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Microscopic models of source and sink for atomtronics
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We analyze microscopic models of the particle source or sink which consist of a one- or two-site Bose-Hubbard
model (the system) weakly coupled to a many-site Bose-Hubbard model (the reservoir). Assuming unequal filling
factors for the system and reservoir, we numerically study equilibration dynamics and compare it with the solution
of the master equation on the reduced density matrix of the system. Necessary conditions for the validity of the
master equation approach are formulated.
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Introduction. Recently, much attention has been paid to
the coherent and incoherent transport of cold atoms in
optical lattices—the system which carries many common
features with electrons in solid crystals. Among the coherent
phenomena considered are Bloch oscillations of Bose and
Fermi atoms [1–5], directed transport of atoms [6,7] and
dynamical localization (band collapse) [8,9] in driven lattices,
Anderson’s localization in disordered lattices [10,11], and so
on. Incoherent transport assumes the presence of relaxation
processes. Typical examples are the collisional transport of
spin-polarized Fermi atoms colliding with Bose atoms [12]
and the dissipative dynamics of Bose atoms in a quasi-one-
dimensional lattice, where one of the lattice sites is depleted
by an electron beam [13]. These studies of coherent and
incoherent transport help us to establish cold-atom analogs
of electron devices—a new research direction known as
atomtronics [14].

In a narrower sense, atomtronics implies cold-atom setups
with a source and sink, which are necessary ingredients of
electronic devices. For example, Ref. [16] considered Bose
atoms in a finite one-dimensional (1D) lattice, where the
first and last sites of the lattice are coupled to reservoirs
of cold atoms. Theoretically, this is done by introducing
Lindblad operators, which supply atoms into the first site and
withdraw them from the last site [17]. The interior part of the
system is assumed to be described by the Bose-Hubbard (BH)
Hamiltonian,

Ĥ = −J

2

(
L−1∑
l=1

â
†
l+1âl + H.c.

)

+ U

2

L∑
l=1

n̂l(n̂l − 1) +
L∑

l=1

δln̂l, (1)

which has proven to be an adequate model for Bose atoms
in deep optical lattices. Naturally, this approach, which we
shall refer to as the macroscopic model of the source and sink,
leaves atom reservoirs unspecified. Furthermore, even if one
formally specifies the reservoirs, it is not clear in advance to
what extent the used Lindblad operators are justified. To clarify
these questions we need a microscopic model of the source and
sink.

In the present Rapid Communication, we analyze one of
the possible microscopic models of the source or sink, which
is based on the BH model (1). Namely, we consider the

L-site system, where the hopping matrix element between two
selected sites is εJ instead of J . This divides the system into
two subsystems and, to model the source, we assume that at
t = 0, all N atoms are in the right-hand-side subsystem. We are
interested in the equilibration process, i.e., in the population
dynamics of the left (initially empty) subsystem, which we
shall call the system from now on.

One-site system. First, we consider the case where the weak
link is the first one. Denoting â2 by b̂ and â1 by â, we have

Ĥ = Ĥa + Ĥb + εĤint, (2)

where Ĥa is the Hamiltonian of the one-site BH model, Ĥb the
Hamiltonian of the (L − 1)-site BH model, and

Ĥint = −J

2
(b̂†â + b̂â†). (3)

In what follows, we set J = 1, i.e., all energy constants are
measured in units of the hopping matrix element J .

For ε = 0, the matrix of Hamiltonian (2) in the Fock basis
has a block structure where the first block is defined by the
condition that there are no atoms in the first site, the second
block that there is one atom in the first site, and so on [see
Fig. 1(a)]. Let us now adjust the parameters of Ĥb to ensure
quantum chaos (QC) [20,21]. This condition is controlled by
calculating the level-spacing distribution for eigenenergies of
every block, which should obey the Wigner-Dyson distribution
for the Gaussian orthogonal ensemble of random matrices
[22,23]. Throughout this Rapid Communication, we use
N/L ∼ 1, U = 0.2, and |δl| � 0.05, where the level-spacing
distribution perfectly follows the Wigner-Dyson statistics [21].
This also implies that (almost all) eigenstates extend over the
whole Hilbert space of the corresponding subspace [24] [see
Fig. 1(a)].

Next, we specify the initial conditions. As those, we
choose a random superposition of eigenstates belonging to
the first block in Fig. 1(a). These initial conditions ensure zero
occupation of the first site and practically equal occupations
n̄ = N/(L − 1) of the remaining L − 1 sites. Finally, we solve
the Schrödinger equation with Hamiltonian (2) for nonzero ε

and calculate the reduced density matrix,

R(t) = Trb[Rtot(t)], Rtot(t) = |�(t)〉〈�(t)|, (4)

and the mean number of atoms Ns(t) = ∑N
n=0 nRn,n(t) in the

first site. We found that the reduced density matrix relaxes to a
diagonal matrix, where the diagonal matrix elements Rn,n(t)
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FIG. 1. Eigenstates of the total Hamiltonian for ε = 0 (left panel)
and ε = 0.2 (right panel). The other parameters are N = 6, L = 8,
J = 1, U = 0.2, and |δl | � 0.05. Squared moduli of the expansion
coefficients of the eigenstates over the Fock basis are shown.

approach the values

Pn = Nn/N , (5)

where N = (N + L − 1)!/N!(L − 1)! is the total dimension
of the Hilbert space and Nn are dimensions of the corre-
sponding subspaces [i.e., the sizes of the blocks in Fig. 1(a)].
Numerical results for the mean number of atoms Ns(t) are
shown by solid lines in the main panel in Fig. 2 and the
validity of Eq. (5) is illustrated in the inset of Fig. 2. The
observed population dynamics indicates that the BH model
can indeed serve as a microscopic model of the particle
source [25]. Let us also mention that Eq. (5) implies the
interaction Hamiltonian (3) to couple all blocks in Fig. 1(a),
so that eigenstates of the total Hamiltonian (2) extend over
the whole Hilbert space [see Fig. 1(b)]. As mentioned above,
this is reflected in the Wigner-Dyson statistics for the energy
spectrum. Thus, by analyzing the level-spacing distribution
of the total Hamiltonian (which changes from Poisson to
Wigner-Dyson as ε is increased), one finds the critical ε above
which two subsystems do equilibrate.
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FIG. 2. The mean number of atoms in the first site as a function of
time. Parameters are N = 8, L = 10 (dimension of the Hilbert space
N = 24 310), and ε = 0.1 (lower curve) and ε = 0.2 (upper curve).
The dashed lines are solutions of the master equation (6). The inset
shows diagonal elements of the reduced density matrix at the end of
numerical simulations (symbols) as compared to Eq. (5) (solid line).
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FIG. 3. The mean number of atoms in the first site for ε = 0.2
and nonzero δ1 = 5, 10, 15, 20. Additionally, the dotted line shows
the case U = 0 and the dashed line the case where the initial state of
the right-hand-side subsystem is given by its ground state.

To conclude this section, we briefly discuss the other
dynamical regimes of the system (2). First, we mention that
equilibration does not take place if we violate the conditions
of QC. This is illustrated in Fig. 3, where the dotted line
corresponds to the case U = 0. Conditions of QC are also
violated for U �= 0 if we chose the initial state of the
right-hand-side subsystem to be close to the energy of the
ground [21]. In this case we encounter a completely different
problem of tunneling of a Bose-Enstein condensate through
an obstacle, where Ns(t) oscillates about zero (see the dashed
line in Fig. 3). For future reference, we also consider the
case where the conditions of QC are satisfied but the on-site
energy δ1 of the first site strongly deviates from zero. It is
intuitively expected that this energy mismatch will suppress
the equilibration process. Numerical results depicted in Fig. 3
by solid lines fully confirm this expectation.

Master equation. It is interesting to compare the numerical
results for the reduced density matrix R(t) with solutions of
the master equation,

dR
dt

= −i[Ĥa,R] + Lloss(R) + Lgain(R),

Lloss(R) = γ (n̄ + 1)(â†âR − 2âRâ† + Râ†â), (6)

Lgain(R) = γ n̄(ââ†R − 2â†Râ + Rââ†),

which is usually used to model the particle reservoirs [26–29].
In fact, providing the conditions of QC are satisfied, we can
derive Eq. (6) from the microscopic Hamiltonian (2), in line
with the derivation of the master equation in Ref. [30]. Then,
the parameter n̄ in the Lindblad operators has the meaning
of the mean number of particles in the second site and the
relaxation rate γ = ε2τ , where τ is the decay time of the
correlation function

R(t − t ′) = 〈b̂†(t)b̂(t ′)〉 ≈ 〈b̂†b̂〉 exp(|t − t ′|/τ ) (7)

[here, b̂†(t) and b̂(t ′) are the creation and annihilation operators
in the interaction representation of the Hamiltonian Ĥb].
Solutions of the master Eq. (6) are depicted in Fig. 2 by
the dashed lines. Nice agreement is noticed, where small
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FIG. 4. The mean number of atoms in the first two sites as a
function of time for different values of the hopping matrix element
J̃ = 0.2, 1, 2, 3. The other parameters are N = 8, L = 10, J = 1,
U = 0.2, |δl | < 0.05, and ε = 0.2. The dashed line corresponds to
the case J̃ = 3 where, however, the on-site energies for the first two
sites are set to δ1 = δ2 = 1.5. The open circles and asterisks in the
inset show probabilities Pn for J̃ = 1 and δ1 ≈ δ2 ≈ 0 and J̃ = 3 and
δ1 = δ2 = 1.5, respectively. The solid line is Eq. (5).

deviations are mainly due to the finite size of our BH
system. In particular, according to Eq. (6), the stationary
values of the diagonal matrix elements obey the relation
Pn+1/Pn = n̄/(n̄ + 1), while for the microscopic model we
have, according to Eq. (5),

Pn+1

Pn

= n̄ + n/L

n̄ + 1 + (n − 2)/L
. (8)

It should be stressed that Eq. (6) is not justified for the
parameters of Fig. 3 because we violate one or the other
assumption used to derive it. Namely, for the dotted and dashed
lines in Fig. 3, we violate the conditions of QC, so that the
correlation function (7) does not decay. For the solid lines,
we violate the Markovian approximation, which requires the
correlation time τ to be the smallest time in the problem (in
particular, smaller than 1/δ1).

Two-site system. We proceed with a two-site system, where
we additionally assume that the hopping matrix element be-
tween the first and second sites (J̃ ) can be varied independently
of J . The solid lines in Fig. 4 show the results of numerical
simulations for different J̃ where, as before, we depict the
mean number of atoms Ns as a function of time. It is seen in
Fig. 4 that, for ε � J̃ � J , the behavior of Ns is similar to that
for the one-site system. In particular, in the stationary regime,
the probability Pn to find n atoms in the system is again given
by the ratio Nn/N (see the inset of Fig. 4).

Next, we address an important question about the degree
of coherence between two sites. To answer this question,
we calculate the one-particle density matrix (should not be
mismatched with the reduced density matrix),

ρ
(n)
l,m(t) = 〈�(t)|â†

l âm|�(t)〉, (9)

where indices l and m take values 1 and 2. Notice that,
since the product of the creation and annihilation operators
conserves the number of particles, we actually have N density

matrices of size 2 × 2, where Tr[ρ̂(n)(t)] is the probability to
find n particles in the system. We are mainly interested in
the stationary regime when the equilibration process is over.
Denoting eigenvalues of the equilibrium density matrices (9)
by λ

(n)
i and noticing that Tr[ρ̂(n)] = Pn = λ

(n)
1 + λ

(n)
2 , we define

the averaged weighted eigenvalues,

	i = 1

N

N∑
n=1

λ
(n)
i

λ
(n)
1 + λ

(n)
2

, 	1 + 	2 = 1, (10)

which characterize the coherence of our two-site system. It was
found that for J̃ � J the matrices ρ̂(n) are close to diagonal
matrices and the quantities 	1 ≈ 	2 ≈ 0.5, which means that
the equilibrium state of the system is incoherent.

It is commonly believed that larger J̃ could enhance the
coherence of the system. We indeed observed that for J̃ = 3
the equilibrium state is characterized by 	1 ≈ 0.8. However,
the price we paid for the enhanced coherence is essentially
a longer relaxation time. (In this sense an increase of J̃ has
the same effect as an increase of δ1 in the one-site problem;
see the solid lines in Fig. 3.) A way around this problem is
to compensate the increase of J̃ by a proportional increase of
the on-site energies δ1 and δ2 (see the dashed line in Fig. 4).
Remarkably, for this setup, 	1 reaches a value of 0.99, which
means that the equilibrium state of the system is perfectly
coherent. We also notice that probabilities Pn now obey the
exponential law (see the asterisks in the inset of Fig. 4). This
tells us that the currently considered setup can be mapped
into a one-state bosonic system coupled to a particle reservoir,
where the single-particle state of the system is given by the
symmetric superposition of two Wannier functions associated
with the first and second lattice sites. Needless to say, for
negative δ1 = δ2 = −1.5 we have a similar situation where,
however, the single-particle state is given by the antisymmetric
superposition of the Wannier functions.

Conclusions. We considered a microscopic model of the
atom source based on the Bose-Hubbard Hamiltonian and
compared it with the macroscopic model, which is currently
used in atomtronics. In this macroscopic model, atoms in a
lattice obey the master equation with the Lindblad operators
acting on one lattice site which is directly coupled to a reservoir
of cold atoms. As a result, the occupations of the lattice sites
relax to some prescribed values, with no coherence between
atoms in different sites (i.e., the one-particle density matrix is
diagonal in the Wannier basis). We identified conditions under
which the microscopic and macroscopic models give the same
result, which can be viewed as justification for the macroscopic
model from first principles.

The second result of this Rapid Communication is a
demonstration of the fact that the microscopic model can
show other dynamical regimes, which are not captured by the
discussed macroscopic model. In particular, by adjusting the
system parameters, we can populate the lattice by atoms which
are in a coherent superposition of Wannier states. Furthermore,
for the example considered here, the one-particle density
matrix was found to have only one macroscopic eigenvalue
and, hence, the equilibrium state of the system is a perfect
Bose-Einstein condensate.

We would like to emphasize that in the present work we kept
the atom-atom interactions as weak as possible. This leaves
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aside a number of self-trapping effects, which are currently
under active discussion in the context of atomtronics. It would
be interesting to extend the present analysis beyond the two-
site system, where one can study the self-trapping effects in a
systematic way.
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