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Abstract
We study light-pulse propagation in a dynamically controllable periodic structure (grating)
resulting from Raman interaction of a weak probe pulse with a standing-wave pump and a
second control laser field inN-type four-level atomic media. The grating is induced due to
periodic spatial modulation of the Raman gain in a standing pump field (Raman gain grating).
We show that it is possible to control both the probe pulse amplitude and the group velocity of
the pulse from subluminal to superluminal by varying the pump or control field. Such a grating is
of interest forall-optical switches and transistors.

Keywords: light induced gratings, pulse propagation, Raman gain

(Some figures may appear in colour only in the online journal)

1. Introduction

The propagation of light in periodic structures has been an
attractive field of research in recent years. Photonic crystals
(PCs) represent a broad and special class of structures with
aperiodicity of the refractive index (the real part of the di-
electric constant) on the wavelength scale in one, two, or three
dimensions [1]. They have optical band gaps, which offerthe
possibility ofcontrolling the propagation of light in a way
similar to the control of electron flow in semiconductors.
Additional functionality can be created by including absorb-
ing or amplifying features into the structure, thus producing
PCs with complex dielectric indices [2]. Creating reconfi-
gurable PCs offers the opportunity ofcreatingopti-
callyinduced gratings [3]. In particular, such structures could
be created by using electromagnetically induced transpar-
ency[4] when the strong-coupling laser field is replaced by a
standing wave [5, 6]. A standing-wave driven configuration
has been proposed to induce spatially periodic quantum
coherence for thegeneration of photonic bandgap structures
[6–8] and dynamic generation of stationary light pulses
[9, 10]. These structures are also referred to as an

electromagnetically induced absorption grating (EIAG) [11].
EIAGs may be utilized for diffracting [12], switching [11] and
compressing [13] the probe field. This scheme hasalso bee-
nused for atoms localizing in a standing-wave field [14, 15].

An alternative approach is based on using the Raman
gain effect [16] in three- and four-level media where we can
control theamplification of the probe (signal) field. It has
been shown that slow [17] and fast [18] light as well as a
gain-assisted giant Kerr effect [19] can be obtained by using
aRaman gain medium. A fast Kerr phase gate using the
Raman gain method has been experimentally demonstrated
where the probe wave travels superluminally [20]. In our
papers [21, 22] it was shown how one could use a three- and
four-level Raman gain medium together with a PC cavity to
create an all-optical switch for aprobe beam. Recently,
weproposed electromagnetically induced gratings based on
thespatial modulation of the Raman gain in a standing-wave
pump field [23, 24], which are called Raman induced gratings
(RIGs). These gratings are fundamentally different from
EIAG schemes where the absorption is spatially modulated.
Owing to periodic spatial modulation of the Raman gain, the
weak probe wave propagates in the forward (a transmitted

Journal of Optics

J. Opt. 19 (2017) 055501 (7pp) https://doi.org/10.1088/2040-8986/aa6498

2040-8978/17/055501+07$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

mailto:avg@iph.krasn.ru
https://doi.org/10.1088/2040-8986/aa6498
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/aa6498&domain=pdf&date_stamp=2017-03-30
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/aa6498&domain=pdf&date_stamp=2017-03-30


wave) and backward (a reflected wave) directions. In [23] it
was shown that transmitted and reflected waves can be
simultaneously amplified at acertain frequency band and the
transmission and reflection spectra can be controlled (from
amplification to suppression) by varying the pump field
intensity. In [24] we showed that thetransmission and
reflection spectra ofRIGs can be controlled with the help of
an additional control field by varying its intensity or fre-
quency. In this paper, we extend our previous results [23, 24]
to further investigate the probe pulse propagation in such a
grating. We show that it is possible to control both the
amplitude of the probe pulse (with amplification or suppres-
sion) and the group velocity from subluminal to superluminal
by varying the pump or control field. This structure can
operate as an all-optical switch and a transistor.

2. Basic theory

A model for coherent control of the RIG is shown schematically
in figure 1. It can be described by a four-level N-type config-
uration initially prepared in the ground state 0ñ∣ . The ground 0ñ∣
and metastable 2ñ∣ levels are coupled to the excited level 1ñ∣ by a
strong pump field at frequency 1w and a weak probe (signal)
field at the frequency 2w and wave number k2. A strong control
field at frequency 3w and wave number k3 is applied to the
transition 2 3ñ - ñ∣ ∣ to enable manipulation by means of the
Raman gain. The probe (E E t k z1 2 exp is 2 2 2w= - -[ ( )])
and control (E E t k z1 2 exp ic 3 3 3w= - -[ ( )]) fields propagate
along the z direction and interact with the transitions 1 2ñ - ñ∣ ∣
and 2 3ñ - ñ∣ ∣ , respectively. The pump field is a standing wave
along the z direction. It is formed by two monochromatic
counter-propagating fields E E t k z1 2 exp ip 1 1 1w= - -+{ [ ( )]

E t k zexp i1 1 1w+ - +- [ ( )]}, where E1+ and E1- are the
amplitudes of the forward (+) and backward (−) pump fields
with the respective Rabi frequencies G1+ and G1-. The pump
fields are detuned from state 1ñ∣ by large one-photon detuning so
that single-photon absorption can be neglected. We assume that
the Rabi frequency of the probe is much lower than the Rabi

frequencies of the pump and control field, which are considered
strong fields. The intensity of the pump radiation field is selected
such that the threshold of stimulated Raman scattering is not
exceeded, being, however, high enough to ensure notable
amplification of the probe wave. At the same time, spontaneous
Raman gain should be much less than the stimulated one.

The induced macroscopic polarization at the probe fre-
quency 2w will be P N d E2 21 12 2 2w r c w= =( ) ( ) , where N is
the atomic number density, and 2c w( ) is the Raman sus-
ceptibility. We assume that the fields are limited to a value
such that the change of population of the ground level 0r due
to absorption to other levels under applied fields is small, i.e.

10r » . The steady-state density matrix equations of motion
for the four-level system under the dipole and rotating wave
approximation can be written as

iG iG
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where G G k z G k zexp i exp ip 1 1 1 1= + -+ -( ) ( ), G1 =
E d 21 10  , G E d 22 2 12 = , andG E d 23 3 32 = denote
the Rabi frequencies of the pump, probe and control fields,
respectively, i1 10 1g dD = - , i2 12 2g dD = - , 3 32gD = -
i 3d , i30 30 30g dD = - , i31 31 31g dD = - , and 1,2,3 1,2,3d w= -

10,12,32w arethe one-photon detuning, 20 1 2d d d= - is the
Raman detuning, 30 1 2 3d d d d= - + , ;31 3 2d d d= - mnw ,

mng and dmn are the frequency, half-width and matrix dipole
moment of the respective transitions;  is the reduced Planck
constant. Equation (1) isvalid if G G2 1∣ ∣ ∣ ∣, G3∣ ∣,

1 10d g , G1∣ ∣.
The solution for the element 21r (to the first order in the

probe field and to all orders in the pump and control fields) is
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From (2), the susceptibility 2c w( ) experienced by the probe
field can be written as

G G G Di , 3r
2

10

1
p

2
30 31 p

2
3

2c w
a g

= -
D

D D + -( ) ∣ ∣ ( ∣ ∣ ∣ ∣ ) ( )

where d N 2r 12
2

10a g= ∣ ∣ . When the control field is switched
off (G 03 = ), formula (3) is essentially simplified (see the
appendix).

Further, we shall assume that the amplitudes of the pump
field are real and E E E1 1 1= =+ - . In this case, the pump field is
a perfect standing wave with the Rabi frequency
G z G k zcosp 1 1=( ) ( ), where G E d1 1 10 = . Susceptibility (3),
which depends on z through G z G k zcosp

2
1
2 2

1=∣ ( )∣ ( ) =
G k z1 cos 2 21

2
1+[ ( )] , is an even periodical function. Thus,

susceptibility for the probe field is modulated periodically in
space with the period 21lL = , where 1l is the wavelength of

Figure 1. A schematic diagram of the four-level N-type atomic
system for coherent manipulation of the probe (signal) light pulse.
The pump field with frequency 1w is a standing wave. The probe
field has a frequency 2w , and 3w correspond to the control field.
The frequency detuning 1,2,3d denote the detunings from one-
photon resonances for the pump, probe and control fields,
respectively.
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the pump field. This leads to spatial modulation of the Raman
gain and the refractive index. Amplification takes place in the
antinodes region of the standing wave, but there is no gain in the
nodes. We called such a structure an RIG[23]. It should be
emphasized that this grating is a hybrid one: an amplitude (gain)
grating and a phase (refraction) one. Therefore, the probe field
propagates in such a medium as in a one-dimensional (1D)
periodic structure, i.e. it may propagate both in the forward (the
transmitted wave), and backward (reflected wave) directions.

The wave equation for the probe field E z2 ( ) in a spatially
modulated medium with the susceptibility z,2c w( ) in a fre-
quency domain takes the form [25, 26]

E z

z
k z E

d ,

d
1 4 , 0, 4

2
2 2

2 2
2

2 2
w

pc w+ + =
( ) [ ( )] ( )

where k c2 2w= is the vacuum probe wave number. The
solution of (4) can be represented as a superposition of two
waves propagating in opposite directions:

E z A z B ze e , 5k z k z
2

i i2 2= + -( ) ( ) ( ) ( )

where A(z) and B(z) are the amplitudes of the forward and
backward probe waves, respectively. Using the cosine Fourier
expansion z nk z, 2 cos 2n n2 0 1 1c w c c= + å =

¥( ) ( ) (χ is an
even function) and the coupled mode analysis [26], we can
find the amplitudes A(z) and B(z) [23]
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and k k k1 2D = - .
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In defining (6) and (7), we used 0c (m= 0) and 1c (m= 1), i.e.
we restricted ourselves to two spatial harmonics and also used
the boundary conditions A z A0 0= =( ) , B L 0=( ) , where A0

is the incident probe wave amplitude (no Fresnel reflection
from the interface).

Let us introduce the amplitude coefficients of transmis-
sion (gain) t z L A L A, ,2 2 0w w= =( ) ( ) and reflection
r z B A, 0 , 02 2 0w w= =( ) ( )

t
s sL

s sL k sL

cos

cos i sin
, 92w

a
=

+ D -
( ) ( )

( ) ( ) ( )
( )

r
sL

s sL i k sL

sin

cos sin
. 102w

s
a

=
+ D -

( ) ( )
( ) ( ) ( )

( )

Then we can easily obtain the energy transmittance
T t 2

2w= ∣ ( )∣ and reflectance R r 2
2w= ∣ ( )∣ .

3. Results and discussion

For numerical simulations we use the parameters corresp-
onding to the D1 line of Na atoms, and the levels 0ñ∣ and 2ñ∣
are long-lived hyperfine sublevels of the electronic ground
state S3 1 2. The atomic parameters are 2 10 MHz10g p= ´ ,

10020 10g g= , andN 1012= cm−3, and the sample length is
L=5mm. The Rabi frequency of the pump (G1) and control
(G3) fields will be expressed in the units of 10g and the Raman
detuning 20d in 20g units.

3.1. The transmission and reflection spectra

Let us first consider the case when the control field is swit-
ched off (G 03 = ). In figure 2 the transmission T and reflec-
tion R for the probe field are plotted as functions of the
Raman detuning 20d and pump Rabi frequency G1 at a fixed
one-photon detuning 1001 10d g= - . It can be seen that the
transmission and reflection spectra strongly depend on the
pump field intensity. The transmitted and reflected light can
be amplified in some frequency range. Therefore, transmit-
tance and reflectivity can be interpreted as a transmission and
reflection gain, respectively. The transmission spectra depend
on the Raman detuning 20d and have a resonance character at
the pump Rabi frequency. As the pump field intensity
increases, there occurs a dip in the transmission spectrum near
the Raman resonance. The depth and width of the dip increase
with the pump intensity and the dip center is shifted due to the
Stark shift of the resonance frequency of the Raman transition
(see (A.1) in appendix). In the area between the peaks the
sample may become opaque (T 0 ). A similar behavior also
holds for reflection, but the dip is less pronounced. Away
from the Raman resonance, the gain disappears (T 1 and
R 0 ). Thus, by changing the intensity of the pump field we
can control the transmission (reflection) spectrum of the probe
radiation under Raman interaction with a standing-
wave pump.

The presence of an additional control field ( 3w in
figure 1) leads to essential modification of the propagation
properties of the medium [24]. The typical transmission
spectrum is shown in figure 3 as a function of the Raman
detuning 20d and the control field Rabi frequency G3. It is seen
that the transmission has a resonant character as a function of
G3, i.e. apeak occurs atcertain values ofG3, and its position
depends on the intensity of the pump field. The intensity of
the control field decreases with increasing thickness of the
sample L. Note that small variations of the control field
intensity can change the system from opaque to transparent
(with amplification) and vice versa. In [24] it is shown that in
the case of anon-perfect standing pump wave withunequal
amplitudes for forward and backward fields, the transmission
and reflection spectra qualitatively have the same behavior. In
addition,although they are sensitive to the difference between
the amplitudes of contradirected pump waves,this is not
critical and does not lead to noticeable changes in the dis-
cussed dependencies. A similar behavior occurs for the
reflection spectrum.

3.2. Control of light-pulse propagation

Using equations (9)–(10) and the Fourier transform method
one can study the propagation dynamics of an incident probe
pulse assuming that the pump standing wave and the control
field are continuous and monochromatic waves. Here, we
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assume that the input probe pulse has the following Gaussian
profile in the time and frequency domains

E t E t

E E

exp

2 exp 4 ,
2i 0

2 2

2i 2
1 2

0
2

2 2c
2

t
w t t w w

= -
= - --

( ) ( )
( ) [ ( ) ]

where E0 is the pulse amplitude, 2t is the pulse width at the
level e 1- , 2cw is the carrier frequency of the probe pulse. The
transmitted and reflected Fourier components can be derived
from E t E2T 2 2 2i 2w w w=( ) ( ) ( ) and E r E2R 2 2 2i 2w w w=( ) ( ) ( ).
The transmitted and reflected probe pulse in the time domain
via inverse Fourier transform is given by

E t E texp i d . 112T,2R 2T,2R 2 2 2ò w w w= -
-¥

¥
( ) ( ) ( ) ( )

Let us first consider the caseG 03 = , i.e. the control field is
off. Figure 4 shows the typical behavior of the transmitted
(z= L) and reflected (z= 0) probe pulse for different values of
the pump Rabi frequency G1 under Raman resonance for the
carrier frequency of the pulse ( 02c 1 2c 20d w w w= - - = ).
One can see that the transmitted and reflected pulses are sensi-
tive to G1. When the Rabi frequency G1 corresponds to the left
branch of the curve T G1( ) (inset in figure 4(a)), the transmitted
pulse is amplified and enhances with increasing G1 (figure 4(a)).
In the case when G1 corresponds to the right branch of the curve
T G1( ), the pulse amplification decreases with increasing G1

(figure 4(b)). A similar behavior also takes place for the reflected
pulses (figure 4(c)). Thus, the RIG can operate as an all-optical
switch and an amplifier. A similar pattern is observed for other
detunings c2d .

We also note that the transmitted (reflected) pulse may
either lag (figures 4(a) and (c)) or lead (figure 4(b)) the
reference pulse (not shown), which covers the same distance
in a vacuum. Therefore, we can speak about subluminal
propagation of the probe pulse, when the pulse group velocity
is less than the speed of light in vacuum (a slow light), or
superluminal propagation, when the group velocity is nega-
tive or higher than the speed of light in vacuum (fast
light) [27].

Group delay for the transmitted and reflected pulse can
be calculated as [28]

g
T,R T,R

2 2 2c

t
w

=
¶F
¶ w w=

⎛
⎝⎜

⎞
⎠⎟

where T R,F isthe phase of the transmission t 2w( ) and
reflection r 2w( ) coefficient, respectively. A positive group
delay (the pulse at the output appears later than the reference)
corresponds to the subluminal propagation. A negative group
delay (the pulse at the output appears earlier than the refer-
ence) corresponds to the superluminal propagation. The inset
in figure 5 shows the group delay gt as a function of the
detuning 20d for the values G1 corresponding to the curves 3
(figure 4(a)) and 2 (figure 4(b)). In the first case (G1 = 0.31)

0gt > (subluminal propagation) and in the second case
(G1 = 0.45) 0gt < (superluminal propagation). Calculations
show that subluminal propagation occurs when the Rabi
frequency G1 corresponds to the left branch of the depend-
ence T G1( ) (see the inset in figure 4(a)), where normal dis-
persion for the probe wave is realized (figure 5). When G1

Figure 2. The transmission (a) and reflection (b) versus Raman detuning 20d (in 20g units) and pump Rabi frequency G1 (in 10g units) in the
case when the control field is off (G 03 = ).

Figure 3. The transmission spectrum versus Raman detuning 20d and
control Rabi frequency G3 (in 10g units) for the case when the pump
Rabi frequency G 0.81 = , and and the frequency detuning of the
control field 3d = 0.
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corresponds to the right branch of the dependence T G1( ),
superluminal propagation arises since dispersion for the probe
wave becomes anomalous (figure 5). The mechanism of
attaining normal and anomalous dispersion is associated with
dispersion of the RIG (structural dispersion) rather than the
Raman medium (material dispersion).

The presence of a control field opens new possibilities for
manipulating the propagation dynamics of the probe pulse.
Figure 6 illustrates the transmitted and reflected Gaussian
probe pulse for various Rabi frequencies G3 at different
values of the pump Rabi frequency G1 (the operating point).
The pulse propagation dynamics depends essentially on the
Rabi frequency G3. Figures 6(a) and(b) show the transmitted
and reflected probe pulses in the case when the Rabi fre-
quency G1 corresponds to the left branch of the curve T G1( )
or R G1( ), respectively. Selecting the intensity of the control
field, we can suppress the reflected pulse. In this case,
theRIG acts as a controllable amplifier for transmitted and
reflected pulses. Note that here we deal with subliminal pulses
( 0gt > ) and gt depends on G3.

Figure 6(c) shows the case when the intensity of the
pump field is selected such that transmittance of the grating is
close to zero (at G 03 = ). When the control field is turned on
the pulse amplification increases with G3 (curves 2 and 3 in

figure 6(a)) as long as the Rabi frequency G3 corresponds to
the left branch of the curve T G3( ) (the inset in figure 6(a)).
When G3 corresponds to the right branch, the pulse amplifi-
cation decreases with increasing G3. Meanwhile, the group

Figure 4. The transmitted IT (a), (b) and reflected IR (c) probe light pulse for different values of the Rabi frequency G1 in the case when
G 03 = , 0c2d = . (a) 1 – G1 = 0.1, 2–G1 = 0.2, 3–G1 = 0.31, 4–G 0.34;1 = (b) 1 – G1 = 0.43, 2–G1 = 0.45, 3–G1 = 0.5,
4–G 0.8;1 = (c) 1–G1 = 0.2, 2–G1 = 0.31, 3–G1 = 0.34. The maximum of the reference pulse (not shown) corresponds to 0t = . The
inset shows transmission T as a function of the pump field Rabi
frequency.

Figure 5. Spectral dependences of the phase of the transmitted probe
wave for the Rabi frequencies G 0.311 = and G 0.451 = . Inset: the
group delay gt as a function of detuning from the Raman resonance

2cd for the same G1.
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velocity of the pulse also changes from subluminal to
superluminal. Thus, by changing the control field intensity we
can change the system from opaque to transparent (with
amplification) and vice versa, i.e.this structure can operate as
an all-optical transistor.

4. Conclusion

We have presented a theoretical study on the probe light-pulse
propagation under Raman interaction with a pump standing
wave in three- and four-level media. For a three-level atomic
system, we show thatit is possible to control both the trans-
mission (reflection) of the probe pulse and the dispersion of
theRIG (structural dispersion) by changing the intensity of the
pump field. In this waythe dispersion can be changed from
normal to abnormal, and we can therefore manipulate the pulse
group velocity from subliminal to superluminal. We have also
shown that byadding a control field coupled to a fourth statethe
properties of the weak probe light-pulse propagation are greatly
changed. In particular small variations in the intensity of control
field transfer the system from the opaque to transparent (with

amplification) state and vice versa. Therefore this structure can
operate as an all-optical transistor. At the same time, it can be
used as a nonlinear controllable mirror with the reflectivity
greater than unity. In addition,due to the variation of the control
field intensity, the probe pulse propagation can be changed from
subluminal to superluminal. This opens upnew possibilities
formanipulating the dispersion and transmission, and may be
used in different fields of applied photonics.

The intensity of the control and pump field strongly
depends on a number of parameters (detuning from one-
photon and Raman resonances, a Raman resonance width, a
sample thickness and others). The required laser fieldinten-
sity is tens ofhundreds of mW cm−2 for the pump field and
two to three orders of magnitude lower for the control field.
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Figure 6. The transmitted (IT) and reflected (IR) probe light pulse for different values of the Rabi frequency G1 and 032d = , 02cd = . (a),
(b)G1 = 0.36, 1–G 03 = , 2–G3 = 0.05, 3–G3 = 0.2. (c)G1 = 0.8, 1–G 03 = , 2–G3 = 0.15, 3–G3 = 0.16, 4–G3 = 0.21,
5–G3 = 0.25. The insets show the transmission T (a, c) and reflection R (b) as a function of the control field Rabi frequency G3.
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Appendix

In the appendix, we give the formula for the susceptibility
z,2c w( ) for the case when the control field is off (G 03 = )

and calculate the Fourier components (8) 0c and 1c in this
case. It is not difficult to show that when G 03 = and

1 10d g∣ ∣ , 2 12d g∣ ∣ susceptibility (3) simplifies to

z
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From equation (A.1) we see that a strong pump field
(G1

2
2 20d g∣ ∣ ) causes a shift in the resonance frequency of

the Raman transition (the Stark shift). In the case of a weak
pump field (G1

2
2 20d g∣ ∣ ) equation (A.1) is consistent with

the standard Raman susceptibility as defined inperturbation
theory [16].

For susceptibility (A.1) the spatial Fourier components

0c and 1c are calculated analytically. To calculate integrals (8)
for the z,2c w( ), formula (A.1) is conveniently rewritten as
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Numerical simulations using formula (8) with G 03 = are in
good agreement with the analytical results (A.3)–(A.4).
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