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Quantum properties of parametric four-wave mixing in a Raman-type atomic system
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We present a study of the quantum properties of two light fields used in parametric four-wave mixing in a
Raman-type atomic system. The system realizes an effective Hamiltonian of beam-splitter-type coupling between
the light fields, which allows one to control squeezing and amplitude distribution of the light fields, as well as
realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two
single-mode light fields in properly chosen input states.
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I. INTRODUCTION

Squeezing [1] and entanglement [2] are two important
features of quantum light and have no counterparts in
the classical framework. They are the cornerstone of
quantum computation and quantum communication with
continuous-variable light fields, where quantum information
is usually encoded into Gaussian states of light [3,4].
Entanglement and squeezing are normally generated through
parametric processes such as parametric down conversion [5]
and four-wave mixing (FWM) [6–10].

FWM can realize an effective coupling of the beam-splitter
type between two light fields [11], which can be applied
to generate the important categories of photonic quantum
states, such as cat states and symmetric entangled states.
In the present work, we consider a Raman-type dispersive
FWM to realize a similar beam-splitter-type coupling for
other applications including transferring squeezing between
different modes, amplifying the amplitude of one squeezed
mode, and entangling different quantum modes. There are
two degenerate counterpropagating electromagnetic fields as
the pump in our considered system, and they realize an
effective standing wave creating the spatial modulation of
the nonlinearities for the input quantum light fields. This
structure behaves like photonic crystals that are widely used
for control light propagation [12,13]. To avoid the influence
of the quantum noises that are critical to the entanglement
generation (see, e.g., [14–16]), we use a dispersive parametric
interaction, so that the one-photon detuning and two-photon
detuning in the process are large enough to prevent the real
excitation of the atomic system from its ground states and only
the quantum state of the light fields will be changed during the
closed-loop parametric interaction, which involves the two
counterpropagating quantum modes and the standing wave of
the pump field.

The rest of the paper is organized as follows. We first present
a description of the model in Sec. II. The effective Hamiltonian
for the system in the dispersive regime is derived in Sec. III.
In Sec. IV, we study the properties of quantum light fields,
such as the amplitude dynamics, squeezing transferring, and
entanglement generation, after finding the evolving light field
modes. We summarize the results in Sec. V.

II. THE MODEL

Let us consider a three-level atomic system with the ground
state |a〉 and two upper states |b〉 and |c〉; see Fig. 1. Through
the system, the input quantum light fields of the single
mode (the blue ones in Fig. 1) effectively interact with one
another. The classical standing electromagnetic field with the
Rabi frequency � implements the transition |a〉 − |c〉. Such
classical standing wave is applied along the z direction and can
be decomposed into two running wave with the wave vectors
±k. The two counterpropagating quantum modes that are
coupled to the transition |b〉 − |c〉 with the coupling parameter
g also propagate along the z direction.

In the interaction picture, the Hamiltonian of the system in
Fig. 1 takes the following form (h̄ ≡ 1):

H = −�|c〉〈c| − δ|b〉〈b|
×W (|a〉〈c| + |c〉〈a|) + ŝ†|b〉〈c| + ŝ|c〉〈b|, (1)

where

W = 2� cos kz,

ŝ = g(̂aeik0z + b̂e−ik0z).

In Eq. (1), we introduce the one-photon detuning � = ω − ωac

and the two-photon detuning δ = ω − ω0 − ωab, where ω, ω0

are the optical frequencies of the classical field and quantum
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FIG. 1. Scheme of a Raman-type dispersive four-wave mixing
of two counterpropagating quantum modes â and b̂ with the wave
vectors ±k0 and the classical standing wave with the Rabi frequency
� in a media of a three-level quantum systems.

modes, correspondingly, while ωac and ωab are the frequencies
of the corresponding transitions.

III. EFFECTIVE HAMILTONIAN

In what follows, we will consider a regime of the dispersive
interaction, where the large detunings of the electromagnetic
fields prevent the real transitions of the three-level system
from its ground state. So, the atomic system remains the same
initial state |a〉 during the interaction, and only the quantum
states of the optical fields can be changed. The classical field is
assumed to be much stronger than the quantum ones. In order
to derive the effective Hamiltonian in the dispersive regime,
we use an adiabatic elimination technique [11,17,18]. We start
from the Schrödinger equation ih̄ d�(t)

dt
= H�(t) and project

it onto atomic states |a〉, |b〉, and |c〉:

i
d

dt
〈a|�(t)〉 = W 〈c|�(t)〉, (2)

i
d

dt
〈b|�(t)〉 = −δ〈b|�(t)〉 + ŝ†〈c|�(t)〉, (3)

i
d

dt
〈c|�(t)〉 = −�〈c|�(t)〉 + W 〈a|�(t)〉 + ŝ〈b|�(t)〉,

(4)

following the derivations detailed in [11,18] under the condi-
tions (n is the maximal photon number in the quantum modes)∣∣∣∣W�

∣∣∣∣ � 1, (5)∣∣∣∣g
√

nW

�δ

∣∣∣∣ � 1, (6)

which allows one to avoid the one-photon and two-photon
transitions so that the system remains in its ground state |a〉

and only the state of the light fields will be changed. Then
we can eliminate the states |c〉 and |b〉 from the dynamical
equations, to obtain the effective dynamical evolution,

i
d

dt
〈a|�(t)〉 = H̃eff〈a|�(t)〉, (7)

where

H̃eff = ŝ †̂sW 2

�2δ

is the effective Hamiltonian.
Furthermore, we can simplify the present Hamiltonian and

eliminate the z dependence. By omitting the fast oscillation
terms and making transformation Tδ = exp i�k(a†a + b†b)z,
we obtain a beam-splitter-type Hamiltonian,

Heff = χ0(̂a†â + b̂†b̂) + σ0(̂ab̂† + â†b̂), (8)

where

χ0 = 2�2g2

�2δ
− �kc, (9)

with �k = k − k0, is due to a self-phase modulation and

σ0 = �2g2

�2δ
(10)

is the cross coupling between the quantum modes.

IV. ENGINEERING OF THE QUANTUM LIGHT FIELDS

The field operators’ evolution is described by the Heisen-
berg equation as the two coupled propagation ones,

d

dz
â = iχâ + iσ b̂,

d

dz
b̂ = −iσ â − iχb̂,

where the parameters z = α0z0 (the replacement t → z0/c has
been used), χ = −χ0c/α0, and σ = −σ0c/α0 are renormal-
ized with the unperturbed absorption coefficient α0, and the
counterpropagation geometry of the quantum modes is taken
into account. Since the two modes have a counterpropagating
geometry, the boundary conditions become â(z = 0) = â0 and
b̂(z = L) = b̂L, where L is the length of the medium. The
solution for the output modes â(z = L) = âL and b̂(z = 0) =
b̂0 can be written in the following form:

âL = S1(L)̂a0 + S2(L)̂bL, (11)

b̂0 = S2(L)̂a0 + S1(L)̂bL, (12)

where

S1 =
[

cos sL − i
χ

s
sin sL

]−1

, (13)

S2 = iS1
σ

s
sin sL, (14)

s =
√

χ2 − σ 2. (15)

This result is in agreement with that obtained by treating the
currently considered system as a classical one [19].
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During the process, the commutation relations 〈̂aLâ
†
L〉 −

〈̂a†
LâL〉 = 〈̂b0b̂

†
0〉 − 〈̂b†0b̂0〉 = |S1|2 + |S2|2 = 1 for the photon

modes are always preserved, as it should be.
An interesting property of the system is that the parameter

s can be imaginary when χ2 < σ 2. This situation can happen
in the range of the parameters

1
3 < P < 1, (16)

where we have introduced a notation for the dimensionless
parameter,

P ≡ �2g2

�2δ(�k)c
. (17)

This situation is analogous to the presence of the band gap in
photonic crystal [12,13], as predicted in [20].

In the following, we will apply the above-mentioned
dynamics to study the properties of propagation, such as the
conversion, and squeezing transferring between the light fields,
as well as entanglement generation under the different input
parameters.

A. Field-mode swapping

We start with the discussion of how the amplitude of the
quantum modes can be changed in our process. We can find
the photon number in the modes Aa = 〈̂a†â〉 and Ab = 〈̂b†b̂〉
from Eqs. (11) and (12),

AL
a = |S1|2A0

a + |S2|2AL
b ,

A0
b = |S1|2AL

b + |S2|2A0
a,

where it is assumed that initially the two modes â and b̂ are not
correlated, 〈̂a†

0b̂L〉 = 〈̂a0b̂
†
L〉 = 0. In the numerical calculation,

we consider the case when the input state for the mode â is in
the coherent state |α〉 and the second mode b̂ is in the vacuum
state |0〉. In this case, the amplitudes of photon modes take a
simple form,

AL
a = |S1|2|α|2,

A0
b = |S2|2|α|2.

In Fig. 2(a) we present normalized quantum modes
amplitudes as the function of a normalized length of the
medium. When the function s is real (inequality (16) is not
satisfied) there are oscillations between the modes Figs. 2(a)
and 2(b). As the parameter P gets closer to the boundary
of the condition Eq. (16) the oscillations become stronger
Fig. 2(b). The maximum energy transfer from one mode
to another is at the point |s|L = π/2. Theirs amplitudes at
this point are AL

a = s2

χ2 |α|2 and A0
b = σ 2

χ2 |α|2. In Fig. 2(c) the
case is presented when condition Eq. (16) is satisfied. The
oscillatory behavior is changed to the exponential one and
the total reflection of the forward wave into the backward one
takes place. This situation is analogous to the presence of the
bandgap in photonic crystals [20].

B. Squeezing transferring

We define the quadratures of the quantum modes,

Xa,b = [̂aL (̂b0) + â
†
L (̂b†0)]/2, (18)

Ya,b = [̂aL (̂b0) − â
†
L (̂b†0)]/2i, (19)

FIG. 2. Dynamics of the normalized over A0 = |α|2 quantum
field’s amplitude as a function of the dimensionless parameter |s|L,
where s is given in Eq. (15) and L is the interaction length. The
red (light gray) line is the function Aa/A

0
a and the black one is the

function Ab/A
0
a . (a) P = 10, (b) P = 1.1, (c) P = 0.4.

and their fluctuations 〈�Xa,b〉2 = 〈X2
a,b〉 − 〈Xa,b〉2 and

〈�Ya,b〉2 = 〈Y 2
a,b〉 − 〈Ya,b〉2.

If the fluctuation in one of the quadratures is less than 1/4, the
field will be in a squeezed state. For the input coherent states in
the considered system, the output is always in coherent states
and there is no way to get a squeezed state,

〈�Xa,b〉2 = 〈�Ya,b〉2 = 1
4

(|S1|2 + |S2|2
) = 1

4 .

The situation will be different in the case where one of the
modes is initially in a squeezed state. As an example, we
assume that mode â is in the coherent state |α〉 and mode b̂

is in the squeezed state |ξ 〉 with squeezing parameter r . The
expressions for the four quadratures fluctuations are

〈�Xa,b〉2 = 1
4 + 1

4

{
2|S2,1|2 sinh2 r

− [
S2

2,1 + (S∗
2,1)2

]
sinh r cosh r

}
,

〈�Ya,b〉2 = 1
4 + 1

4

{
2|S2,1|2 sinh2 r

+ [
S2

2,1 + (S∗
2,1)2] sinh r cosh r

}
.

In this case, the amplitude of the squeezed mode can be
sufficiently amplified due to the parametric energy transferring
from the coherent mode. In Fig. 3(a) about P = 10 [see
Eq. (17)], there is the effective squeezing transferring between
two quadratures of the same mode. At the same time, in
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FIG. 3. Dynamics of the fields quadratures fluctuations as a
function of the dimensionless parameter |s|L, where s is given in
Eq. (15) and L is the interaction length. 〈�Xa〉2: red (light gray)
solid line; 〈�Xb〉2: black solid line; 〈�Ya〉2: red (light gray) dotted
line; 〈�Yb〉2: black dotted line. (a) P = 10, (b) P = 1.1, (c) P = 0.4.

Fig. 2(a), we can see that at the point L = π
2 , the mode, which

is initially weak and squeezed, gets sufficiently amplified due
to the parametric interaction with another quantum mode and
preserves almost the initial level of the squeezing. Next we
consider the case when the squeezing transfers from one mode
to another [P = 1.1 as in Fig. 3(b)]. The quantum mode, which
is initially a coherent state and has a large amplitude quantum
mode around the point L = π

2 , will become squeezed [see
Fig. 3(b)] and its amplitude will still be sufficiently large [see
Fig. 2(b)]. For the case when the parameters lie in the region
where the band gap exists, P = 0.4 [see Eq. (17)], there will
not be sufficient squeezing in any quadrature as in Fig. 3(c).
The possibility of the squeezing transferring by a coherent
process involving electromagnetically induced transparency
in an atomic system was studied in [21], but principally it is
impossible to obtain more than 25% of the initial squeezing in
that way. Here we demonstrate more than 90% of the squeezing
transferring between the modes. The amplitude of the squeezed
mode and the amount of squeezing are easy to control by the
intensity of the pump field.

C. Entanglement generation

In this section, we demonstrate the possibility of generating
the entanglement between quantum modes. As the criteria of
entanglement, we use the inequality Q ≡ (�u)2 + (�υ)2 < 1
[22], where u = Xa + Xb and υ = Ya − Yb. The quadratures
Xa,b and Ya,b are given in Eqs. (18) and (19). When both modes

(a)

(b)

(c)

FIG. 4. The function Q that is an entanglement criteria as a
function of dimensionless parameter |s|L, where s is given in Eq. (15)
and L is the interaction length. (a) P = 10, (b) P = 1.1, (c) P = 0.4.

are in the coherent state, there will be no possibility to generate
entanglement, and function Q is simply larger than 1. When
mode â is in a coherent state |α〉 and mode b̂ is in a squeezed
state |ξ 〉, the system will be able to generate an entanglement
between the modes in a certain range of system parameters.
For the considered system, we have

Q = (�u)2 + (�υ)2

= (1 + sinh2 r)
(|S1|2 + |S2|2

)
− 1

2 sinh r cosh r
[
S2

1 + S2
2 + (S∗

1 )2 + (S∗
2 )2

]
.

Through numerical analysis, we find a few regimes where
two quantum modes can be entangled.

In Fig. 4, we plot the function Q compared with the
entanglement criteria [22]. We see that for P = 10 and P =
1.1, there are two dips around |s|L = π + πl for l = 0,1,2 . . .,
to have the two modes entangled; see Figs. 4(a) and 4(b). And
when P = 0.4, we have only one dip where these modes are
entangled; see Fig. 4(c). This parametrically induced beam
splitter is capable of entangling two light fields like the usual
beam splitter [23].

D. Example of possible implementation

In order to let the parameter P be close to or larger
than unity, the proper requirements on the pump and the
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quantum fields frequencies, as well as on the two-photon
detuning, should be satisfied. Equation (17) can be rewritten as

P = (�g

�δ
)
2 δ

�kc
, where the first term is the second-order small

parameter in Eq. (6), so the second factor δ/(�kc) should be
sufficiently large. It is possible to achieve such conditions by
using two neighboring Zeeman sublevels of alkali vapors as the
two ground states |a〉 and |b〉 in Fig. 1. For example, one can
obtain an energy spacing about ωab = 50 MHz between two
neighboring Zeeman sublevels of the state 52S1/2 of rubidium
vapor in a magnetic field, while the excited state can be 52P1/2,
to which the pump and quantum electromagnetic with the
different polarizations π and σ+ undergo the transition (D1
line). The level scheme in Fig. 1 implies that

kc − �1 = k0c + ωab − �2,

from which one has the relation

�kc = ωab + δ.

The frequency kc of the pump fields and the frequency
k0c of the quantum fields can become very close, since their
respective detuning, �1 and �2 (�1 = � in Fig. 1), can be
flexibly chosen to have a two-photon detuning δ = �1 − �2

comparable with the energy gap ωab. Therefore, the parameter

P = (�g

�δ
)
2 δ

�kc
can be adjusted to the proper values considered

in the current scheme. In the considered case, we can set
two-photon detuning δ = −50.5 MHz and obtain δ

�kc
≈ 100.

V. CONCLUSION

In summary, we have studied the engineering of two
quantum modes counterpropagating in a medium of a three-
level atomic system also in the presence of a strong classical
standing electromagnetic field. The interaction between the
atomic system and the electromagnetic modes is via dispersive
FWM, to have all fields well detuned from one-photon and
two-photon resonances, so that the FWM process is purely
dispersive and the atomic system itself will always be in the
ground state |a〉. Under such condition, there will be no loss
in the system in the presence of decays and Langevin noises.
The derived effective Hamiltonian has a form that is similar
to a beam-splitter Hamiltonian [5]. We demonstrate that there
are possibilities for the parametric amplitude amplification of
a squeezed state, as well as the squeezing transferring and the
entanglement generation, with such type of interaction. Also
we have found that in a certain range of the parameters such as
in Eq. (16), the features similar to those in a photonic-crystal
band gap can appear.
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