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In the framework of the modified periodic Anderson model with exchange interaction in the subsys-

tem of localized states, it is shown that spin-charge fluctuations in quasi-two-dimensional interme-

tallic compounds with rare-earth ions in the mixed valence state significantly affect both the

spectrum of magnetic excitations and the conditions at which the antiferromagnetic phase is real-

ized. The spectral characteristics of the phase were obtained by the method of the diagram tech-

nique for Hubbard operators in the one-loop approximation, which allows to account for the spin-

charge fluctuation contributions to the components of the mass and the force operators. The devel-

oped theory allowed to quantitatively describe the pressure dependence of the N�eel temperature

observed in a quasi-two-dimensional antiferromagnetic heavy-fermion intermetallic compound

CeRhIn5. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977211]

1. Introduction

Significant interest in the properties of heavy-fermion

antiferromagnets is due to unusual superconductivity real-

ized in these compounds, quantum phase transitions, as well

as a strongly pronounced competition between the tendency

to magnetic ordering and the Kondo fluctuations. The quan-

tum phase transitions are triggered by an external or chemi-

cal pressure and accompanied by qualitative changes in

the structure of the ground state and, accordingly, in the

observed characteristics. For example, in heavy-fermion

metals CeCu6–xAux and YbRh2Si2, a passage through the

quantum critical point upon varying the control parameters,

such as the doping level x and the magnetic field, is accom-

panied by the destruction of the long-range antiferromag-

netic (AFM) order.1 Cerium compounds, such as CePd2Si2,

CeIn3,2 CeRhIn5,3 and CePt2In7,4 exhibit superconductivity

in the vicinity of the proposed quantum critical point under

pressure.

The mechanism of magnetic ordering remains one of the

main problems in the physics of heavy-fermion systems. It is

well known that the long-range AFM order arising due to the

indirect Ruderman-Kittel-Kasuya-Yoshida (RKKY) exchange

interaction and the Kondo fluctuations are competing with

each other.5 Thus, the rare-earth compounds are generally

described in terms of the Kondo model, in which the type of

the ground state depends on the outcome of the above compe-

tition: either a state with the long-range magnetic order (most

often antiferromagnetic) or a nonmagnetic metallic state. In

this scenario, simultaneously with the destruction (emer-

gence) of the long-range AFM order in the quantum critical

point, the Kondo regime can emerge (break) and the transition

from localized to delocalized electrons is realized.6,7 It should

be noted that heavy-fermion systems at the quantum critical

point exhibit anomalous features such as the divergence of the

effective electron mass and an abrupt expansion of the Fermi

surface. These anomalies cannot be described in terms of the

Hertz-Millis theory of the quantum phase transitions for band

magnets.

The above competition scenarios do not take into con-

sideration the fact that 4f-electrons in the AFM phase are

quasi-localized and form a coherent heavy-fermion state.

The existence of such a state is indicated by experimental

data showing that, for example, in the AFM phase of

CeRhIn5 the effective and cyclotron masses of electrons are

much greater than the mass of free electrons.8,9 In Ref. 10 it

has been suggested that a mixed-valence regime is realized

in this compound. In this respect, it appears natural to

describe the formation of magnetic ordering within the

framework of the periodic Anderson model taking into

account a strong coupling between the spin and charge

degrees of freedom in the regime where the bare localized

level and the Fermi level are close to each other. It is essen-

tial that this approach allows to describe both strong renorm-

alization of the electron mass and changes in the topology of

the Fermi surface at the quantum critical point without

involving the scenario based on breaking the Kondo

regime.11–13

It should be noted that in Ref. 14, the Stoner criterion

has been analyzed on the background of the Kondo state in

the systems with strong orbital degeneracy of the f-level.

Using an approach based on the introduction of auxiliary fer-

mions to preserve the commutation rules, it has been shown

that quantum fluctuations lead to the realization of a weak

itinerant antiferromagnetism (of the spin-density wave type).

At the same time due to the hybridization, a weak antiferro-

magnetism is also induced in the localized subsystem.

However, the mixed valence regime has not been considered

so far.

The study of the formation conditions of the AFM order-

ing in the periodic Anderson model has been carried out ear-

lier in the Hartree-Fock approximation,15 as well as by using

the method of slave bosons.16,17 However, it should be

emphasized that in the above mean-field approaches, the

N�eel temperature TN is low only in the vicinity of the quan-

tum phase transitions in the parameter V describing the

hybridization between the itinerant and localized electrons
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or in the parameter U of the intra-atomic Coulomb repulsion

of the localized electrons. This means that even small

changes in the environmental conditions (such as pressure)

are capable of inducing the quantum phase transition from

AFM to the paramagnetic (PM) phase. Meanwhile, in many

heavy-fermion compounds, despite the fact that their TN

does not exceed several kelvin, antiferromagnetism is suffi-

ciently resistant to pressure. For example, in CeRhIn5 with

TN¼ 3.8 K, the N�eel temperature first increases with increas-

ing the pressure, then there is a linear decline, and only at

a pressure of about 20 kbar, the antiferromagnetism is

destroyed.

An alternative approach to describe the magnetism in

these systems is related to the calculation of the dynamic

magnetic susceptibility. The magnetic susceptibility deter-

mined in the PM phase allows to find the temperature of the

instability with respect to the formation of one or another

type of magnetic ordering. The problem of determining the

dynamic magnetic susceptibility directly in the AFM phase

requires solving the self-consistent equations allowing to

find both the temperature dependence of the AFM order

parameter and the N�eel temperature. Earlier, the dynamic

magnetic susceptibility in the PM phase of the periodic

Anderson model has been calculated using the decoupling

method for the equations of motion of the irreducible

Green’s functions18 and in the framework of the random

phase approximation19 in the limit of weak Coulomb interac-

tion. The use of the perturbation theory with respect to the

hybridization interaction for calculating the dynamic mag-

netic susceptibility has been proposed in Ref. 20. It has been

shown that in the mixed valence regime, the effective inter-

action due to the hybridization between the localized and

itinerant electrons suppresses any magnetic fluctuations. In

the limit U!1 limit, a method of calculating the dynamic

magnetic susceptibility based on the diagram technique for

Hubbard operators within the framework of the Hubbard

model and the t-J model has been developed.21 In Ref. 22,

using this approach, the dynamic magnetic susceptibility in

the PM phase of the periodic Anderson model has been

determined for U!1.

Many cerium compounds with heavy fermions, such as

CenTmIn3nþ2m compounds,23 have a quasi-two-dimensional

(quasi-2D) structure, schematically shown in Fig. 1. It is

known that for a quasi-2D Heisenberg antiferromagnet, the

N�eel temperature in the Tyablikov approximation is given

by TN ¼ pJ= ln J=Kð Þ þ c½ �, where J is the exchange parame-

ter between the nearest ions in the xy plane, the parameter K

determines the magnitude of the exchange interaction

between the nearest neighbors along the z-axis (K � J) and

c is the constant depending on the lattice type.24 The above

equation indicates a lowering of the transition temperature

as compared to the case of spatially isotropic exchange cou-

pling. For CeRhIn5 compound, based on neutron spectros-

copy data, the exchange parameters for Ce ions have been

estimated as J¼ 0.74 meV and K¼ 0.1 meV.25 In Ref. 25,

the weak exchange between next-nearest neighbors along

the z-axis has also been taken into account, which allowed to

describe the incommensurate magnetic structure at atmo-

spheric pressure. Since the AFM structure of CeRhIn5

becomes commensurate,26 long-range exchange parameters

can be neglected in this case.

For the rare-earth intermetallic compounds with mag-

netic ordering, it is important that in the most interesting

case of the regime of strong electron correlations as well as

in the case of the energy of single-electron excitation close

to the Fermi level (the situation of mixed valence), the

hybridization processes can be separated into high-energy

and low-energy.27 The former include the transitions in

which, due to the strong correlation, the energy of the

system changes by an amount much larger than the hybridi-

zation coupling parameter. The presence of such a large

energy difference allows to account this hybridization inter-

action within the operator form of the perturbation theory

in the atomic representation and to obtain the effective

Hamiltonian describing, in particular, the exchange cou-

pling between the quasi-localized states of the rare-earth

ions. The parameter of this interaction is given by the

expression J�V4/U3, where U is the energy of intra-atomic

repulsion and V is the intensity of the hybridization between

localized and itinerant electrons. The remaining low-energy

hybridization contributions determine the properties of the

mixed-valence regime. Note that in the Ce115 compounds

(e.g., CeRhIn5) the role of localized electrons is played by

Ce 4f-electrons, while the itinerant state is formed mainly

by p-electrons of In.

In view of the above peculiarities of the electronic struc-

ture of rare-earth intermetallic compounds, in the present

work, on the basis of the extended periodic Anderson model

that explicitly takes into account the exchange interaction

between the 4f-electrons, we investigated the AFM phase of

quasi-2D heavy-fermion cerium intermetallic compounds.

To obtain the self-consistency equations, the diagram tech-

nique for Hubbard operators was applied. The calculation of

the transverse spin Green’s function was carried out in the

one-loop approximation, allowing to obtain the expressions

for the components of mass and force operators, taking into

account the contribution of spin-charge fluctuations. The

effective interaction between quasi-localized electrons pro-

motes the formation of the AFM state, while the hybridiza-

tion interaction between the localized and itinerant electron

FIG. 1. Schematic representation of the structure of the quasi-two-dimen-

sional Ce115-compounds. J and K denote the parameters of the exchange

interaction between Ce-ions.
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subsystems is considered as a perturbation. It was shown

that in this approach, long-range AFM ordering in the

mixed-valence regime can be realized. Numerical solution

of the self-consistent equations allowed us to obtain the pres-

sure dependence of the N�eel temperature for quasi-2D

cerium intermetallic compounds. This dependence is not

only in qualitative agreement with the experimental data3

but also provides quantitatively good description. It was

found that low-energy hybridization processes are responsi-

ble for the destruction of antiferromagnetism. Furthermore,

two contributions affecting the realization of magnetic

ordering can be separated: super-exchange coupling of the

4f-electrons promotes long-range AFM order, while spin-

charge fluctuations caused by the low-energy hybridization

processes of f- and p-electrons can either contribute to anti-

ferromagnetism or suppress it. The partial contributions of

these microscopic mechanisms to the effective parameters of

the exchange interactions in CeRhIn5 were estimated.

2. Extended Anderson model in the atomic representation

The Hamiltonian of the extended periodic Anderson

model which takes into account the superexchange interac-

tion between the 4f-electrons and uses the two-sublattice

description for the quasi-2D electron structure can be repre-

sented as

Ĥeff ¼ Ĥ0 þ Ĥmix þ Ĥexch: (1)

The first term describes non-interacting localized and

itinerant electrons

Ĥ0 ¼
X
j¼1;2

X
kr

naka
†
jkrajkr þ

X
kr

nbkb
†
jkrbjkr

�

þ
X

fr

nF
rXrr

jf þ
X

gr

nG
r Yrr

jg

�
: (2)

Ĥmix is the operator of the hybridization interaction between

the localized and itinerant electrons

Ĥmix ¼
X
j;kr

1ffiffiffi
2
p Vk þWkð Þa†

jkr Xjkr þ Yjkrð Þ
n

þ Wk � Vkð Þb†
jkr Xjkr � Yjkrð Þ

o
þ h:c: (3)

The effective AFM coupling between the localized electrons

is determined by the third term of the Hamiltonian

Ĥexch ¼
X

j

X
hf gi

Jf g Sjf Sjg �
1

4
N̂ jf N̂ jg

� �

þ
X
i 6¼j

X
hf gi

Kf g Sif Sjg �
1

4
N̂ if N̂ jg

� �
: (4)

Here, to describe the quasi-two-dimensionality of rare-earth

intermetallic compounds we introduced summation over the

index j¼ 1, 2, which enumerates the planes along the z-axis

of the unit cell. We consider the AFM structure of the

G-type. The operators ajkr and bjkr describe the Bogolyubov

quasiparticles formed in the itinerant electron subsystem due

to the transition to the two-sublattice representation. The

seed energies of quasiparticles are determined by the

expressions nak ¼ nk þ Ck and nbk ¼ nk � Ck, where

nk¼ e0þ tk�l, e0 is the single-site energy of an itinerant

electron, l is the chemical potential, and the functions tk and

Ck are defined as Fourier transforms of the hopping integrals

within a single sublattice and between the sublattices,

respectively. It is assumed that hopping is only possible in

the xy plane.

The localized 4f-electrons belonging to the site l are

described in the atomic representation using the Hubbard oper-

ators Xnn0
l ¼ jn; lihl; n0j, where jn; li is one of the atomic states.

The state j0; li defines the state without localized electrons on

the site l. The state with one electron at a site having the spin

projection r¼",# is denoted jr; li. Sites marked with the

index f are related to the F-sublattice, for which, in the pres-

ence of antiferromagnetism, hSz
jf i ¼ R > 0. The G-sublattice

sites are enumerated with the index g, and for them the equal-

ity hSz
jgi ¼ �R holds. The bare energy of an 4f-electron is

renormalized given the self-consistent mean-field nF
r ¼ E0 � l

� J0 þ K0ð ÞnL=4� gr
~h, ~h ¼ J0 þ K0ð ÞR=2, nG

r ¼ nF
r , where

nL is the average number of localized electrons at a site,

J0¼ 4 J, K0¼ 2K. The function gr, which depends on r, is

determined in the usual way: gr¼ 1 for r¼" and gr¼�1 for

r¼#.
In the term Ĥmix, the quantities Vk and Wk denote the

Fourier transforms of the hybridization integrals in the xy-

plane for the electrons located within the same sublattice or

between the sublattices, respectively.

The magnitudes of the exchange interaction between the

localized electrons in the xy-plane and along the z-axis are

given by the parameters Jfg and Kfg, respectively. It is

assumed that the exchange interaction occurs only between

nearest neighbors. This is reflected by placing the site indi-

ces f and g at the summation sign into angle brackets. Sjm is

the quasi-spin vector operator of the localized subsystem,

the components of which are associated with the operators

of the atomic representations through the equations Sþjm
¼ X"#jm, S�jm ¼ X#"jm and Sz

jf ¼
P

r gr=2ð ÞXrr
f . The operator of

the number of localized electrons on the site f is defined as

N̂ jf ¼
P

r Xrr
jf .

3. Mass and force operators for the transverse spin Green’s
function

To find the spectrum of magnetic excitations with spin-

charge fluctuations taken into account and to obtain the self-

consistent equation in the AFM phase, we use the diagram

technique for Hubbard operators.28,29 Let us introduce the

transverse spin Matsubara Green’s function in the atomic

representation

DAj;Bj1
? ms; m0s0ð Þ ¼ �hTsX

"#
jm sð ÞX#"j1m0 s0ð ÞS bð Þi0;c; (5)

describing the magnetic properties of the system. The time-

dependent Hubbard operators are written in the interaction

representation and Ts is the time ordering operator. The nota-

tion “Aj” is introduced to show that the Hubbard operator

which stands first in the definition of the Green’s function

refers to the plane j of the unit cell and belongs to a particu-

lar sub-lattice: A¼F for Rm¼Rf, and A¼G for Rm¼Rg.

Similarly, the index Bj1 uniquely determines to which sub-

lattice and plane the second operator of the Green’s function

belongs. Averaging is carried out over the statistical
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ensemble defined by the Hamiltonian Ĥ0. The scattering

matrix has the usual form

S bð Þ ¼ Ts exp �
ðb

0

Ĥint sð Þds

 !
;

where the interaction operator Ĥint includes the operators of

hybridization and exchange interactions and b¼ 1/T is the

inverse temperature.

Fourier transformation and expansion in quasi-momenta

of the Matsubara Green’s function can be written as

DAj;Bj1
? ms; m0s0ð Þ ¼ T

N

X
q;xl

eiq Rm�Rm0ð Þ�ixl s�s0ð Þ
DAj;Bj1
? q; ixlð Þ;

(6)

where ixl are the even Matsubara frequencies. In what fol-

lows, a four-vector q¼ (q, ixl) will be used.

For contracted notation, we introduce the matrix

Green’s function D̂? in the block form

D̂? ¼
D̂

FF

? D̂
FG

?
D̂

GF

? D̂
GG

?

" #
; D̂

AB

? ¼
DA1;B1
? qð Þ DA1;B2

? qð Þ
DA2;B1
? qð Þ DA2;B2

? qð Þ

" #
:

(7)

This function can be written through the product D̂?
¼ Ĝ?P̂, where P̂ is the matrix of the force operator compo-

nents.30,31 The Dyson equation for the matrix function Ĝ? is

Ĝ? ¼ Ĝ
0ð Þ
? þ Ĝ

0ð Þ
? R̂Ĝ?; (8)

where the function Ĝ
0ð Þ
? is determined via the force operator

from the equation

Ĝ
0ð Þ
? ¼ Ĝ

0ð Þ þ Ĝ
0ð Þ

P̂ÎĜ
0ð Þ
? : (9)

The components of the diagonal matrix function Ĝ
0ð Þ
? deter-

mine the bare quasi-spin Green’s function for the F- and G-

sublattices, R̂ is the matrix mass operator and Î is the matrix

composed of the Fourier transforms of the exchange

integrals.

If the localized level is completely filled (the Fermi level

lies above the f-level), the system is close to the behavior of

the Heisenberg antiferromagnet. In this case, the long-range

AFM order is completely determined by the effective

exchange interaction in localized subsystem. In the case of

partially filled localized level (but close to the regime of

nL¼ 1), the renormalizations associated with spin-charge

fluctuations become important. These renormalizations are

manifested in the main characteristics of the antiferromagnet

such as the spectrum of the spin-wave excitations, the AFM

order parameter and the N�eel temperature. In what follows,

we will account for the contributions of the exchange inter-

action in Eqs. (8) and (9) in the simplest loop-free approxi-

mation (Tyablikov’s approximation). In this case, only the

corrections due to the hybridization interaction in the one-

loop approximation will be considered for the mass and

force operators.32

Figures 2 and 3 show the types of diagrams for arbitrary

components AjBj of the matrix mass and force operators,

respectively. The diagrams were obtained using the principle

of topological continuity.33 It should be noted that the

expressions do not depend on the plane number j in the

quasi-2D unit cell, since the hybridization is only possible in

the xy-plane, and this index will be omitted in what follows.

The solid lines with two arrows, � or ", represent the

propagators in the Hubbard-I approximation of localized

electrons with spin projections " and #, respectively, in the

two-sublattice representation. Bare Green’s functions of

f-electrons are indicated by solid lines with one arrow �
("). The solid lines with two thin arrows identify any of the

four propagators for itinerant electrons produced when

switching to the Bogolyubov operators. The point where dif-

ferent lines in the diagram intersect indicates the presence of

a hybridization interaction. The symbols � and � denote the

Hubbard end factors FAr ¼ hX00
m þ Xrr

m i for the respective

directions of electron spin, where the site m belongs to the

sublattice A. The total number of diagrams for the mass and

force operators in the one-loop approximation, taking into

account the two-sublattice structure, is 64.

Relating the graphs to analytical expressions, we obtain

an explicit form for the components of the mass and force

operators

RAB qð Þ ¼ �
T

2N

X
p

GAB
0#;0# qþ pð ÞLBA

" pð Þ
h

þ GAB
"0;"0 q� pð ÞLAB

# pð Þ�; (10)

dPAB qð Þ ¼ �
T

2N

X
p

GAB
0#;0# qþ pð ÞG 0ð ÞB

0" pð ÞFB"L
BA
" pð Þ

h

�GAB
"0;"0 qþ pð ÞG 0ð ÞB

#0 pð ÞFB#L
AB
# �pð Þ

i
;

(11)

where

LFF
r pð Þ ¼ Vp þWpð Þ2Gaa

0r;0r pð Þ þ Vp �Wpð Þ2Gbb
0r;0r pð Þ

� V2
p �W2

p

� �
Gab

0r;0r pð Þ þ Gba
0r;0r pð Þ

h i
;

(12)

LGG
r pð Þ ¼ Vp þWpð Þ2Gaa

0r;0r pð Þ þ Vp �Wpð Þ2Gbb
0r;0r pð Þ

þ V2
p �W2

p

� �
Gab

0r;0r pð Þ þ Gba
0r;0r pð Þ

h i
;

(13)

FIG. 2. One-loop diagrams for the AB-component of the mass operator of

the transverse spin Green’s function.

FIG. 3. One-loop diagrams for the AB-components of the force operator of

the transverse spin Green’s function.
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LGF
r pð Þ ¼ Vp þWpð Þ2Gaa

0r;0r pð Þ � Vp �Wpð Þ2Gbb
0r;0r pð Þ

� V2
p �W2

p

� �
Gab

0r;0r pð Þ � Gba
0r;0r pð Þ

h i
; (14)

LFG
r pð Þ ¼ Vp þWpð Þ2Gaa

0r;0r pð Þ � Vp �Wpð Þ2Gbb
0r;0r pð Þ

þ V2
p �W2

p

� �
Gab

0r;0r pð Þ � Gba
0r;0r pð Þ

h i
: (15)

In the above expressions, the summation is carried over the

four-momentum p¼ (p, ixn), where ixn are the odd

Matsubara frequencies. The functions GAB
0r;0r pð Þ and G�l

0r;0r pð Þ
(A, B¼F, G; �, l¼ a, b) are the propagators for localized and

itinerant electrons, respectively. In the Hubbard-I approxima-

tion, G 0ð ÞA
0r are the bare Green’s function for the localized elec-

trons of different sublattices. It can be seen that the

expressions for the mass and force operators also include the

propagators GAB
0r;0r pð Þ and the bare functions G 0ð ÞA

0r , which

were defined using the creation operator of localized Hubbard

fermions with the spin r as their generating operator. To cal-

culate this set of propagators, it is convenient to use the rela-

tion for the Green’s functions

DAB
r0;r0 pð Þ ¼ �DBA

0r;0r �pð Þ: (16)

Let us introduce the notation

dAB qð Þ ¼ RAB qð Þ þ JqdPA �B qð Þ=2; (17)

KAB qð Þ ¼ dPAB qð ÞKq=2; (18)

where �F � G and �G � F. FF and GG components of the

force operator account for the bare end-factors and the cor-

rections due to the hybridization interaction:

PFF¼ 2Rþ dPFF, PGG¼�2Rþ dPGG. Taking into account

the mass and force operators we obtain the following expres-

sion for the inverse matrix Ĝ
�1

? in question:

Ĝ
�1

? ¼

ixl � 2~h � dFF �KFG �JqR� dFG �KqR� KFF

�KFG ixl � 2~h � dFF �KqR� KFF �JqR� dFG

JqR� dGF KqR� KGG ixl þ 2~h � dGG �KGF

KqR� KGG JqR� dGF �KGF ixl þ 2~h � dGG

2
66664

3
77775:

Thus, the denominator of the Green’s functions can be

represented as

D qð Þ¼ ixl�2~h�dFF�KFG

	 

ixlþ2~h�dGG�KGF

	 
�
þ JqRþKqRþKFFþdFGð Þ JqRþKqR�KGG�dGFð Þ

�
� ixl�2~h�dFFþKFG

	 

ixlþ2~h�dGGþKGF

	 
�
þ KqR� JqRþKFF�dFGð Þ KqR�JqR�KGGþdGFð Þ

�
:

(19)

4. Spin-charge renormalization of the magnetic excitation
spectrum

The spin-wave spectrum is determined by the poles of

the Matsubara Green’s function (5) after the analytic exten-

sion. Therefore, the equation defining the spectrum of the

spin-wave excitations in the AFM phase is given by D(q, x)

¼ 0. Its important property is associated with the satisfiabil-

ity of the Goldstone theorem: D(q¼ 0, x¼ 0)¼ 0.

Let us demonstrate the existence of the Goldstone boson

in the mixed-valence regime under developed spin and charge

fluctuations. It is easy to verify the following relations between

the components of the mass and force operators: RAB(0)

¼�RAB(0), dPAB(0)¼�dPAB(0). Given this, we obtain

D q ¼ 0;x ¼ 0ð Þ ¼ RFF 0ð Þ � RFG 0ð Þ

� J0 þ K0

2

� �
dPFF 0ð Þ � dPFG 0ð Þ
� �

¼ 0: (20)

It is essential that the above equation was obtained with-

out the use of any approximation. In the absence of the

exchange interaction (J¼ 0, K¼ 0) the satisfiability of the

Goldstone theorem follows from the fact that, as shown by

numerical calculations, the equation RFF(0)¼RFG(0) for the

mass operator component holds for all parameters. This cor-

responds to the case where the AFM ordering mechanism

involves only low-energy hybridization processes (see the

diagrams in Fig. 2).

If the exchange interaction is non-zero, it renormalizes

bare energies of the localized electrons in different sublatti-

ces nF
r , nG

r and RFF(0) 6¼RFG(0). Nevertheless, Eq. (20) holds

for any parameters since in this case, vanishing of the right-

hand side of the equation is achieved due to the finite contri-

butions of the force operator components. This implies the

importance of taking into account the force operator, origi-

nating from the kinematic interaction of Hubbard fermions.

In this case, it is necessary to take into account the graphs of

the same order (e.g., only one-loop graphs) both for the mass

and force operators in the ensemble of Hubbard fermions as

the failure to satisfy this requirement would lead to a breach

of the Goldstone theorem.

In what follows, in the calculation of the spectrum of

spin-wave excitations, it is sufficient to consider only the

hybridization processes between the localized and itiner-

ant electrons in the one-loop approximation. At the same

time, in order not to exceed the accuracy of the calcula-

tions, in the expressions for the components of the mass

and force operators, we use the energy determined without

taking into account the hybridization effects as a magnon

energy

RAB qð Þ ! RAB q;x0i qð Þð Þ; dPAB qð Þ ! dPAB q;x0i qð Þð Þ;
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where

x01;2 qð Þ ¼ Rc01;2 qð Þ; c01;2 qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0þK0ð Þ2� Jq6Kqð Þ2

q
:

(21)

The terms of the dispersion equation, containing the product

of the components of the mass and force operators are not

included. As a result, the spectrum of spin-wave excitations

with the spin-charge fluctuations taken into account is deter-

mined by the analytical expression

x1;2q ¼ x01;2 qð Þ þ dx1;2q; (22)

in which the corrections to the bare spectrum are defined in

the form

dx1;2q

¼ 1

2
d1;2FF þ d1;2GG6 K1;2FG þ K1;2GFð Þ½ � �

1

2x01;2 qð Þ
� J0 þ K0ð ÞR d1;2GG � d1;2FF6 K1;2GF � K1;2FGð Þ½ �



þ Jq6Kqð ÞR d1;2FG � d1;2FG6 K1;2FF � K1;2GGð Þ½ �
�
:

(23)

Here, the following notation was introduced:

diAB ¼ RAB q;x0i qð Þð Þ þ JqdPA �B q;x0i qð Þð Þ=2; (24)

KiAB ¼ KqdPAB q;x0i qð Þð Þ=2: (25)

It turned out that in the case when the localized electron

subsystem is close to be completely filled (nL� 1), the spec-

trum of the spin-wave excitations is essentially independent

of the hybridization intensity and is determined by the initial

expression for the Heisenberg antiferromagnet (21).

The situation is different for the AFM phase if the

Fermi level lies in the immediate vicinity of the localized

level E0 and the formation of heavy fermions in the mag-

netically ordered phase can occur. This state is realized in

CeRhIn5 near atmospheric pressure. The spin-wave spec-

trum for the main direction of the AFM Brillouin zone and

the concentration nL� 0.7 is shown in Fig. 4. We

introduced the notations: qa is the component of the wave

vector, where a¼ x, y, z; aa is the corresponding parameter

of the unit cell. The dashed lines define the magnon ener-

gies x0i(q) of the quasi-2D structure without taking into

account the processes of hybridization between f- and p-

electrons. The solid lines show the xiq branches of the

spin-wave spectrum, taking into account the hybridization

interaction with the p-electrons. The interactions parame-

ters were selected as V¼ 0.3jt1j (the effective one-site

hybridization parameter), J¼ 0.004jt1j and K¼ J/10, where

t1 is the hopping parameter between the neighboring sites

for the itinerant electrons (t1< 0). The energy of the f-level

E0¼ 1.5t1 and the total concentration of electrons ne¼ 1.2.

From the comparison of the model dispersion relation

for itinerant electrons nk and the dispersion relations for In

p-electrons in CeRhIn5 obtained from ab initio calcula-

tions,34 it follows that jt1j � 0.1–0.3 eV. The selected

parameters correspond to the spectrum of Fermi excita-

tions shown in Fig. 5. It can be seen that the chemical

potential l (dashed line) crosses the heavy-fermion band

with weak dispersion.

These results indicate that in the considered regime, the

low-energy hybridization processes lead to a significant

increase in the velocity of spin waves j for the Goldstone

mode x1q¼jq (for small q) and in the magnon energy. In

turn, this leads to an increase in the AFM order parameter

and the N�eel temperature compared to the case of fully local-

ized f-electrons.

The modification of the spin-wave spectrum can be

explained by the emergence of additional effective

exchange interaction due to low-energy hybridization pro-

cesses. Indeed, a comparison of Eq. (8), containing the

mass operator, and Eq. (9), which takes into account the

exchange interaction between the 4f-electrons, shows that

the components of the mass operator can be regarded as an

effective exchange interaction. Furthermore, the compo-

nents of the force operator arising due to the hybridization

taken into account renormalize the initial value of the AFM

order parameter and also affect the magnon energy

spectrum.

The parameters of the effective exchange interaction

between different lattice sites can be estimated using the

equations

FIG. 4. Spin-wave spectrum of a quasi-two-dimensional structure with the

hybridization of localized and itinerant electrons taken into account (solid

lines) and the bare spectrum of localized electrons (dashed line) along the

direction (111) of the antiferromagnetic Brillouin zone. The concentration

of quasi-localized electrons nL� 0.7.

.

.

.

FIG. 5. Spectrum of the Fermi excitations for nL� 0.7. The Fermi level is

shown with a dashed line.
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Af ;g ¼
1

N=2

X
q

eiq Rf�Rgð ÞRFG q;x01 qð Þð Þ; (26)

Af ;f 0 ¼
1

N=2

X
q

e
iq Rf�Rf 0ð ÞRFF q;x01 qð Þð Þ; (27)

where the sites denoted with indices f, f’ belong to the F-sub-

lattice, and the sites with the indices g belong to the G-sub-

lattice. Note that the effective interaction only occurs

between the ions located in the xy-plane since the low-

energy hybridization processes are limited to this plane.

Thus, the exchange interaction along the z-axis with the

parameter K defines the quasi-2D character of the systems

studied, while the exchange parameter J in the xy-plane is

renormalized by the hybridization interactions. At the same

time due to the effective interaction in the xy-plane, the

exchange between next-nearest neighbors is also formed.

Qualitatively, the effect of the hybridization of p- and f-
electrons on the characteristics of the AFM phase (such as the

spin-wave velocity, AFM order parameter and the N�eel tem-

perature) is determined by the signs of the parameters Af,g and

Af,f’. If Af,g> 0 and Af,f 0< 0, the hybridization processes pro-

mote AFM ordering and the spin-wave spectrum takes the

form shown in Fig. 5. If the magnon energy decreases when

the hybridization is taken into account, the net magnitude of

the AFM exchange is reduced due to the frustration when

Af,g< 0 and Af,f 0> 0. Thus, it is essential that the parameters

of the effective interaction depend on the position of the local-

ized level, concentration and temperature.

5. Pressure dependence of the N�eel temperature in layered
rare-earth intermetallic compounds

The average value of the z-projection of the spin in a

sublattice can be calculated using the relations

R ¼ nL=2� hX##f1 i;

hX##f1 i ¼ �
T

N=2

X
q

e�ixndDF1F1

? qð Þ; d! þ0: (28)

Substituting the above expression for the transverse spin

Green’s functions and performing the summation over the

Matsubara frequencies, we obtain a self-consistent equation

for the order parameter

R ¼ nL

2

(X
q

2~h

x1q

2JqKqR2 � A1q

x2
2q � x2

1q

cth
x1q

2T

� �"

þ 2~h

x2q

2JqKqR2 � A2q

x2
2q � x2

1q

cth
x2q

2T

� �

þC1 þ C2 þ Kþ
X

q

2JqKqR2

x2
2q � x2

1q

� �

� 1

x1q

H1 qð Þ
exp bx1q

	 

� 1
þ 1

x2q

H2 qð Þ
exp bx2q

	 

� 1

" #)�1

:

(29)

In writing this equation we used the relations RAB(q, �x)

¼�RAB(q, x) and dPAB(q, �x)¼�dPAB(q, x). For the

terms that determine hybridization corrections we introduced

the notation

Aiq ¼ x0i qð Þ KiFG þ KiGFð Þ þ 2~h KiFG � KiGFð Þ
�JqR KiFF � KiGGð Þ � KqR diFG � diGFð Þ; i ¼ 1; 2;

(30)

C1;2 ¼
X

q

2JqKqR2

x1;2q x2
2q � x2

1q

� �
� d1;2FF þ

1

2
c01;2 qð Þ � J0 � K0

	 

dPGG

1;2

�

6K1;2FG �
1

2
Jq6Kqð ÞdPFG

1;2

�
; (31)

(here, the “þ” and “�”signs correspond to the functions C1

and C2, respectively)

K ¼ �
X

q

1

x2
2q � x2

1q

x01 qð Þ d1FF þ d1GGð Þ
�

�x02 qð Þ d2FF þ d2GGð Þ þ 2~h d1FF � d1GGð Þ
�2~h d2FF � d2GGð Þ � JqR d1FG � d1GFð Þ
þJqR d2FG � d2GFð Þ
�KqR K1FF � K1GGð Þ þ KqR K2FF � K2GGð Þ

�
; (32)

H1;2 qð Þ ¼ d1;2FF � d1;2GG6 K1;2FG � K1;2GFð Þ

� 1

2
Jq6Kqð Þ dPFG

1;2 � dPGF
1;2

� �
þ 1

2
c01;2 qð Þ þ J0 þ K0

� �
dPFF

1;2

n
þ c01;2 qð Þ � J0 � K0

� �
dPGG

1;2

o
: (33)

Considering Eq. (29) in the limit R ! 0, we obtain the

expression for the N�eel temperature

TN ¼
J0 þ K0ð ÞnL

4

X
q

4~h
2

x2
1q

2JqKqR2 � A1q

x2
2q � x2

1q

"8<
:

þ 4~h
2

x2
2q

2JqKqR2 � A2q

x2
2q � x2

1q

þ
X

q

2~hJqKqR2

ðx2
2q � x2

1qÞ

�
H1 qð Þ
x2

1q

þ
H2 qð Þ
x2

2q

" #)�1

T!TN ;R!0

: (34)

For the study of the dependence of the N�eel temperature

TN on the pressure P, we assume that an increase in pressure

leads to an increase in energy E0 of a 4f-electron on a Ce

positive ion due to an increase in the Coulomb interaction

with a negatively charged environment. Since the Coulomb

interaction (including the interstitial one) is the highest in

these systems, the effect of increasing E0 dominates the

increase in the intensity of hybridization and hopping with

increasing pressure.

Experimental data for cerium quasi-2D heavy-fermion

antiferromagnets, such as CeRhIn5, indicate that in a suffi-

ciently wide range of pressures the Neel temperature

decreases linearly with increasing pressure.3 At the critical

pressure, the Neel temperature vanishes and the long-range
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AFM order is destroyed. Note that the Neel temperature in

these materials does not exceed a few Kelvin.

Figure 6 shows the dependence of the Neel temperature

on the bare energy of a 4f-electron (pressure) for V¼ 0.3jt1j,
J¼ 0.004jt1j, K¼ J/10. The dots show the dependence

obtained by numerical solution of Eq. (29), taking into

account the low-energy hybridization processes of f- and p-

electrons. This curve separates the regions of existence of

the AFM and PM phases. The solid line shows the TN(P)

dependence obtained under the assumption of no hybridiza-

tion interaction in the system. It can be seen that in this case,

the N�eel temperature decreases linearly with increasing pres-

sure. This behavior is associated with a decrease in the con-

centration of 4f-electrons. The renormalized curve also

contains a linear segment at low pressures. At the same time

the N�eel temperature increases due to the hybridization.

A significant result is that the inclusion of the hybridiza-

tion interaction between localized and itinerant electrons

leads to more rapid destruction of the AFM ordering with

increasing pressure. Figure 6 shows that after the range in

which there is a slight decrease in the N�eel temperature with

increasing pressure, the critical region is realized, in which

the long-range AFM order is rapidly destroyed. It should be

emphasized that without taking into account the spin-charge

fluctuations, the TN(P) dependence would still have a linear

character. Therefore, in the developed theory, which takes

into account the spin-charge fluctuations, the pressure depen-

dence of the critical AFM temperature is in line with the

experimentally observed one. The quantitative agreement

with the data on CeRhIn5 is reached for jt1j � 0.14 eV. This

estimate is reasonable for heavy-fermion systems.

6. Effective exchange interaction with the spin-charge fluctu-
ations taken into account

Figure 7 shows the dependence of the effective

exchange integral on the coordination sphere number Ncs,

calculated according to Eqs. (26) and (27) at a temperature

close to zero for two cases: E0¼ 1.5t1 (dots) and E0¼ 1.21t1
(squares). In this case, the coefficient related to the end fac-

tor is excluded. Note that upon realization of the long-range

AFM ordering, the exchange interaction in the 1st, 4th and

6th coordination spheres of the square lattice corresponds to

the exchange between the AFM sublattices. Accordingly, the

interaction in the 2nd, 3rd and 5th coordination spheres char-

acterizes the exchange within the sublattices. Figure 7 shows

that for E0¼ 1.5t1, the exchange parameter ~A1 for the first

coordination sphere exceeds by several times the exchange

parameters for other neighbors. The total magnitude of the

exchange interaction between the nearest ions in the xy-plane

has the form: Jef f ¼ J þ ~A1. Considering the exchange only

between the nearest neighbors (with the parameters Jeff in

the xy-plane and K along the z-axis) in the analytical equa-

tion for the Neel temperature of a quasi-2D Heisenberg anti-

ferromagnet with the f-level partially filled leads to the

estimate TN� 0.003jt1j, which agrees well with the numeri-

cal value obtained by solving the self-consistent equations.

Thus, the appearance of the effective exchange interaction

qualitatively explains the modification of the spin-wave

spectrum shown in Fig. 4 and an increase in the N�eel temper-

ature. It should be however stressed that the spin-charge fluc-

tuations in the system lead to the frustrated exchange

interactions for Ncs¼ 3 and 4.

In the critical region with E0¼ 1.21t1, the values Amm0

for the nearest and next-nearest neighbors are slightly differ-

ent from each other and have the same sign. This indicates

an increased frustration in the system and the suppression of

AFM ordering due to the spin-charge fluctuations in the sub-

systems of 4f- and p-electrons. The velocity of spin waves in

the critical region is reduced due to these fluctuations. The

spin-wave spectrum for E0¼ 1.21t1 takes the form character-

istic of the case where the energy of spin-wave excitations

falls into the region of the Stoner excitations.

It should be also noted that for both cases the situation is

possible when the parameter Amm0 increases with the distance

jRm�Rm0j. In this respect, taking into account the effective

exchange interaction between distant neighbors can be

significant.

It should be emphasized that the above analysis of the

effect of spin-charge fluctuations on the effective exchange

parameters is qualitative in nature. This is due to the fact

that, firstly, the components of the mass operator are temper-

ature dependent. This fact is taken into account in solving

FIG. 7. Dependence of the integral of the effective exchange interaction on

the coordination sphere number Ncs for two positions of the localized level:

E0¼ 1.5t1 (dots) and E0¼ 1.21t1 (squares).

. . . .

FIG. 6. Dependence of the N�eel temperature on the bare energy of localized

states (pressure) with (dots) and without (solid line) taking into account the

hybridization. Highlighted is the region where the antiferromagnetic (AFM)

phase is realized, the rest of the region in the figure corresponds to the para-

magnetic (PM) phase.
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the self-consistent equations, but in the above considerations

the exchange parameters at T¼ 0 were used. Secondly, the

calculation of the integral Amm0 does not explicitly take into

account the hybridization corrections in the force operator.

The effects of spin-charge fluctuations in the layered

heavy-fermion antiferromagnets, described in this paper,

also occur in compounds with the effective interaction of the

three-dimensional nature, such as CeIn3. However, in the

description of these compounds it is not possible to be

restricted to the hybridization and hopping only in the xy-
plane. In addition, in cerium intermetallic compounds the

formation of the phase involving the coexistence of antifer-

romagnetism and superconductivity near the quantum criti-

cal point is of great interest. In the proposed model, the

exchange interaction between 4f-electrons is capable of

inducing the Cooper instability.35 Then the formation of

superconductivity near the quantum critical point is not

related to the quantum fluctuations but is due to the suppres-

sion of the Cooper pairing by antiferromagnetism. However,

these questions are beyond the scope of this paper.

7. Conclusion

Within the framework of the periodic Anderson model,

using the diagram technique for Hubbard operators, we

developed a theory that allowed us to take into account the

spin-charge fluctuations and study the mutual influence of

the two microscopic mechanisms of the exchange interaction

between the f-electrons in quasi-2D cerium heavy-fermion

intermetallic compounds.

The first mechanism, which is realized for large values

of the intra-atomic Coulomb repulsion, is caused by high-

energy hybridization processes between the itinerant p-elec-

trons and f-electrons of the rare-earth ions. The intensity of

the exchange coupling due to this mechanism does not

depend on the temperature, concentration of the itinerant

carriers and the position of the chemical potential.

For the second mechanism, induced by the low-energy

hybridization processes between the above groups of elec-

trons, the situation is qualitatively different. The contribution

of these processes to the magnitude of the resulting exchange

coupling between Ce ions depends strongly on the position

of the Fermi level, energy of the f-level and the density of

states. This conclusion follows from the analysis of the mag-

netization behavior of the antiferromagnetic sublattice and

the Neel temperature obtained with the contribution of spin-

charge fluctuations taken into account. It has been demon-

strated that the inclusion of the second mechanism is crucial

for the quantitative description of the experimental data,

such as the pressure dependence of the Neel temperature

obtained for quasi-2D cerium systems (such as CeRhIn5).
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