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We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full
classification of BICs in the above system is provided, including the modes propagating along the axes of the
rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown
that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with
the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the
concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the
winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014)]. It is found that the evolution
of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by
the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is
shown that the topological properties of the BICs can be extracted from transmission spectra when the system is
illuminated by a plane wave of circular polarization.
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I. INTRODUCTION

The spectrum of an optical system coupled to radiation
channels is generally described by leaky zones, i.e., disper-
sion branches of the complex resonant eigenfrequencies of
Maxwell’s operator with radiation boundary conditions in the
far zone. With a certain set of parameters the leaky zones
may host exceptional points in which the imaginary part of
the resonant eigenfrequency equals zero and the resonant state
is a localized solution decoupled from the outgoing waves
in the ambient medium. Such localized solutions are known
as bound states in the continuum (BICs) [1]. Recently, the
immense progress in handling photonic crystals encouraged
extensive studies on BICs in various periodic structures, both
experimental [2–8] and theoretical [9–20]. These studies are
predominantly motivated by potential applications to resonant
enhancement [21–24], lasing [25,26], and filtering of light
[27,28].

One remarkable property of BICs is their robustness against
small perturbations, given that the symmetry of the supporting
structure is preserved [29–31]. This robustness indicates the
presence of a topological charge that stabilizes the BICs
against perturbations [29,30]. In 2014 Bo Zhen et al. [29]
demonstrated that BICs in dielectric slabs are vortex centers of
the polarization directions of far-field radiation in momentum
space. The vortices in two-dimensional vector fields are char-
acterized by topological charge, quantized winding angle of the
field around the vortex core [32]. Since the topological charge
must be preserved, the evolution, creation, and annihilation of
BICs is controlled by topological charge prescribed to the leaky
zones supporting the BICs. The topological properties of BICs
have recently attracted a great deal of attention [8,30,33–35].
In particular, topologically protected polarization conversion
was theoretically predicted in Ref. [35], while the vortices in
momentum space were experimentally observed in Ref. [34].

In this paper we revisit the spectral properties of periodic
arrays of dielectric rods to address the polarization singularities
of the leaky zones supporting optical BICs. The BICs in
arrays of dielectric rods of circular cross section were first

theoretically predicted in Ref. [36]. Later on, an extensive
numerical study of BICs in the above system was undertaken
with the BIC existence domains identified [37]. Besides
its simplicity, one of the advantages of the system under
scrutiny is the opportunity to solve the scattering problem
with the cylindrical harmonics expansion method [38,39]
which provides a numerically efficient approach to finding
reflection and transmission spectra and electromagnetic (EM)
field patterns for full wave three-dimensional (3D) scattering
problem.

The article is organized as follows: In Sec. II we describe
the setup, review the scattering theory for periodic arrays of
dielectric rods, and describe a numerical method for finding
transmission or reflection spectrum to be used for computing
the BICs. In Sec. III we collect our numerical results on
BICs in arrays of dielectric rods. In Sec. IV we consider
the polarization properties of the leaky bands, demonstrating
that the far-field radiation is in general elliptically polarized
with the polarization ellipses collapsing in the vicinity of the
BICs. Then, following Ref. [29], the BICs are described as
polarization singularities, i.e., vortices in momentum space.
The topological classification of the BICs is also provided. In
Sec. V we consider the evolution of BICs under variation of
geometric parameters of the system to show that creation or
annihilation of BICs obeys the rule of the topological charge
conservation. In Sec. VI we demonstrate that the topological
charge can be detected in the far-field measurements if the
system is illuminated by a plane waves whose wave vector
bypasses the point of the polarization singularity along a
certain closed contour in momentum space. The summary of
our findings is provided in Sec. VII.

II. INTERACTION MATRIX OF SCATTERING SYSTEM

We consider an array of dielectric cylinders of radius R

and permittivity ε in air. The cylinders are infinitely long in
the z direction, parallel to each other, and periodically spaced
with distance a along the x axis on x0y plane as shown in
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FIG. 1. Periodic array of dielectric cylinders. (a) Three-
dimensional plot of the array. (b) The array in x0y plane. (c) Number
of scattering channels in the space of Bloch vector β and χ . The
yellow shaded area is the sector of the parametric space where only
two scattering channels are open.

Figs. 1(a) and 1(b). The far-field y → ±∞ scattering channels
are transverse magnetic (TM) waves with the magnetic vector
orthogonal to the z axis, and transverse electric (TE) waves
with electric vector orthogonal to the z axis. The far-field TM
scattering channels can be written as

ET M = 1
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(−kzβ

χ
,
−kzky

χ
,χ

)
ei(βx+ky |y|+kzz),

(1)
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,0

)
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while for TE modes we have
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,
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)
ei(βx+ky |y|+kzz),

where k0 is the vacuum wave number (frequency), ky,kz are
the components of the wave vector along the y,z axes, β is the

Bloch wave number along the x axis, and

χ2 = k2
0 − k2

z . (3)

Notice that

E†
T EET M = H†

T EHT M = 0,

E†
T MET M = H†

T MHT M = 1, (4)

E†
T EET E = H†

T EHT E = 1.

Due to the periodicity, the spectrum of the scattering channels
obeys the following dispersion relationship:

k2
0 = k2

z + k2
y + (β + 2πl)2, l = 0,±1,±2, . . . . (5)

Throughout the paper we will stay in the range

aβ < aχ < 2π − aβ,

where only two (one TE and one TM) scattering channels are
open, as shown in Fig. 1(c).

Let us now review the scattering theory for linear arrays
of dielectric rods. We will follow the approach by Ref. [38].
The key idea of the approach is to expresses the scattering
matrix of an infinite periodic array through that of a single
rod. The scattering solution for a single rod is well known in
the literature with the key figure of merit being matrix T̂ (m)
that links the amplitudes of the impinging TM or TE waves em

or hm to the amplitudes of the outgoing TM or TE waves am

or bm with orbital angular momentum m:[
am

bm

]
= T̂ (m)

[
em

hm

]
. (6)

The EM field outside the rods is given by

Ez = eikzz

∞∑
m=−∞

[
amH (1)

m (χr) + emJm(χr)
]
eimϕ (7)

for TM-waves, and

Hz = eikzz

∞∑
m=−∞

[
bmH (1)

m (χr) + hmJm(χr)
]
eimϕ (8)

for TE-waves, where Jm(χr) and H (1)
m (χr) are Bessel and

Hankel functions, respectively. Now assume that the rod is
illuminated from the far zone by TM or TE plane waves (12)
with wave vector k = (β,ky,kz). To match the incident and the
outgoing fields, the incident wave should be expanded over the
Bessel functions. For the TM waves we have

em = e(in)(−i)me−imϕin , hm = 0, (9)

while for TE waves the expansion coefficients are the follow-
ing:

em = 0, hm = h(in)(−i)me−imϕin , (10)

with ϕin being the azimuthal angle of incidence in the x0y

plane,

tan ϕin = (ky/β),

and e(in), hm = h(in) as the amplitudes of the incident TM or
TE waves.
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For scattering by a single rod matrix T̂m can be written as

T̂ (m) =
[
τe,e(m), τe,h(m)
τh,e(m), τh,h(m)

]
. (11)

The coefficients are obtained in the closed form as
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with
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√
εk2
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z . (13)

In the case of a periodic array the scattering problem can
be reduced to the scattering by a single cylinder [38] through
a modified set of equations{

(̂1 − τ̂e,eL̂
(x))a − τ̂e,hL̂

(x)b = τ̂e,ee + τ̂e,hh
τ̂e,hL̂

(x)a + (̂1 − τ̂h,hL̂
(x))b = −τ̂e,he + τ̂h,hh,

(14)

where a, b, e, and h are the vectors of coefficients am, bm,
em, and hm; τ̂p,p′ , p = e,h are diagonal matrices τ̂p,p′ =
diag(τp,p′ ); and L̂(x) is the matrix which accounts for multiple
scattering events between the rods in the form of an infinite
lattice sum along the x axis,

L
(x)
m′,m =

∞∑
l=0

H
(1)
m′−m(χR)[eilβR + (−1)m

′−me−ilβR]. (15)

Equation (14) can be rewritten in a compact form,

L̂c = f, (16)

where c = [a,b], f = [e,h], and

L̂ = T̂ −1

{̂
1 − τ̂e,eL̂

(x) −τ̂e,hL̂
(x)

τ̂e,hL̂
(x) 1̂ − τ̂h,hL̂

(x)

}
, (17)

with

T̂ =
{

τ̂e,e τ̂e,h

−τ̂e,h τ̂h,h

}
. (18)

In what follows L̂ is referred to as the interaction matrix of the
scattering system.

TABLE I. BICs in arrays of dielectric rods at ε = 15. The mode
profiles of the BICs are shown in Fig. 2.

R/a akz aβ ak0 q

BIC 1 0.449 0 0 3.5183 −1
BIC 2 0.44411 0 0 2.8299 0
BIC 3 0.43 0 0 3.602 +1
BIC 4 0.47 0 0 3.4502 +1
BIC 5 0.45 0 0.48099 3.4718 +1
BIC 6 0.439 0 0.25858 2.8659 +1
BIC 7 0.3 0 1.0980 3.1952 −1
BIC 8 0.34 0 0.478 2.7802 +1
BIC 9 0.4505 0.56795 0 3.53 +1
BIC 10 0.439 1.2871 0 2.8852 −1
BIC 11 0.3 1.1904 0.96714 3.1966 +1

The solution of the scattering problem can found from
Eq. (16). Finally, for reflection or transmission amplitudes
of plane waves in the TM and TE scattering channels e(r,t),
h(r,t) we have

e(r) = u†
(+)a, e(t) = e(in) + u†

(−)a, (19)

h(r) = u†
(+)b, h(t) = h(in) + u†

(−)b,

where

u(±) =
[

2(−i)m−1

χa sin (ϕin)
e∓imϕin

]
. (20)

III. BOUND STATES IN CONTINUUM

The BICs are source-free solutions of Eq. (16) which exist
without the array being illuminated from the far zone. That
yields a simple condition for BICs:

det[L̂(k0,kz,β)] = 0. (21)

In general, for given kz, β the eigenfrequencies k0 obtained
from Eq. (21) through analytic continuation are complex.
Thus, in search for BICs one has to trace the resonant
eigenfrequencies to the point Im{k0} = 0. In this section we
present the numerical results on BICs for arbitrary kz, β in the
range aβ < aχ < 2π − aβ for high-contrast dielectric rods,
ε = 15. The results are collected in Table I. The mode profiles
of the BICs are shown in Fig. 2.

In regard to their position in momentum space the BICs can
be split into four categories:

(i) In-	 BICs with kz = 0, β = 0. Such standing-wave
BICs were first reported in Ref. [36]. In Table I, BICs 1–4
fall within this category. Notice the difference between BIC 1
and BIC 2 in Fig. 2. With the radiation channels being simply
plane waves at β = 0, kz = 0, it is evident that BIC 1 is the
so-called symmetry protected bound state [36], whose mode
shape is symmetrically mismatched with the mode shape of
the radiation channels. Thus, BIC 1 is not “allowed” to radiate
into the ambient medium. In contract, BIC 2 is not protected
by symmetry. Numerical simulations show that finding the
standing-wave BICs of the latter type is a complicated task
since they only exist at a specific ratio R/a [36].

(ii) Off-	 BICs with kz = 0, β �= 0. These states known
as Bloch BICs [36] are localized waves traveling along the
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FIG. 2. Mode profiles of the BICs from Table I in the x0y plane.
The EM field is visualized as the real part of the z component of the
electric field Ez.

array of rods in the x direction. By noticing that the system
is symmetric with respect to the inversion of the x axis one
can conclude that each Bloch BICs is twofold degenerate and,
therefore, can be decomposed into two waves traveling in the
opposite directions. The examples from Table I and Fig. 1 are
BIC 5–8.

(iii) Off-	 BICs with kz �= 0, β = 0. These BICs are
traveling waves propagating along the axes of the rods. Again
due to the symmetry these BICs are twofold degenerate. An
examples of such BICs from Table I and Fig. 1 are BIC 9 and
BIC 10. Notice the resemblance between BIC 1 and BIC 9 as
well as between BIC 2 and BIC 10. This will be explained
later on in the next section. It should be pointed out, although,
that unlike BICs 1 and 2, which are TM standing waves, BICs
9 and 10 have nonzero component of magnetic field Hz (not
shown here for brevity).

(iv) Off-	 BICs with kz �= 0, β �= 0. Such bidirectional
BICs propagating both along the axes of the rods and the axis
of the array to the best of our knowledge have never been
reported in literature. These BICs are fourfold degenerate in
a view of x,z-axis inversions. BIC 11 is the example of a
bidirectional BIC from Table I and Fig. 1.

In summary to this section we point out that the values
of parameters collected in Table I are not unique. Under
small variations of R all the BICs, with exception of BIC 2,
persist, merely changing their eigenfrequency and/or position

in momentum space. Henceforth, we will use the same index
for the BICs from each family generated by a continuous
change of parameters.

IV. POLARIZATION SINGULARITIES
AND TOPOLOGICAL CHARGE

The BICs are exceptional points in momentum space kz, β.
Once the wave vector is detuned from the exceptional point
the BICs become leaky modes exponentially diverging in the
far zone with Im{k0} < 0. Considering the evolution of BICs
one has to secure that the BICs in question are supported by
the same dispersion branch. A detailed numerical examination
shows that BICs 2, 6, and 10 sit on the same dispersion branch,
while BICs 1, 3, 4, 5, and 9 share a different dispersion branch
of their own—hence the resemblance of the mode profiles
shown in Fig. 1. The dependance of the imaginary part of
the resonant eigenfrequency on β and kz for the first zone
supporting BICs is shown in Fig. 3(a) for R/a = 0.43. In
Fig. 3(a) one can see three pronounced minima corresponding
to the BICs.

The far-field profile of the leaky modes can be written as
an expansion over the channel function (1) and (2):

E = eET M + hET E, (22)

where ky in Eqs. (1) and (2) is now complex valued according
to Eq. (5). Following Ref. [29] we project the far-field electric
vector onto the x0z plane. The electric field in the x0z plane
is a two-component vector

Ē = axx + azz. (23)

By rotating the coordinates about the y axis,

z′ = cos (ϑ)z − sin (ϑ)x, (24)

x ′ = sin (ϑ)z + cos (ϑ)z, (25)

one can transform the expansion coefficients ax , az to the
canonical form [40]

az′

ax ′
= iκ, (26)

where 0 � κ � 1 is a real number, then the z′ axis is aligned
the main axis of the polarization ellipse. In Fig. 3(a) we plot κ

across the leaky zone shown in Fig. 3(b). One can see that the
far-field polarization is near linear in the domain of interest.

Since the polarization direction are uniquely specified
by angle ϑ , we, in analogy with Ref. [29], can define the
topological charge carried by the BIC as

q = 1

2π

∮
C

dk̄ · ∇k̄ϑ
(
k̄
)
, (27)

where k̄ = [β,kz], C is a closed simple path encircling the
BIC in the counterclockwise direction in momentum space.
Physically q defines how many times the polarization axis
winds about the BIC along the loop C. The charge of the
BICs is presented in Table I. Quite remarkably among the
multiple charged BICs we found that BIC 2 is uncharged.
In Fig. 3(c)–3(e) we show the polarization directions in the
vicinity of BICs with q = −1,0,+1. The global structure of the
polarization directions of the leaky mode is shown in Fig. 3(f).
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FIG. 3. (a) Dimensionless imaginary part of the eigenfrequency
aIm{k0} for the leaky zone supporting BIC 6 and BIC 10, R/a = 0.43.
(b) Parameter κ in the same axes, R/a = 0.43. (c)–(e) Polarization
direction in the vicinity of BICs 10, 6, and 2 from Table I, respectively.
(f) Polarization directions in the same axis as in panel (a), R/a =
0.43.

In the points of singularity the far-field polarization di-
rection is undefined. Hence, we can apply the arguments put
forward in Ref. [29] and state that the corresponding resonant
state cannot radiate because there is no way to assign a far-field
polarization. In other words, the polarization singularity leads
to a BIC. In the same manner the robustness of the BICs could
be explained by conservation of the topological charge. One
can also see now that BIC 2 is unstable since it carries no
charge.

To guarantee the conservation of the topological charge
it must be secured that the polarization direction is uniquely
defined in all points except the BICs. The proposed definition
of the topological charge becomes inconsistent only if the
polarization ellipse evolves into a circle. It is a challenging

FIG. 4. Annihilation scenario for the dispersion branch shown in
Fig. 3. Large green arrows show the direction BICs 6, 10 migrate in
with increase of R.

mathematical task to prove that the far-field polarization is
never circular for a given leaky zone. We, however, can argue
that at least in the vicinity of the kz,β axis the far-field
polarization directions can be consistently defined for the
whole Brillouin zone. Since the system possesses the mirror
symmetry with respect to both the x0y and y0z planes, the
leaky modes with kz �= 0, β �= 0 are fourfold degenerate.
On approaching any of the symmetry axes of the Brillouin
zone (either kz = 0, or β = 0), two degenerate leaky modes
gradually merge one with the other. One the other hand, those
modes are linked by the mirror operation which changes the
handedness of the far-field polarization. It means that for
kz = 0, and β = 0 the polarization can only be linear and
the far-field polarization pattern is always uniquely defined in
the vicinity of the symmetry axes of the Brillouin zone.

V. EVOLUTION OF BOUND STATES IN THE CONTINUUM

In this section we numerically test the stability of the
topologically charged BICs. The total topological charge
prescribe to a certain leaky zone is a conserved quantity;
therefore, as long as we stay in sector N = 2 in Fig. 1, the
charged BICs cannot be destroyed under small variation of
parameters, but rather migrate to another point in momentum
space. The BICs can only emerge or disappear in pairs with the
opposite topological charge [29,30]. In this section we describe
the evolution of the BICs under variation of the radius of the
rods R.

A. In-� annihilation

Let us first consider the lowest frequency dispersion branch
that hosts BICs 2, 6, and 10 shown in Fig. 3. Starting from
R/a = 0.43, we gradually increased the radius of the rods.
It is found that both BICs 6 and 10 migrate towards the
	 point and eventually coalesce in BIC 2 which, as seen
from Table I, carries no charge. With a further increase of
R the BICs disappears from the system, i.e., four BICs have
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FIG. 5. Imaginary part of the eigenfrequency −Im{k0} versus kz

(upper panel), R = 0.4390a (solid blue line), R = 0.44411a (dashed
red line); and versus β (lower panel), R = 0.44a (solid blue line),
R = 0.44411a (dashed red line).

been annihilated at the 	 point. In a view of the topological
charge this picture is illustrated in Fig. 4. Let us consider the
dependance of the imaginary part of the eigenfrequency Im{k0}
in more detail. As was demonstrated in Ref. [30], at the point
of the total annihilation the dependance is approximated as

Im{k0} ∼ (k − kBIC)2(k + kBIC)2, (28)

where k can be either kz or β. As a consequence of this we
obtain a strong resonance whose Q factor diverges as k4 upon
approaching the 	 point [41]. The dependance of the imaginary
part of the resonant eigenfrequency at both annihilation and
near-annihilation points is shown in Fig. 5. Again before
annihilation one can clearly see two minima along the β and
kz axes. At the annihilation points the minima merge with the
imaginary-part asymptotics given by Eq. (28).

B. In-� transformation

The second scenario is inherent to the higher-frequency
dispersion branch with the total charge qtot = +3. Below the
first critical value of the radius of the rods R1 = 0.440a we
found three BICs with q = +1 and β = 0, two of them being
propagating modes kz �= 0 BIC 9, and one standing wave kz =
0 BIC 3. As before we examined the behavior of the BICs with
increase of R. The simulations showed that when R achieves
the first critical value R1, the standing-wave BIC undergoes a
transformation with two Bloch BIC 5 with q = +1 emerging at
the 	 point, while the in-	 standing-wave BIC changes the sign

FIG. 6. In-	 transformation of the topological charge for disper-
sion branch q = 3. (a) Three BICs at R below R1 = 0.440a. (b) Bloch
BICs emerge at R = R1 and migrate away from the 	 point, while
BICs migrate towards annihilation. (c) Three BICs with q = 1 after
annihilation at the 	 point.

of the topological charge to q = −1 and becomes BIC 1. With a
further increase of R two Bloch BIC 5 depart from the 	 point;
meanwhile, BIC 9 approaches the 	 point along the kz axis. At
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FIG. 7. Imaginary part of the eigenfrequency −Im{k0} versus kz

(upper panel), R = 0.4490a (solid blue line), R = 0.4512a (dashed
red line); and versus β (lower panel), R = 0.4500a (solid blue line),
R = 0.4490a (dashed red line).

the second critical radius R2 = 0.4512a BIC 9 coalesces with
the standing-wave BIC 1 with only one standing-wave BIC
4 surviving the annihilation. The topological charge is again
preserved since for BIC 4 we have q = +1. We mention in
passing that the second step in this scenario was previously
described in Ref. [29]. The above scenario of the topological
charge transformation is illustrated in Fig. 6.

The dependance of the imaginary part of the resonant
eigenfrequency on kz (upper panel) and β (lower panel) at both
critical points is shown in Fig. 7. For R < R1 we have three
minima on the kz axis which merge into a single minimum in
the annihilation point. For R > R2 the same picture is seen on
the β axis.

C. Off-� annihilation

Finally, the third scenario describes the annihilation of
the bidirectional BICs. From the topological viewpoint this
scenario is identical to the in-	 annihilation detailed in the
previous section. Here, we restrict ourselves to presenting the
generic picture in Fig. 8. Notice that the annihilation now
occurs at the off-	 point.

In summary, we have found that in all evolution scenarios
the BICs sitting on the symmetry axes of the Brillouin zone
are never destroyed, except through the total annihilation
of the topological charge at the 	 point. This is consistent with
the unique polarization picture in the vicinity of the symmetry
axes described in the previous section. One may argue that in

FIG. 8. Off-	 annihilation of bidirectional BICs. The annihilation
occurs at R/a = 0.321.

the course of evolution a BIC can depart from the symmetry
axis to a sector of momentum space where the absence of
circular polarization is not guaranteed. This, of course, can
happen in the off-	 creation or annihilation scenario. However,
bidirectional BICs can only appear in pairs with the same
topological charge because they are related by a point-group
symmetry [29]. Thus, the third BIC of the opposite charge
is always pinned to the symmetry axis. Therefore, we can
conclude that all charged BICs sitting on the symmetry axes
of the Brillouin zone are stable.

VI. FAR-FIELD SIGNATURES
OF TOPOLOGICAL CHARGE

Let us now test whether the topological charge of the
BICs can be detected in a physical experiment. To do that we
computed transmission and reflection spectra of the array along
the loop encircling topologically charged BIC 1 in momentum
space kz,β in the counterclockwise direction. In each step
along the loop the incident wave remains circularly polarized.
The wave vector of the incident wave as chosen according to
the following formulas:

β = δ cos (α), (29)

kz = δ sin (α), (30)

with aδ = 0.15. In the vicinity of a BIC the scattering
amplitudes are known to display a narrow Fano feature that
collapses upon approaching the BIC [36,42]. A typical picture
of the Fano resonance of the total transmittance |et |2 + |ht |2
in the vicinity of BIC is shown in Fig. 9(a) for α = 0. To stay
definite in each step along the loop we tuned the frequency
of the incident wave to the minimum of the Fano resonance.
The evolution of the polarization ellipse of the transmitted
radiation about BIC 1 is shown in Fig. 9(b) in the axes
defined by the far-field scattering channels (2) and (1), One
can see in Fig. 9(b) that the ellipse of polarization rotates
about the singularity as prescribed by the topological charge.
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FIG. 9. Signature of topological charge in scattering by periodic
arrays: (a) Fano feature in the total transmittance. (b) Polarization
ellipses of the transmitted radiation in a loop about BIC 1. (c) Twist
of polarization direction of the transmitted radiation in a loop about
BIC 1.

That phenomenon could be qualitatively understood through
a resonant excitation of the long-lived leaky mode associated
with BIC 1. Once the leaky mode is excited, it suppresses
the component of the background transmitted wave with the
same polarization through destructive interference. Thus, the

orientation of the suppressed component is aligned with the
polarization direction of the leaky mode. We mention in
passing that recently the resonant mode expansion has become
a powerful computational tool for finding the reflection and
transmission spectra of optical systems [43]. Presumably,
the polarization picture could be explained in a view of
the above reference. This, however, falls out of the scope
of the present paper. Finally, to underscore the topological
nature of the polarization singularity in Fig. 9(c) we present
a three-dimensional ribbon plot of the polarization orientation
along the loop C. One can clearly see a 2π twist, which
cannot be removed unless C encircles a single topologically
protected BIC.

VII. CONCLUSION

We have recovered the full picture of optical bound states
in the radiation continuum (BICs) in high-contrast dielectric
periodic arrays of dielectric rods. In particular, we found
BICs propagating along the axes of the rods, and bidirectional
BICs propagating along the axes of the rods and the axis of
periodicity. It is shown that the BICs are exceptional points in
the dispersion diagrams of leaky modes decaying into far-field
radiation channels. In each point in momentum space those
modes are characterized by the polarization ellipse of the
far-field radiation. We demonstrated that, upon approaching
a BIC in momentum space, the ellipses collapse so that the
far-field radiation is nearly linearly polarized in the immediate
vicinity of a BIC. This allowed us to apply the concept of
polarization singularities developed in Ref. [29]. It is shown
that the BICs carry a topological charge and, therefore, are
robust against variations of parameters of the structure, given
that the structure symmetry and periodicity are preserved.
Thus, the concept of BICs as polarization singularities has
been extended to the case of elliptic polarization. The behavior
of BICs under variation of the radius of the rods has been
studied numerically. It is found that evolution, creation, and
annihilation of BICs obey the rule of charge conservation.
Three scenarios of BICs annihilation are described. Finally,
we demonstrated that the signature of the topological charge
can be observed in the far field as the polarization singularities
in the transmitted radiation, if the structure is illuminated
by a circularly polarized plane wave. The finding presented
here pave the way for engineering all-dielectric setups with
beforehand desired polarization properties and high sensitivity
to the orientation of the incident field.
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