Holmium iron borate: high-resolution spectroscopy and crystal-field parameters

D.A. Erofeev^{1,2,*}, E.P. Chukalina¹, M.N. Popova¹, B.Z. Malkin³, L.N. Bezmaternykh⁴, and I.A. Gudim⁴

¹Institute for Spectroscopy RAS, 108840 Troitsk, Moscow, Russia ²Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia ³Kazan Federal University, 420008 Kazan, Russia ⁴Kirensky Institute of Physics Siberian Branch RAS, 660036 Krasnoyarsk, Russia

Abstract. High-resolution transmission spectra of HoFe₃(BO₃)₄ single crystals were measured in broad spectral (5000-23000 cm⁻¹) and temperature (1.7-300 K) ranges. Crystal-field energies of the Ho³⁺ ions were determined for a paramagnetic and easy-axis antiferromagnetic phases of the compound. On the basis of these data and of preliminary crystal-field calculations in the frame of the exchange-charge model, crystal-field parameters were found. A parameter of the isotropic Ho-Fe exchange interaction was estimated.

Holmium iron borate belongs to the family of new multiferroic materials – rare-earth (RE) borates with a trigonal structure of the mineral huntite. It crystalizes in the R32 symmetry space group (SG). The compound exhibits a substantial magnetoelectric effect at temperatures below $T_{\rm N} = 39$ K where an antiferromagnetic ordering into an easy-plane magnetic structure takes place. To interpret magnetoelectric properties of RE compounds one needs the information on RE ion crystal-field (CF) levels and wave functions [1]. Detailed research on CF levels of Ho³⁺ in HoFe₃(BO₃)₄ has not been carried out before. The task is complicated by the fact, that the crystal has a low-symmetry structure with the SG $P3_121$ at room temperature, while the structural phase transition $R32 \rightarrow P3_121$ occurs at $T_{\rm s} \sim 360$ K [2]. The point symmetry group of the holmium site in the $P3_121$ structure of HoFe₃(BO₃)₄ is C_2 . Below $T_{\rm SR} = 5$ K, the magnetic structure of holmium iron borate changes to an easy-axis one.

High-quality HoFe₃(BO₃)₄ single crystals were grown from fluxes based on Bi₂Mo₃O₁₂. The transmission spectra of oriented single crystals were registered using a high-resolution Fourier-transform spectrometer Bruker IFS 125HR in the spectral range 5000–23000 cm⁻¹ with a resolution up to 0.2 cm⁻¹, which is sufficient to detect all spectral details. The crystal sample was placed into either a closed-cycle cryostat Cryomech ST403 (3.5 – 300 K) or a helium-filled optical cryostat with helium vapor pumping (1.7 – 4.2 K). The analysis of temperature dependences of polarized light absorption allowed us to identify the crystal-field levels of the Ho³⁺ ion in the paramagnetic phase of HoFe₃(BO₃)₄. In particular, the energies of CF levels of the ground multiplet ⁵I₈ are 0, 7.5, 14, 18, 54, 66, 95, 137, 154,

^{*} Corresponding author kinson@mail.ru

[©] The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

175, 207, 246, 272, 311, 322, 340, and 354 cm⁻¹. The energies of upper levels from this dataset were specified using cooperative satellites in the high-frequency part of the absorption spectra. These satellites correspond to a simultaneous excitation of the two interacting holmium ions by one photon [3]. The knowledge of CF levels of the ground multiplet is important for interpretation of magnetic and thermodynamic properties of the compound. We have also determined the CF energies of Ho³⁺ ions in the easy-axis phase of the crystal ($T < T_{SR}$). As for the easy-plane phase, more work is necessary to identify all the observed spectral lines in a very complicated spectrum in the temperature range $T_{SR} < T < T_N$.

The energy spectrum of the Ho³⁺ ion in the crystal field of the C_2 symmetry in HoFe₃(BO₃)₄ is defined by 15 parameters B_q^p in the CF Hamiltonian, which is represented by a linear combination of spherical tensor operators $C_q^{(p)}$ in the Cartesian coordinate system with x||a and z||c axes. The parameters calculated with the exchange-charge model [4] were used as initial parameters. Then, the energies of transitions between the levels of the Ho³⁺ ions, obtained from a numerical diagonalization of the complete Hamiltonian operating in the space of 1001 states of the 4f¹⁰ electronic configuration, were compared with the measured optical spectra of HoFe₃(BO₃)₄ in the paramagnetic phase, and the initial CF parameters (in cm⁻¹) was obtained: $B_0^2 = 376$, $B_0^4 = -1112$, $B_{-3}^4 = B_3^4 = 526i$, $B_0^6 = 336$, $B_{-3}^6 = B_3^6 = 65i$, $B_6^6 = B_{-6}^6 = 232$ (they define the trigonal component of the crystal field); $B_{-1}^2 = B_1^2 = 71i$, $B_2^2 = B_{-2}^2 = 65$, $B_{-1}^4 = B_1^4 = -52i$, $B_2^4 = B_{-2}^4 = 71$, $B_4^4 = B_{-4}^4 = -16$, $B_{-1}^6 = B_1^6 = -21i$, $B_2^6 = B_{-2}^6 = -9.6$, $B_4^6 = B_{-4}^6 = -27$, $B_{-5}^6 = B_5^6 = -70i$ (these parameters are responsible for the low-symmetry C_2 component).

All the ions of holmium in the paramagnetic and easy-axis antiferromagnetic phases of HoFe₃(BO₃)₄ are optically equivalent in the absence of an external magnetic field. The frequency shifts of the electronic transitions (shifts of energy levels in the exchange field) observed between the temperatures T=50 K > T_N and T = 1.5 K < T_{SR} were interpreted considering the isotropic exchange interaction between the Ho³⁺ ions and Fe³⁺ ions in the *S* state, $H_{\text{RE-Fe}} = -JS_{Ho} \cdot S_{\text{Fe}}$ ($S_{Ho} \bowtie S_{Fe}$ are spin moment operators for the holmium and iron ions). The value of the isotropic exchange interaction parameter $J = 0.2 \text{ cm}^{-1}$ was determined from a comparison of calculated spectral line shifts with the experimental data.

This work was supported by the Russian Science Foundation (Grant № 14-12-01033).

References

- 1. A.I. Popov, D.I. Plokhov, A.K. Zvezdin, Phys. Rev. B 87, 024413 (2013)
- D.A. Erofeev., E.P. Chukalina, L.N. Bezmaternykh, I.A. Gudim, M.N. Popova, Opt. Spectrosc. 120, 558 (2016)
- A.P. Abramov, N.I. Agladze, I.Ya. Gerlovin, M.N. Popova, Opt. Spectrosc. 64, 1042 (1988)
- 4. B.Z. Malkin, Ion-phonon interactions. Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2005)