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ABSTRACT
Raman scattering spectra of Rb2KHoF6 and Rb2KDyF6 crystals have
been studied in temperature range from 20 K to 399 K and from 7 K to
500 K respectively. Raman spectra of Rb2KHoF6 crystal are distorted
due to the fluorescence process. Parameters of Raman lines have been
quantitatively analyzed. The investigation points to the considerable
role of CX6 groups in the temperature phase transition in Rb2KHoF6
and Rb2KDyF6 crystals. The anomalies of spectra changes with
temperature testify the first order phase transitions in these crystals.

Introduction

The perovskite-like Rb2KHoF6 and Rb2KDyF6 crystals belong to the family of A2BCX6 elpa-
solites, where A, B, C are metal cations or more complex molecular ions and X are oxygen
or halogen anions (high symmetry phase G0, space group Fm3m, Z D 4). The crystalline,
ceramic, and film materials with perovskite-like structures are widely used as functional
elements due to their remarkable properties [1–8]. Temperature and pressure changes in flu-
orides cause a number of structural phase transitions, which are generally related to changes
in the lattice of octahedral groups, such as small pivoting of CX6 octahedra and displacement
of Rb atoms. In particular, these changes manifest themselves experimentally in substantial
anomalies in the crystal lattice dynamics, including the condensation of soft phonon modes
during displacive transitions. The soft mode condensation has been successfully observed
before in other elpasolites [9–14]. The structural properties and phase transitions of
Rb2KHoF6 and Rb2KDyF6 crystals were studied by optical microscopy and calorimetry [15].
These crystals demonstrate phase transition under cooling at 403 K (into G1 phase, space
group P121/n1, Z D 2) for Rb2K=oF6 and 392 K (into G1 phase, space group P121/n1,
Z D 2) for Rb2KDyF6.

Experiment

Raman scattering spectra of Rb2KHoF6 and Rb2KDyF6 crystals have been studied in tem-
perature range from 20 K to 399 K and from 7 K to 500 K correspondingly. Because of
the small sample size we could not observe polarized Raman spectra. Raman spectra were
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collected in a backscattering geometry, using a triple monochromator Jobin Yvon T64000
Raman spectrometer operating in double subtractive mode then detected by a CCD cooled
at 140 K. The spectral resolution for the recorded Stokes side Raman spectra was set to
1 cm¡1 (this resolution was achieved by using gratings with 1800 grooves mm¡1 and
100 mm slits). The microscope system based on Olympus BX41 microscope with a 50 £
objective lens f D 10.6 mm of NA 0.5 provides a focal spot diameter of about 5 mm on a
sample. Single-mode argon 514.5 nm of Spectra-Physics Stabilite 2017 ArC laser of
100 mW power (15 mW on a sample) was used as excitation light source. We fitted the
spectra using damped harmonic oscillator functions. Approximation of internal mode posi-
tions was performed using the dependence which corresponds to decay into two phonons:

V.T/DV0 CA 1C 1
exp.ch-Vb1 6 kBT/¡ 1

C 1
exp.ch-Vb2 6 kBT/¡ 1

� �
;

where -h, kB and c are the reduced Planck constant, the Boltzmann constant and speed of
light, respectively.

Results and discussion

The vibrational representation of the cubic phase symmetry group in the center of the Bril-
louin zone is the following:

Gvib Fm3mð Þ DA1g xx; yy; zzð ÞC Eg xx; yy; zzð ÞC 2F2g xz; yz; xyð ÞC F1g C 5F1u C F2u:

Given in the brackets are the components of scattering tensor where the corresponding
vibrations are active. The site symmetry analysis is carried out on every atom in the primitive
unit cell. The preliminary data required are space group and occupied Wyckoff positions
[16, 17]. Table 1 and 2 present the symmetry analysis of the cubic and monoclinic phases
for two crystals in more details. The vibrational representation of the monoclinic phase

Table 1. The symmetry analysis of the elpasolite cubic phase.

Atom Wyckoff position Phonon modes in the center of the Brillouin zone

Rb 8c F2g C F1u
K 4b F1u
Ho, Dy 4a F1u
F 24e A1g C Eg C F2u C F2g C 2F1u C F1g

Mode classification

’Ram D A1g C Eg
C 2F2g

Gir D 4F1u Gac D F1u Gmeh D A1g C Eg C 2F2g C 5F1u C F2u C F1g

Scattering tensors

A1g

a 0 0
0 a 0
0 0 a

2
4

3
5

Eg

b 0 0
0 b 0
0 0 ¡ 2b

2
4

3
5

Eg

¡ ffiffiffiffiffi
3b

p
0 0

0
ffiffiffiffiffi
3b

p
0

0 0 0

2
64

3
75

F2g

0 0 0
0 0 d

0 d 0

2
4

3
5

F2g

0 0 d

0 0 0
d 0 0

2
4

3
5

F2g

0 d 0
d 0 0
0 0 0

2
4

3
5
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symmetry group in the center of the Brillouin zone is the following:

Gvib.P121 6 n1/ D 12Ag xx; yy; zz; xy; yxð Þ C 12Bg xz; yz; zx; zyð Þ C 18Au C 18Bu:

Table 3 shows assignments and experimental band positions for Rb2KScF6 and Rb2KInF6 in
the cubic phase. Earlier polarized Raman spectra of isostructural crystals Rb2KScF6 and
Rb2NaYF6 were studied in [7, 18], and numerical simulations of these spectra for Rb2KHoF6
and Rb2KDyF6 performed by both ab initio [7, 19, 20] and empirical [18] approaches helped
us to interpret the experimental spectra of Rb2KHoF6 and Rb2KDyF6. Experimental band
positions and intensities distributions for these crystals are only slightly different from those
for Rb2KScF6 and Rb2KInF6.

The spectra transformation with temperature is presented in Figure 1a, b. The spectra in
the cubic phase (higher temperatures) could be subdivided in three parts, corresponding to
vibrations of structural elements: region of lattice vibrations below 150 cm¡1; F–(Ho, Dy)–F
bending region, 150–300 cm¡1; (Ho, Dy)–F stretching region, 300–600 cm¡1. Raman spectra
of Rb2KHoF6 crystal are distorted due to the fluorescence processes (Figure 1a). We couldn’t
analyze in detail the behavior of the Eg symmetry HoF6 stretching mode of Rb2KHoF6 crystal
due to its rather weak intensity.

According to phase diagram in Table 4 one can expect the appearance of new lines at the
low temperatures. The phase transition from cubic to monoclinic phase is accompanied
with doubling of the primitive cell volume. The modes corresponding to X (0, 0, p/a) point
of the Brillouin zone are Raman inactive in the cubic phase, however, as one can see from
the correlation diagram in Table 4, their activation should be observed below the transition
point.

The behavior of low wavenumber lines at cooling is presented in Figure 2. New lines
appear below phase transition temperature in the both crystals. One can see some anomalies
of the behavior of Raman lines with temperature. We observed phase transitions at 380 K
for Rb2KHoF6 and at 392 K for Rb2KDyF6. We think that all splitting of the lines connected
with these phase transitions. The appearance of a new line just below transition points is
connected with doubling of the primitive cell that activates one lattice mode of X point of

Table 2. The symmetry analysis of the elpasolite monoclinic phase.

Atom (P21/n1) Wyckoff position ’-point phonon modes

Rb 4e 3Ag C 3Bg C 3Au C 3Bu
K 2c 3Au C 3Bu
Ho, Dy 2a 3Au C 3Bu
F1 4e 3Ag C 3Bg C 3Au C 3Bu
F2 4e 3Ag C 3Bg C 3Au C 3Bu
F3 4e 3Ag C 3Bg C 3Au C 3Bu

Modes classification

’Ram D 12Ag C 12Bg ’ir D 17Au C 16Bu ’meh D 12Ag C 12Bg C 18Au C 18Bu
’ac D Au C 2Bu

Raman tensor

Ag Bg

a d 0
d b 0
0 0 c

2
4

3
5 0 0 e

0 0 f
e f 0

2
4

3
5
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Figure 1. Temperature transformation of Raman spectra (a – Rb2KHoF6, b – Rb2KDyF6).

Table 3. Line assignments and positions in the cubic phase.

Irreducible
representation

Eigenvector of
normal mode

[this work]
Rb2KHoF6 cm

¡1
[this work]

Rb2KDyF6 cm
¡1

[7]
Rb2KScF6 cm

¡1
[8]

Rb2KInF6 cm
¡1

A1g 472 470 505 507

Eg 380 390 379

F2g 204 202 230 218

F2g 61 65 89 69
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the Brillouin zone. According to correlation diagram (Table 4) we can also wait for splitting
of triple degenerated (F2g) Raman active lattice mode as well as the same splitting of that
new mode, but these splittings seems to be too small to be observed just below transition
points. According to the experimental data [21] the monoclinic angle of the unit cell of
Rb2KHoF6 starts to grow gradually only below 250 K, that makes these splittings clearly
visible.

The parts of the spectra connected with bending of Ho(Dy)F6 groups change not so sig-
nificantly. Line position changes from 202 cm¡1 to 206 cm¡1 within studied temperature
range in Rb2KHoF6 and from 201 cm¡1 to 204 cm¡1 in Rb2KDyF6 without jumps.

The temperature dependences of the peak position of the internal mode (A1g symmetry)
and it’s approximation for the both crystals is given in Figure 3. The previous investigations
of the temperature phase transitions in Rb2KScF6, Rb2KInF6, Rb2NaYF6 crystals showed that
high wavenumber parts of the spectra almost don’t change with temperature [7, 8, 18]. But
in these experiments one can clearly see the anomalous λ-shaped spike of the line position at
the transition temperature in Rb2KHoF6. The abrupt changes of the mode positions indicate
that the structural transitions in the both crystals are of the first order. As contrasted to the
double perovskite crystals with two temperature phase transitions the significant changes in

Figure 2. Temperature dependences of the low wavenumber modes (a – Rb2KHoF6, b – Rb2KDyF6).

Table 4. Correlation diagram of the vibrational modes for the cubic and monoclinic symmetries of the
elpasolites. Only modes active in Raman spectra of the monoclinic phase are shown.
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Raman spectra occur in the (Ho, Dy)–F stretching region. This investigation points to the
considerable role of CX6 octahedra rotation in the temperature phase transition.
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