magnitude of kx″ is dependent on the electrons relaxation time
in the CNTs τ at the frequencies below optical transitions.
Figure 2b shows attenuation of the both modes in the
proximity of the frequencies that correspond to the phase
matched fundamental and BWSH waves. The branch of
f(c/vph), which descends down to the stop light point on the
dispersion curve (the red dotted line at approximately 27.5
THz for h = 1.05 μm), is characterized by the complex constant
corresponding to a huge damping. Its imaginary part, kz″/k, is
not shown. (Such a branch is not shown for h = 0.85 μm either
and will not be considered further.) It is seen that attenuation
may become significantly different for different modes and
frequencies and depends on the metaslab geometry.

2. PHASE-MATCHED BACKWARD-WAVE SECOND
HARMONIC GENERATION IN THE CARBONE
NANOFOREST

In the case of precise phase matching, normalized amplitudes of
the fundamental harmonic (FH), a1, and of the SH, a2, are
given by Maxwell’s equations:

ξ τ α∂ ∂ + ∂ ∂ = − − ̃s a v v a igla d a( / ) ( / ) / ( /2 )2 2 1 2 2 1
2

2 2 (6)

ξ τ α∂ ∂ + ∂ ∂ = − * * − ̃s a a i g la a d a( / ) / 2 ( /2 )1 1 1 1 2 1 1 (7)

Here, vi > 0 and α̃1,2 = a1,2L are group velocities and normalized
attenuation indices at corresponding frequencies; α1,2 are
attenuation indices and L is the metaslab thickness. Parameters
sj take values sj = 1 for the ordinary wave, and sj = −1 for the
backward wave. Quantities |aj|

2 are proportional to the time-
dependent photon fluxes: aj = Ej/E10, where Ej values are slowly
varying amplitudes of the electric components of electro-
magnetic fields and E10 is the amplitude of the FH field at the
metaslab entrance. The approximation of plane traveling waves
is employed. Coupling parameter g = æE10, where

πχ= k kæ 41 2 2,eff
(2) . Here, χ2,eff

(2) = χ1,eff
(2) /2 are the effective

nonlinear susceptibilities at the corresponding frequencies, kj
= ωj/vph, and vph is the value corresponding to phase matching.
We also define normalized metaslab thickness d = L/l, position
ξ = x/l and the time instant τ = t/Δτ, where l = v1Δτ is the

pump pulse length, and Δτ is the duration of the input FH
pulse.
The shape of the input FH pulse was chosen to be close to

the rectangular profile:

τ
τ τ

δτ
τ τ

δτ
=

+ −
−

−⎜ ⎟⎛
⎝

⎞
⎠F( ) 0.5 tanh

1
tanh0 0

(8)

Here, δτ presents duration of the pulse front and tail, and τ0 is a
shift of the front relative to t = 0. The magnitudes δτ = 0.01 and
τ0 = 0.5 were selected for numerical simulations. The following
values and estimates, which are relevant to the MM made of
nanotubes of height h = 1.05 μm (Figures 2 and 3), were also
used for numerical simulations. Spectrum bandwidth corre-
sponding to the pulse of duration Δτ = 10 ps is on the order of
Δf ≈ 1/Δτ = 0.1 THz. Hence, Δf/f ∝ 10−2/10−3, and phase
matching can be achieved for the whole frequency band. This
becomes impossible at Δτ = 10 fs because of Δf/f ∝ 10 in this
particular case. Phase matching occurs at k1 = 5.47 × 105 m−1,
k2 = 2k1 (Figure 2). Corresponding attenuation factors are
calculated as α1 = 2k1″ = 2(9.3 × 10−3)k1 = 1.02 × 104 m−1, α2 =
2k2″ = 2(2.72 × 10−2)k2 = 5.96 × 104 m−1. Since losses for the
second mode are greater, the characteristic metaslab thickness
corresponding to extinction exp(−α2L) = 0.1, that is, to α2L =
2.4, α1L = 0.41, is estimated as L ≈ 40 μm. The FH pulse
length is estimated as l = Δτv1 = Δτc/ng,1 = 606 μm, which is 15
times greater than L. The latter indicates that the quasista-
tionary process establishes through almost the entire pulse
duration, whereas some transients occur at the pulse forefront
and tail. Note that at Δτ ≤ 10 ps, which is still acceptable, the
effect of the transient processes significantly increases.
Figure 4 presents the results of numerical simulations for

energy conversion efficiency at BWSHG with an account for

the above-calculated losses and group velocities. Here, η2(x) =
S2(x)/S10 = ∫ dt|a2(x,t)|2/∫ dt|a10(t)|2 is the pulse energy
(quantum) conversion efficiency and the factor S1(x)/S10
presents depletion of energy of the FH pulse along the slab
and at the corresponding exits: x = 0 for the SH and x = L for
the FH. Two coupling parameters (gl = 5 and gl = 15) and two

Figure 4. Backward-wave SHG: dependence of the energy conversion
efficiency on the metaslab thickness, intensity, and duration of the
pump pulse: (a, b) gl = 5; (c, d) gl = 15; (a, c) L/l = 1/15; (b, d) L/l =
1.
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different input pulse lengths (L/l = 1/15, and L/l = 1) were
chosen for the simulations. Coupling parameter gl is propor-
tional to the total number of photons per input FH pulse. It can
be also thoughts of as the ratio l/x0 of the input pulse length l
and the characteristic slab thickness x0 required for the
significant photon conversion from FH to SH for the given
pulse intensity at its maximum. The interplay of several
processes contributes to the outlined dependencies. Figure 4
shows that conversion efficiency grows with increase in the
input pulse amplitude. However, the important unusual
property of BWSHG, that is, frequency-doubling nonlinear
reflectivity, is that it rapidly saturates with an increase of the
metaslab thickness. Such unusual behavior is due to the
backwardness of SH, which propagates against the FH beam
and is predominantly generated in the area where both FH and
SH are not yet significantly attenuated. It is seen that the overall
nonlinear reflectivity provided by such a frequency-doubling
meta-reflector may reach the values on the order of 10% for the
selected values of the parameter gl. Calculations also show that
the reflectivity in the pulse maximum for the same parameters
appears 2 times greater than the time-integrated values. These
dependencies are in stark contrast with SHG in ordinary
materials, as seen from the comparison with Figure 5. It

displays corresponding dependencies in the case of ordinary
material with all other parameters the same as in Figure 4.
Here, both FH and SH exit the slab at x = L. It is seen that, in
general, SH reaches its maximum inside the slab. This is due to
the interplay of the nonlinear conversion and the attenuation
processes. In order to maximize the SH output, the pump
strength, its pulse duration, and the slab thickness must be
carefully optimized as shown in Figure 5c. Investigations prove
that the shape and the width of the output pulses in the cases of
ordinary SHG and BWSHG also appear to be significantly
different.

■ CONCLUSIONS
We show the possibility to engineer the metamaterials that
satisfy to a set of requirements of a fundamental importance for
the realization of extraordinary nonlinear photonic processes
and devices which enable the changing of photons frequency

and propagation direction. The proposed metamaterials
support a set of traveling electromagnetic waves with the
properties as follows: (i) their frequencies satisfy to energy
conservation law for nonlinear-optical frequency-conversion
processes; (ii) some of them are extraordinary backward waves
with contra-directed energy flux and phase velocity, whereas
other(s) are ordinary waves; (iii) contra-propagating waves
have equal phase velocities, that is, are phase matched; (iv)
such properties can be adjusted to different frequencies.
Frequency mixing of backward and ordinary waves possess
fundamentally different properties compared to they ordinary
counterparts and have important breakthrough applications in
photonics. Current mainstream in crafting metamaterials that
ensure backward waves relies on the engineering of mesoatoms,
the nanoscopic LC circuits that provide a negative magnetic
response at optical frequencies. The approach described in this
paper is fundamentally different and is based on the engineering
of the tailored coexisting negative and positive dispersion ω(k)
of electromagnetic waves which dictates the particular relation-
ship between the frequencies and wavevectors of normal
electromagnetic modes.
Such a general possibility is demonstrated through numerical

simulations making use of a particular example of the “carbon
nanoforest”. It is the metamaterial made of carbon nanotubes of
a particular diameter, height, and spacing, standing on the
metallic surface. Such metamaterial can be also viewed as a
tampered waveguide. We show that the negative and sign-
changing dispersions pertinent to such nanowaveguide can be
tailored to support phase matched backward-wave second
harmonic generation in the THz through near-IR frequency
ranges. Attenuation imposed by the metallic properties of
carbon nanotubes and by the guided propagation were
investigated and appeared to be different for the coupled
harmonics. Most practically important, pulsed, regimes of
second harmonic generation in such metamaterials were
investigated with the simplified model of plane traveling
waves. A set of coupled partial differential equations was
employed, which accounted for dispersion of group velocities
and attenuations of the coupled pulses. Since the generated
second harmonic travels in the direction opposite to the
fundamental wave, the investigated process presents a model
for the realization of a miniature frequency doubling
metareflector/metaswitch with unique properties. This was
demonstrated by comparison with the ordinary second
harmonic generation at the otherwise similar conditions.
The described approach can be generalized to engineering

the metamaterials of different architectures and composed of
different materials that support the tailored positive and
negative dispersion of electromagnetic waves to enable
extraordinary phase-matched coherent nonlinear optical
propagation processes through an extended frequency band.14
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Figure 5. Ordinary SHG at all other parameters, the same as in Figure
4.
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