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Bound states in the continuum with high orbital angular momentum in a dielectric
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We report bound states in the radiation continuum (BICs) in a single infinitely long dielectric rod with
periodically stepwise modulated permittivity alternating from ε1 to ε2. For ε2 = 1 in air the rod is equivalent to
a stack of dielectric disks with permittivity ε1. Because of rotational and translational symmetries the BICs are
classified by orbital angular momentum m and the Bloch wave vector β directed along the rod. For m = 0 and
β = 0 the symmetry protected BICs have definite polarization and occur in a wide range of the radius of the
rod and the dielectric permittivities. More involved BICs with m �= 0,β = 0 exist only for a selected radius of
the rod at a fixed dielectric constant. The existence of robust Bloch BICs with β �= 0,m = 0 is demonstrated.
Asymptotic limits to a homogeneous rod and to very thin disks are also considered.
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I. INTRODUCTION

Recently confined electromagnetic modes above the light
line, bound states in the continuum (BICs) were shown to
exist in (i) periodic arrays of long dielectric rods [1–19],
(ii) photonic crystal slabs [20–24], and (iii) two-dimensional
periodical structures [25–27] on the surface of material.
Among these different systems the one-dimensional array of
spheres is unique because of rotational symmetry that gives
rise to the BSCs with orbital angular momentum (OAM)
[28]. That reflects in anomalous scattering of plane waves
by the array resulting in scattered electromagnetic fields with
OAM traveling along the array [29–32]. However, fabrication
of an array of at least one hundred identical spheres is a
complicated problem because of technological fluctuations of
the shape of spheres [33,34]. Moreover, there is not much
room for tuning parameters of the spheres to achieve BICs.
The radius cannot exceed the half of the period of the array
and the permittivity of the spheres has to be rather high
[28]. In the present paper we consider a single dielectric rod
with periodically modulated permittivity along the rod axis
ε(z) = ε(z + lh), l = 0,±1,±2, . . ..

As shown in Fig. 1 for the stepwise behavior with ε2 = 1 the
rod is equivalent to a one-dimensional array of dielectric disks
with permittivity ε1. Irrespectively, the rod with periodically
modulated permittivity preserves rotational symmetry. Each
dielectric disk has two geometrical parameters, the radius R

and thickness d. That expands the domain of existence of the
BICs to substantially lower permittivities compared to the case
of dielectric spheres.

II. EIGENMODES WITH OAM m = 0

In what follows we measure all length quantities in terms
of the period h of the array, wave vectors in terms of the
inverse of h, and the frequency k0 in terms of h/c where
c is the light velocity. Because of rotational symmetry the
solutions are classified by integer m = 0,±1,±2, . . ., OAM.
At first, we consider TM modes with m = 0 and Hr = 0,Hz =
0,Eφ = 0 in a cylindrical system of coordinates. For that case
our consideration completely follows the approach by Li and

Engheta for plasmonic nanowire [35]. The solution is sought
in two domains: r < R and r > R independently, and then
matched by the continuity at the rod’s boundary r = R. We
introduce [36,37]

Hφ(z,r) = ε(z)1/2ψ
T M

(z,r),

Er = − i

k0ε(z)

∂ε(z)1/2ψ
T M

∂z
,

Ez = i

k0ε(z)r

∂ε(z)1/2rψ
T M

∂r
, (1)

where the function ψ
T M

obeys equation[
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
+ ∂2

∂z2
+ U

T M
(z)

]
ψ

T M
(z,r) = 0, (2)

where

U
T M

(z) = ε(z)k2
0 − 3

4

(
ε′(z)

ε(z)

)2

+ 1

2

ε′′(z)

ε(z)
. (3)

For the TE mode in sector m = 0 we have Er = Ez =
Hφ = 0 and

Eφ = ψ
T E

, Hr = i

k0

∂ψ
T E

∂z
, Hz = − i

k0r

∂rψ
T E

∂r
, (4)

where the equation for ψT E has the same form as Eq. (2) except
that the effective potential UT M is now replaced by

UT E(z) = ε(z)k2
0 . (5)

Hence we can generalize Eq. (2) for both EM modes as follows:[
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
+ ∂2

∂z2
+ Uσ (z)

]
ψσ (z,r) = 0, (6)

where

ψσ =
{
Eφ, σ = T E,

Hφ/ε1/2, σ = T M.
(7)

Because of periodicity of the permittivity the effective
potential Uσ (z) and the solution of Eq. (6) can be expanded in
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FIG. 1. Infinite circular dielectric rod with periodically alternat-
ing permittivity ε1 (dark red) and ε2 (light gray).

Bloch series as

Uσ (z) = k2
0

∑
n

Uσ
n eiqnz, q = 2π/h,

ψσ (z,r) =
∑

n

ψnσ (r)ei(qn+β)z, (8)

where β is the Bloch vector. Then substitution of these series
into Eq. (6) gives[

∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
− (qn + β)2

]
ψnσ

+ k2
0

∑
n′

Uσ
n−n′ψn′σ = 0. (9)

Presenting the solution as [35]

ψσ (r,z) =
∑
sn

gsσ csnσ J1(λsσ r)ei(qn+β)z, (10)

we rewrite Eq. (9) in the following form:[−λ2
σ − (qn + β)2

]
cnσ + k2

0

∑
n′

Uσ
n−n′cn′σ = 0, (11)

where the eigenvalues λσ and eigenvectors cσ are found from
the eigenvalue problem

L̂σ cσ = λ2
σ cσ (12)

with the matrix

Lσ
nn′ = −(qn + β)2δnn′ + k2

0U
σ
n−n′ . (13)

Owing to the equality d
dx

J1(x) = J0(x) − 1
x
J1(x) we have

from Eq. (1) for the TM electric field inside the rod

Ez = i

k0
√

ε

∑
sn

λ
s,T M

g
s,T M

c
sn,T M

J0(λ
s,T M

r)ei(qn+β)z. (14)

By the use of the following series:

√
ε =

∑
n

ane
iqnz,

1√
ε

=
∑

n

bne
iqnz, (15)

we obtain for the components of EM fields at r � R

Hφ =
∑
snl

g
s,T M

c
sl,T M

J1(λ
s,T M

r)an−le
i(qn+β)z,

Ez = i

k0

∑
snl

λ
s,T M

g
s,T M

c
sl,T M

J0(λ
s,T M

r)bn−le
i(qn+β)z. (16)

Outside the rod we have

Hφ =
∑

n

hnH
(1)
1 (αnr)ei(qn+β)z,

Ez = i

k0

∑
n

αnhnH
(1)
0 (αnr)ei(qn+β)z, (17)

where

αn =
√

k2
0 − (β + qn)2 (18)

and H
(1)
1 and H

(1)
0 are the Hankel functions. Sewing at the

boundary r = R gives the following dispersion relation [35]:

det(ŜÛ B̂ − D̂V̂ T̂ ) = 0, (19)

where the matrix elements

Snn′ = αnH
(0)
n (αnR)δnn′ ,

Unn′ = an−m, Bnn′ = c
nn′ ,T M

J1(λn,T MR),

Dnn′ = H (1)
n (αnR)δnn′ , Vnn′ = bn−m,

Tnn′ = c
nn′ ,T M

λn,T MJ0(λn,T MR). (20)

Respectively, for the TE modes, we have

Eφ =
∑
sn

g
s,T E

c
sn,T E

J1(λ
n,T E

r)ei(qn+β)z,

Hz = − i

k0

∑
sn

λ
s,T E

g
s,T E

c
sn,T E

J0(λ
s,T E

r)ei(qn+β)z. (21)

Outside the rod we have

Eφ =
∑

n

hnH
(1)
1 (αnr)ei(qn+β)z,

Hz = − i

k0

∑
n

αnhnH
(1)
0 (αnr)ei(qn+β)z, (22)

Repeating the above algebra for the TE mode we obtain instead
of (19) the following dispersion equation:

det(ŜB̂ − D̂T̂ ) = 0, (23)

where the matrix elements for all quantities have the form
given by Eq. (20) with replacement T M → T E.

III. SECTORS m �= 0

Similar to the rod with the homogeneous permittivity for
sectors with m �= 0 the TE and TM solutions are hybridized
by the boundary conditions. Let us start with pure TE mode
which can be expressed through the auxiliary function ψ

T E
:

Eφ = i

m

∂ψT E

∂r
, Er = ψT E

r
,

Hφ = − i

k0r

∂ψT E

∂z
,

Hr = − 1

k0m

∂2ψT E

∂z∂r
,

Hz = 1

k0m

[
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2

]
ψ

T E
. (24)
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Similarly for the TM mode we have the following:

Hφ = i
√

ε

m

∂ψ
T M

∂r
, Hr =

√
εψ

T M

r
,

Eφ = i

k0εr

∂
√

εψ
T M

∂z
,

Er = 1

k0εm

∂
√

ε

∂z

∂ψ
T M

∂r
,

Ez = − 1

k0
√

εm

[
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2

]
ψ

T M
, (25)

where the auxiliary functions obey the equation[
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
+ ∂2

∂z2
+ Uσ (z)

]
ψσ (z,r) = 0. (26)

The series (10) are modified as follows for both types of
the modes:

ψσ (r,z) =
∑
sn

gs,σ csnσ Jm(λs,σ r)ei(qn+β)z. (27)

Note, the eigenvalues λs,σ and eigenvector amplitudes csnσ

coincide with those introduced in the previous section for m =
0. Substituting (27) into Eq. (26) and satisfying the boundary
conditions, after cumbersome algebra we obtain the following
dispersion relation:

im(Â − iB̂ − Î D̂)
−→
ψ

T M
+ k0R(F̂ − iĴ P̂ )

−→
ψ

T E
= 0,

k0R(K̂ − iĴ P̂ )
−→
ψ

T M
− imÎ (Ĉ − D̂)

−→
ψ

T E
= 0, (28)

where according to Eq. (27) the sth component of the vectors−→
ψ σ is given by

(
−→
ψ σ )s = gs,σ Jm(λs,σR). (29)

The elements of matrices in Eq. (28) could be found as

Ans =
∑

l

bn−l(β + ql)csl,T M
,

Bns =
∑

l

dn−lcsl,T M
,

Inm = δnm(β + qn),

FIG. 2. Pattern of the symmetry protected TE BIC with zero
OAM m = 0, frequency k0c = 4.6063, and β = 0 for parameters:
ε1 = 3, ε2 = 1, R = 1.5, and d = 0.5.

FIG. 3. Pattern of the symmetry protected TM BIC with zero
OAM m = 0, frequency k0c = 5.376 52, and β = 0 for parameters:
ε1 = 3, ε2 = 1, R = 1, and d = 0.5.

Jnm = δnmαn

H ′(1)
m (αnR)

H
(1)
m (αnR)

,

Fns = λs,T E
csl,T E

J ′
m(λs,T E

R)

Jm(λs,T E
R)

,

Kns = λsT E

J ′
m(λsT E

R)

Jm(λsT E
R)

∑
l

an−lcsl,T E
,

Pns = λ2
sT E

α2
n

cns,T E
.

Dns = λ2
s

α2
n

∑
l

bn−lcsl,T M
, (30)

where

ε′(z)

2ε3/2(z)
=

∑
n

dne
iqnz. (31)

In order to avoid discontinuities of the derivatives of the
permittivity at the boundary of the disk z = ±1/2, following
Ref. [35], we smooth the boundary by the function

ε(z) = ε2 + 1
2 (ε1 − ε2)[1 − tanh(κ(|z| − 1/2))]

with the control parameter κ . In what follows we take κ = 17.

IV. SYMMETRY CLASSIFICATION OF BICS

Similar to the periodic array of dielectric spheres the BICs
in the single rod with periodically modulated permittivity are
classified by the OAM m due to the rotational symmetry of the
rod and the Bloch vector along the rod due to the translational
symmetry. Moreover, there is the mirror symmetry z → −z.

FIG. 4. Pattern of the nonsymmetry protected TE BIC with m =
0, β = 0, and frequency k0c = 4.637 78 for parameters: ε1 = 5, ε1 =
1, R = 1.3061, and d = 0.5.
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FIG. 5. Pattern of the nonsymmetry protected TM BIC with m =
0, β = 0, and frequency k0c = 4.855 02 for parameters: ε1 = 5, ε2 =
1, R = 0.724 504, and d = 0.5.

That allows us to classify the BICs with β = 0 by parity.
These standing wave BICs are symmetry protected relative
to either the TE diffraction continuum or the TM continuum.
Introduce the operator Ôf (z) = f (−z). Respectively after
the Fourier transformation we have Ôfn = f−n and therefore
Onn′ = δn+n′,0. The operator L̂σ with matrix elements given by
Eq. (13) for β = 0 commutes with the operator Ô. Therefore,
the eigenvectors of the operator L̂σ are classified as even and
odd

csn,σ = ±cs,−n,σ . (32)

Let us rewrite Eq. (28) as follows:

Ĥ1,T M

−→
ψ

T M
+ Ĥ1,T E

−→
ψ

T E
= 0,

Ĥ2,T M

−→
ψ

T M
+ Ĥ2,T E

−→
ψ

T E
= 0, (33)

where matrices Ĥk,σ ,k = 1,2 are of the size (2N + 1) ×
(2N + 1). We arrange the matrices as follows:

Ĥ1,T E
= [

Ĥ e

1,T E
{(2N + 1) × (N + 1)}, Ĥ o

1,T E
{(2N+1) × N}],

Ĥ1,T M
= [

Ĥ e

1,T M
{(2N + 1) × N}, Ĥ o

1,T M
{(2N+1) × (N + 1)}],

FIG. 6. Pattern of the Bloch TE BSIC with m = 0, βc =
2.373 61, and frequency k0c = 3.157 25 for parameters: ε1 = 5, R =
1, and d = 0.5.

FIG. 7. Pattern of the Bloch TM BIC with m = 0, βc =
1.086 76, and frequency k0c = 3.884 23 for parameters: ε1 = 5, R =
1, and d = 0.5.

Ĥ2,T E
= [

Ĥ o

2,T E
{(2N + 1) × (N + 1)}, Ĥ e

2,T E
{(2N+1) × N}],

Ĥ2,T M
= [

Ĥ o

2,T M
{(2N + 1) × N}, Ĥ e

2,T M
{(2N+1) × (N + 1)}],

(34)

where expressions in curly brackets show the size of the
matrices and the matrix elements are even or odd relative to
n → −n:

Ĥ e
nn′,σ = Ĥ e

−nn′,σ , Ĥ o
nn′,σ = −Ĥ o

−nn′,σ . (35)

Substituting relations (34) into Eq. (33) and splitting the
vector

−→
ψ

T E
=

(−→
ψ ↑T E

{N + 1}
−→
ψ ↓T E

{N}

)
,

−→
ψ

T M
=

( −→
ψ ↑T M

{N}
−→
ψ ↓T M

{N + 1}

)
,

FIG. 8. Pattern of the BIC with m = 1 symmetry protected in
respect to the TM radiation continuum and frequency k0c = 5.262 84
for tuned radius R = 1.652 93.
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FIG. 9. Pattern of the BIC with m = 2 symmetry protected in
respect to the TE radiation continuum and frequency k0c = 5.214 18
for tuned radius R = 1.7009.

we obtain the following equations:

Ĥ e

1,T M

−→
ψ ↑T M

+ Ĥ o

1,T M

−→
ψ ↓T M

+ Ĥ e

1,T E

−→
ψ ↑T E

+ Ĥ o

1,T E

−→
ψ ↓T E

= 0,

Ĥ o

2,T M

−→
ψ ↑T M

+ Ĥ e

2,T M

−→
ψ ↓T M

+ Ĥ o

2,T E

−→
ψ ↑T E

+ Ĥ e

2,T E

−→
ψ ↓T E

= 0.

(36)

From Eqs. (35) and (36) it follows that there are two solutions.
The first is

−→
ψ ↓σ = 0 and

−→
ψ ↑σ �= 0 with Hz, Eφ , and Er even

and Ez, Hφ , and Hr odd relative to the inversion z → −z. This
solution gives us a TM symmetry protected BIC. The second
solution

−→
ψ ↑σ = 0 and

−→
ψ ↓σ �= 0 has odd field components

Hz, Eφ , and Er and even Ez, Hφ , and Hr . This solution is a TE
symmetry protected BIC. By solving Eqs. (19), (23), and (28)
numerically we obtain the following set of BICs. In particular,
there are symmetry protected BICs with definite polarization
which occur at arbitrary radius of the rod as follows:

FIG. 10. Pattern of the BIC with m = 5 symmetry protected in
respect to the TE radiation continuum and frequency k0c = 5.143 87
for tuned radius R = 1.875 91.

FIG. 11. Pattern of the BIC with m = 10 symmetry protected in
respect to the TE radiation continuum and frequency k0c = 5.290 52
for tuned radius R = 3.070 46.

(1) Symmetry protected TE BICs with β = 0, m = 0, and
Hz(−z) = −Hz(−z).

(2) Symmetry protected TM BICs with β = 0, m = 0, and
Ez(−z) = −Ez(−z).

FIG. 12. Profile Hz and flows of Pointing vector at z = 0
circulating around the core of the rod in the BICs shown in Fig. 11.

013841-5



EVGENY N. BULGAKOV AND ALMAS F. SADREEV PHYSICAL REVIEW A 96, 013841 (2017)

Examples of these symmetry protected BICs are shown in
Fig. 2 and Fig. 3.

The next class of the BICs with definite polarization are
nonsymmetry protected and require tuning the rod radius R as
follows.

(3) Nonsymmetry protected TE BICs with β = 0, m = 0,
and Hz(−z) = Hz(−z).

(4) Nonsymmetry protected TM BICs with β = 0, m = 0,
and Ez(−z) = Ez(−z).

These BICs are shown in Fig. 4 and Fig. 5.
(5) Bloch BICs with β �= 0, m = 0 with definite polariza-

tion shown in Fig. 6 and Fig. 7. They exist within a wide
interval of the rod radius. Rigorously speaking the Bloch BICs
cannot be considered as guided modes similar to those which
exist below light line in the homogeneous dielectric rod [36].
However, those Bloch quasi-BICs in some small interval of
β around the BIC point have the lifetimes exceeding the
propagation time in the rod of finite length and thus can be
considered as the guided modes above the light line [30].

(6) BICs with orbital angular momentum (OAM) m �= 0
and β = 0 constitute the most interesting class. Whilst in the
array of spheres we managed to find only BICs with m = 1 and
m = 2 [29,33], in the array of disks we found BICs with higher
OAM. However, in contrast to the array of spheres we did not
find any Bloch BICs with m �= 0 and β �= 0. The BICs with
OAM are hybridized with respect to polarization. They are
symmetry protected against decay into the TE/TM continuum
as it was considered above but the radius has to be tuned

for the mode to be decoupled from the TM/TE continuum.
Figures 8–11 show the solutions of Eq. (28) for BICs with
m = 1,2,5,10, and β = 0. All BICs with nonzero OAM were
calculated for ε1 = 3, ε2 = 1, and d = 0.5. One can see from
Figs. 10 and 11 a tendency of light localization at the surface
of the rod with growth of the OAM m limiting to whispering
gallery modes. However, in contrast to the latter the BICs with
OAM exist for any m.

The BIC with OAM is degenerate with respect to the
sign of m. The sign controls the direction of spinning of the
Poynting vector

−→
j = j0

−→
E × −→

H as demonstrated in Fig. 12.
We mention in passing that the spinning trapped modes in an
acoustic cylindrical infinitely long waveguide which contains
rows of large numbers of blades arranged around a central core
was first reported by Duan and McIver [38].

V. LIMITS OF THE BICS FOR d → 1 AND d � 1

Until now we considered trapping of light by a stack of
dielectric disks whose thickness equals half of the period. In
this section we consider what happens with the BIC when the
rod becomes homogeneous and when the disks become very
thin.

The homogeneous rod can support only guided modes with
kz > 0 below the light line. In the latter the Maxwell equations
can be solved by separation of variables for the TE polarization
with zero OAM m = 0 [36],

Hz(r,z) =
⎧⎨⎩eikzzJ0

(√
εk2

0 − k2
z r

)
, r � R,

A eikzzK0
(√

k2
z − k2

0r
) = iπA

2 eikzzH
(1)
0

(√
k2

0 − k2
z r

)
, r > R,

(37)

to result in guided mode, bound state below the light line
kz < k0 after matching at r = R. The numerical result for the
dispersion curve of the lowest TE mode in the homogeneous

0 0.5 1
kz/2π

0

0.5

1

k
0/

2π

FIG. 13. Dispersion curve of the waveguide mode, bound state
below the light line in the homogeneous rod with the radius R = 1.5
and permittivity ε1 = 3.

cylindrical rod is shown in Fig. 13 where the frequency of this
solution k0 = 3.858 at kz = 2π is marked by cross.

As soon as the rod acquires a periodic modulation of the
permittivity ε(z) = ε(z + l), l = 0,±1,±2, . . . the radiation

FIG. 14. Frequency of the TE symmetry protected BIC vs the
thickness of disks in terms of the period h for R = 1.5. Closed circle
notes the BIC shown in Fig. 2 for d = 0.5.
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FIG. 15. Pattern of the TE symmetry protected BIC at d =
0.132,R = 1.5.

continua in the form of the Hankel functions (37) is quantized
kz,n = β + 2πn. In other words, the rod can be viewed as a
one-dimensional cylindrical diffraction lattice [5,28]. Let us
consider the TE BIC symmetry protected against the lowest
diffraction continuum n = 0 above the light line shown by the
dashed line in Fig. 13. Its solution takes the following form for
r > R

Hz(r,z) = − i

k0

∑
n

hnαnH
(1)
0 (αnr) sin(2πnz), (38)

where an are given by Eq. (18). In particular this solution
turns to the symmetry protected TE BIC shown in Fig. 2 if
all hn = 0 except h1. The dependence of the BIC frequency
on the disk thickness is shown in Fig. 14, which limits to the
value k0c = 3.858 which is just the frequency of the solution
of the homogeneous rod (37) marked by cross in Figs. 13 and
14. The solution is very similar to that shown in Fig. 2 but is
more localized.

In the second limit when the disk thickness d decreases the
mean permittivity of the rod drops as well and respectively
the BIC frequency grows as plotted in Fig. 14. The further
decrease of the thickness d brings the BIC frequency to the
bottom of the second diffraction continuum 2π where the BIC
is corrupted by leakage into that continuum. In the zoomed
window in Fig. 14 we show it occurs at d = 0.112 for ε1 = 3.
Thus the thickness of disks is limited for the TE symmetry
protected BIC to exist. The radius of localization of the BIC
behaves as

Rc ≈ 1√
4π2 − k2

0c

. (39)

Figure 15 illustrates the Hz component of the BIC solution near
the bottom of the second diffraction continuum at d = 0.137.
One can see that the radius of localization is tremendously
increased compared to the case d = 0.5 shown in Fig. 2.
According to Eq. (39) the radius of localization of the BIC
goes to infinity when d → 0.112.

VI. SUMMARY

We considered light trapping in a single infinitely long
dielectric rod with periodically modulated permittivity. We
restrict ourselves with stepwise behavior of the permittivity
intermittently changing from ε2 = 1 to ε1 > 1 that makes
the rod equivalent to a stack of dielectric disks. Even in
that particular case owing to the possibility of tuning two-
dimensional parameters, the radius and thickness of the disks,
and the permittivity, we have an abundance of BICs compared
to the array of dielectric spheres [33]. Along with that the
stack of disks preserves the rotational symmetry to give
rise to BICs with definite OAM. However, in contrast to
the array of spheres the rod with periodically modulated
permittivity supports BICs with OAM up to m = 10 for a
sufficiently large radius as shown in Fig. 10. We also found
Bloch BICs with both polarizations, however, only with zero
OAM. Bloch BICs with nonzero OAM have not been found
yet.

In the limit d → 1 when the disks mold into a single
homogeneous rod we have shown that the symmetry protected
BIC with m = 0 transforms into the guided mode below the
light line. In the limit of thin disks d 	 1 the BIC frequency
reaches the bottom of the second diffraction continuum and
is destroyed by leakage into that continuum. The problem
of BICs can be also solved for sinusoidal behavior ε(z) =
ε0 + λ sin 2πz.
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