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Self-consistent mapping: Effect of local environment on formation of magnetic moment in α-FeSi2
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The Hohenberg-Kohn theorem establishes a basis for mapping the exact energy functional to a model one
provided that their charge densities coincide. We suggest to use a mapping in a similar spirit, but here the
parameters of the formulated multiorbital model should minimize the difference between the self-consistent
charge and spin densities. The analysis of the model allows for detailed understanding of the role played by
different parameters of the model in the physics of interest. After finding the areas of interest in the phase
diagram of the model, we return to the ab initio calculations and check if the effects discovered are confirmed
or not. Because of the last controlling step, we call this approach hybrid self-consistent mapping approach
(HSCMA). As an example of the approach we present a study of the effect of silicon atoms substitution by
the iron atoms and vice versa on the magnetic properties in the iron silicide α-FeSi2. We find that while the
stoichiometric α-FeSi2 is nonmagnetic, the substitutions generate different magnetic structures depending on the
type of local environment of the substitutional Fe atoms. Besides, contrary to the commonly accepted statement
that the destruction of the magnetic moment is controlled only by the number of Fe-Si nearest neighbors, we
find that actually it is controlled by the Fe-Fe next-nearest-neighbor hopping parameter. This finding led us
to the counterintuitive conclusion: an increase of Si concentration in Fe1−xSi2+x ordered alloys may lead to
ferromagnetism. The calculation within GGA-to-DFT confirms this conclusion.
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I. INTRODUCTION

A method of mapping first-principles density functional
theory (DFT) calculations to an effective Heisenberg model
for the theoretical study of the magnetic properties of solids
was developed in a series of works [1]. The role played by
the electronic subsystem in this approach is reduced to the
formation of the lowest-order pairwise effective exchange
interaction of classical spins. In order to have an opportunity to
use the well-developed many-body perturbation theory and to
obtain a physical picture of the formation of the magnetic
and, especially, the nonmagnetic properties of the matter
by the electronic subsystem, one either has to use Hedin’s
GW approximation [2] or a detailed model that includes
all atoms, their key orbitals, the symmetry of the lattice in
question, hopping parameters, and Coulomb interactions. The
GW approximation (even without the vertex corrections) is
extremely time and computer-resources consuming. For this
reason, the route with more simple model Hamiltonians seems
to be more efficient for highlighting the physics. Besides,
an application of LDA-to-DFT approach is also restricted.
Since the exact form of the exchange-correlation functional
�xc is unknown, a big variety of �̃xc has been suggested.
Unfortunately, the complexity of the strict equation [3,4] for
the exchange-correlation potential prevents the derivation of
these approximate functionals �̃xc (except of the simple cases
discussed in Ref. [4]); the small parameter of the theory is
unknown or absent. For this reason and due to the nonlinearity
of the problem, it is very difficult to construct a regular
perturbation theory for an analysis of the reasons, why this
or that functional �̃xc does not work for the description
of some materials or properties. Nevertheless, LDA-based
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calculations often give a remarkably good description of the
ground-state properties. Therefore a model, which would (i)
allow us to use a regular perturbation theory and (ii) be able
to describe the same material with an accuracy reasonably
close to the one obtained within an ab initio calculation, is
highly desirable indeed. There exist also other reasons for
constructing realistic models. In spite of the fact that the
Hohenberg-Kohn theorem provides a solid ground for the
description of the ground-state properties only, namely, the full
energy and the charge density, the intermediate-step auxiliary
Kohn-Sham bands very often are used for the interpretation of
phenomena that arise due to excitations. Although sometimes
this leads to results that describe experiment, the theoretical
grounds for it remain unclear. An investigation of excitations
within a model approach does not create such questions.

A use of a model, however, raises the question: to what
extent this or that model is applicable for the description
of a concrete material? In general, each model has its phase
diagram in the multidimensional space of its parameters, even
for an adequate model and approximation.

Probably, only one point in this multidimensional parameter
space of the model corresponds to each real material. The
largest parameters of a model intended for the description
of d or f materials are intratomic interactions. A change
of the external conditions for the material, such as applying
a pressure, changing the temperature, or placing a film of
the material on some substrate, involves energies of a much
smaller scale. Therefore these changes will move the point
from the initial position only slightly.

So, a principle is needed for finding this region. We suggest
that the requirement that the charge densities obtained in these
two approaches should be as close to each other as possible can
be taken as an underlying principle. The principle of equality
of the model ρ[x; vxc] and “genuine” ρ[x; Σ] charge densities
has been used by Sham and Schlüter for the derivation of
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the equation for the calculation of the exchange-correlation
potential vxc via the known self-energy Σ (see Ref. [4],
Eq. (10); in the form adopted for the case of atomic-orbital
basis, set see Ref. [5], Eq. (41)). In the symbolic form, this
equation is (x is a real-space coordinate):

ρ[x; Σ] = ρ[x; vxc]. (1)

Unfortunately, it is not known which approximation has to
be used for the self-energy Σ of the single-electron Green’s
function G in order to reproduce even the routinely used
exchange-correlation potentials vxc. The calculations of vxc

for the approximate expressions for the self-energy Σ also are
not known (except discussed in Ref. [4]). For this reason, we
suggest to use an alternative route. We can take an expression
for the self-energy Σ(A) calculated for the model with the set
of the parameters A and try to use this set as fitting parameters.
They can be found, e.g., from the minimization of the function

ϒ(x; A) = (ρ[x; Σ(A)] − ρ[x; vxc])2. (2)

This step distinguishes our approach from those suggested
earlier [1,6,7]. The construction of the hopping parameters for
certain symmetries has been described by Slater and Koster [8].

Then, having obtained some prediction within the model
calculations, we return to the first-principles ones in order to
check the validity of the model prediction. This is the essence
of the suggested here hybrid self-consistent mapping approach
(HSCMA). It may seem that such an approach should work
only within the validity domain of the chosen approximation
for the DFT (in our case, GGA-to-DFT approximation).
However, the largest contribution to the energy of the system
and the formation of the local charge density ρDFT(r) comes
from the Hartree part of the interaction, which is treated in
DFT pretty well. That is why we want to start at least from
a point in the model parameter space that provides ρmodel(r)
close to ρDFT(r). Further, the model with these parameters
can be used for studying phenomena beyond the reach of
DFT, e.g., collective excitations, or temperature effects. Then
the question arises why we require that, namely, that the
self-consistent charge densities (magnetic moments) in the
model and DFT should be close to each other?

The matter is that we want to know the bare parameters
of the model in order to be able to use the diagrammatic
methods for dressing them and to avoid the double-counting
problem. This approach is attractive also because it does not
take any fitting parameters from experiment and, therefore,
can be considered as a first-principles approach.

The HSCMA is applied here for the analysis of the magnetic
properties of α-FeSi2–based ordered alloys. The ferromagnet/
semiconductor/ferromagnet nanostructures attracted much at-
tention soon after the discovery of the giant magnetoresistivity
in the ferromagnet/nonmagnetic-metal/ferromagnet structures
by A. Fert and P. Grunberg. The idea to use a semiconducting
spacer instead of a metallic one is potentially very appealing
for spintronics. Silicon is the most used semiconductor, so
Fe/Si/Fe epitaxial structures reveal a strong antiferromagnetic
interlayer coupling and its interplay with the transport proper-
ties has been studied by a number of groups. A very important
difference with metallic spacers is the formation of a variety
of Fe-Si phases in the interface [9–12]. To this day, several
iron-silicide structures have been reported. At the Fe-rich side

of the binary phase diagram, metallic as well as ferromagnetic
Fe3Si (DO3 structure) [13,14] have already been established.
An unknown metallic, ferromagnetic at room temperature
phase, Fe5Si3, has been recently obtained in the form of a
nanowire [15] and thin film [15]. The Si-rich side of the phase
diagram contains several variants of a disilicide stoichiometric
compound, such as the high-temperature tetragonal metallic
α-FeSi2 phase [16], with applications as an electrode or an
interconnect material [17,18], and the orthorhombic semicon-
ducting β-FeSi2 phase [19], which due to its direct band gap
is an interesting candidate for thermoelectric, photovoltaic,
and optoelectronic devices [20]. While the room-temperature
stable β phase is well-studied, the tetragonal α phase did not
attract great interest until recently. This is because this phase
is metastable and exists only at temperatures above 950 oC
[16]. However, the iron silicides, which do not exist in bulk,
can be stabilized as films. In Refs. [17,21–24], a successful
fabrication of thin films α-FeSi2 was reported. Also, while the
magnetic order is not observed in bulk stoichiometric disilicide
α-FeSi2, ferromagnetism was found [24] in the metastable
phase α-FeSi2, which was stabilized in an epitaxial film grown
on a silicon substrate. The authors of Refs. [18,25] reported
the magnetic moments of Fe atoms in α-FeSi2 nanoislands
and nanostripes on a Si (111) substrate to be μ = 1.8μB

[18] and μ = 3.3μB, respectively [25]. These experimental
achievements offered a good prospect for the integration of
FeSi-based magnetic devices into silicon technology, and,
therefore, demand a detailed understanding of the physics of
the magnetic moment formation in these compounds.

Traditionally, the appearance of the magnetic structure in
Fe-Si alloys is related to the increase of the concentration
of Fe atoms. So, the authors of Ref. [24] explain the unusual
ferromagnetism in the epitaxial film α-FeSi2 by the appearance
of substitutional Fe atoms on the Si sublattice. According to the
ab initio calculation in the framework of the coherent potential
approximation (CPA) performed in Ref. [24], the ferromag-
netism in thin films α-FeSi2 appears with the substitution of a
small percent of silicon atoms by iron atoms. Particularly,
when the concentration of substitution Fe atoms reaches
3.3%, these Fe atoms acquire a magnetic moment μ = 2.4μB.
A similar explanation of anomalously high total magnetic
moment was suggested also by the authors of Refs. [18,25].
A decrease of the magnetic moments of Fe atoms with the
increase of the Si concentration was observed experimentally
in the iron silicides FexSi1+x and discussed in the framework
of the phenomenological local environment models [26–28].
It was noticed that the change of the magnetic moments of Fe
atoms in iron silicides, FexSi1+x , rather depends on the number
of Si atoms in the nearest local environment of iron and not on
the concentration of Si atoms. In our work [29], the mechanism
of magnetic moment formation in Fe3Si is analyzed in the
framework of the multiorbital model, where it is shown that
the neighboring Fe atoms along crystallographic axes as well
as Si atoms in the first coordination sphere play the crucial
role in the destruction of the Fe magnetic moments. Namely,
the increase of the number of such Fe neighbors leads to the
decrease of the Fe magnetic moment. Iron atoms in α-FeSi2
have only silicon atoms as the nearest neighbors and from
the traditional point of view [26–28], it is naturally to assume
that the absence of the magnetism in this silicide is caused by
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FIG. 1. (Left) Structure of α-FeSi2; Si atoms are shown by blue
balls, Fe atoms shown by grey balls. (Right) Partial density of
electronic states (pDOS) of Fe atoms; black line shows t2g states,
red line shows eg states. The zero on the energy axis is chosen at the
Fermi energy.

the nearest silicon environment. However, the specific feature
of the α-FeSi2 structure is the presence of alternating Fe and
Si planes, which are perpendicular to the tetragonal axis of
the cell [Fig. 1(a)]. In such a plane, Fe atoms are surrounded
only by Fe atoms arranged along the crystallographic axes.
Our analysis [29] prompts that such mutual arrangement of Fe
atoms should result in a magnetic moment destruction. The
target of this work is to investigate the influence of the local
environment on the formation of the magnetic moments on iron
atoms in the silicide α-FeSi2, its ordered Fe-rich solid solutions
with substitutional Fe atoms, Fe1+xSi2−x , and Si-rich ones
with substitutional Si atoms, Fe1−xSi2+x . Particularly, we will
address the question about the role played by second neighbors
of Fe ions in the physics of magnetic moment formation.

The paper is organized as follows. In Sec. II, we provide the
details of ab initio and model calculations. The results of the
ab initio calculations of α-FeSi2 and its Fe-rich alloys are given
in Sec. III A. The results of the model calculations of α-FeSi2
and its Fe-rich alloys and the dependence of magnetic moments
on the hopping matrix elements are presented in Sec. III B.
The results of the ab initio investigation of Si-rich alloys of
α-FeSi2 are described in Sec. III C. Section IV contains the
summary of the obtained results and conclusions.

II. HSCMA: THE HYBRID AB INITIO AND MODEL
CALCULATION METHOD

In this work, we combine the ab initio calculations with the
model ones. The arguments that forced us to turn to the models
are the following.

We use the following scheme. First, we perform a calcula-
tion of the electronic and magnetic properties of the compound
of interest within the framework of DFT-GGA for different
ways of silicon atom substitution by iron atoms taking into
account the relaxation of atomic positions. Then we map the
DFT-GGA results onto the multiorbital model, suggested in
Ref. [29]. The guiding arguments for the formulation of the
model are the following: the model should (1) contain as little
as possible parameters; (2) contain the specific information
about the compound in question, i.e., contain a proper number
of orbitals and electrons, and to possess the symmetry of the
corresponding crystal structure, and (3) contain the main inter-
actions, reflecting our understanding of the underlying physics.

The details of the model calculation are described in
Ref. [29]. We use the set of Kanamori interactions [30] between
the d electrons of Fe (5d orbitals per spin). The structure
contains neighboring Fe ions, for this reason the interatomic
direct d-d exchange and d-d hopping are included too. The Si
p electrons (3p orbitals per spin) are modeled by atomic levels
and interatomic hoppings. Both subsystems are connected by
d-p hoppings. Thus the Hamiltonian of the model is

H = H Fe + H Fe-Fe
J ′ + H Si

0 + Hhop, (3)

where

H Fe = H Fe
0 + H Fe

K ,

H Fe
0 =

∑
εFe

0 n̂d
nmσ ,

H Si
0 =

∑
εSi

0 n̂p
nmσ ;

and the Kanamori’ s part of the Hamiltonian

H Fe
K = U

2

∑
n̂d

nmσ n̂d
nmσ̄ +

(
U ′ − 1

2
J

)

×
∑

n̂d
nmn̂d

nm′ (1 − δmm′) − 1

2
J

∑
ŝd
nm ŝd

nm′ ,

H Fe-Fe
J ′ = −1

2
J ′ ∑ ŝd

nm ŝd
n′m′ ,

Hhop =
∑

T mm′
n,n′ p†

nmσpn′m′σ +
∑

tmm′
n,n′ d

†
nmσ dn′m′σ

+
∑ [

(t ′)mm′
n,n′ d

†
nmσpn′m′σ + H.c.

]
,

n̂d
nmσ ≡ d†

nmσ dnmσ ; n̂d
nm = n̂d

nm↑ + n̂d
nm↓;

ŝd
nm ≡ σ αγ d†

nmαdnmγ ; n̂p
nmσ ≡ p†

nmσpnmσ . (4)

Here, p
†
nmσ (pnmσ ) and d

†
nmσ (dnmσ ) are the creation (an-

nihilation) operators of p electrons on Si and d electrons
on Fe ions; n is a complex lattice index, (site, basis); m

labels the orbitals; σ is the spin projection index; σ αγ

are the Pauli matrices; U, U ′ = U − 2J , and J are the
intra-atomic Kanamori parameters; J ′ is the parameter of
the intersite exchange between nearest Fe atoms. At last,
T mm′

n,n′ , tmm′
n,n′ (t ′)mm′

n,n′ are hopping integrals between Si-Si, Fe-
Fe, and Fe-Si atoms, correspondingly. The dependencies
of hopping integrals T mm′

n,n′ , tmm′
n,n′ (t ′)mm′

n,n′ of k were obtained
from the Slater and Koster atomic orbital scheme [8] in the
two-center approximation using a basic set consisting of five
3d orbitals for each spin on each Fe and three 3p orbital for
each spin on each Si. In this two-center approximation, the
hopping integrals depend on the distance R = (lx + my + nz)
between the two atoms, where x, y, and z are the unit vectors
along the cubic axes and l, m, and n are direction cosines.
Then, within the two-center approximation, the hopping
integrals are expressed in terms of Slater-Koster parameters
tσ = (ddσ ), tπ = (ddπ ), and tδ = (ddδ) for Fe-Fe hopping,
tσ = (pdσ ), tπ = (pdπ ) for Fe-Si, and tσ = (ppσ ), tπ =
(ppπ ) for Si-Si hoppings (σ, π, δ specifies the components
of the angular momentum relative to the direction R). Their
k dependence is given by the functions γσ (k), γπ (k), and
γδ(k), where γ (k) = ∑

R eikR. The expressions for hopping
integrals can be obtained from Table I in Ref. [8]. For example,
t
xy,xy

Fe-Fe (k) = 2tπ [cos (Rxkx) + cos (Ryky)] + 2tδ cos (Rzkz),
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etc. The number of points in the Brillouin zone was taken
to be 1000. The Monkhorst-Pack scheme [31] was used
for generation of the k mesh. The model is solved within
the Hartree-Fock approximation (HFA). The band structure
arises due to hopping parameters, which connect nearest
neighbors (NN) and next NN (NNN) sites. The calculations
were performed for three initial states: ferromagnetic (FM),
antiferromagnetic (AFM), and paramagnetic (PM) states.
After achieving self-consistency, the state with minimal total
energy was chosen. The last step was done with the help
of the Galitsky-Migdal formula for total energy (Eq. (10)
in Ref. [29]), which we adopted for our model. For the
model used here, the set of fitting parameters in Eq. (2) is
A = t, t ′, T ,U,U ′, J, and J ′. Both charge (and spin) densities
together with the self-energy have to be found self-consistently
for each set of fitting parameters. Since the model Hamiltonian
misses a lot of interactions compared to the ones taken into
account in the corresponding density functional theory (DFT),
one cannot expect that the model will fully reproduce all the
details of the charge density, density of states, and so on.

In order to decrease the complexity of Eq. (2), which
comes from the necessity to find the self-consistent solution for
ρ[x; Σ(A)] for each set of parameters A, we simplified Eq. (2)
further: instead of minimization of the function ϒ(x,A) with
respect to the differences of the electron spin density in each
point of space, we have fitted the number of d electrons nd

f ,
the magnetic moments md

f and the partial d densities of states
for each type f of Fe atom:

ϒ(A) =
∑
f

(
nd

f [Σ(A] − nd
f [vxc]

)2

+
∑
f

(
md

f [Σ(A] − md
f [vxc]

)2

+
∫

dE
∑
f

(
g

(mod)
f (E) − g

(LDA)
f (E)

)2
. (5)

After that, the predictions of the model have been tested
within the DFT-based calculation. All ab initio calculations
presented in this paper have been performed using the Vienna
ab initio simulation package (VASP) [32] with projector
augmented wave (PAW) pseudopotentials [33]. The valence
electron configurations 3d64s2 are taken for Fe atoms and
3s23p2 for Si atoms. The calculations are based on the
density functional theory where the exchange-correlation
functional is chosen within the Perdew-Burke-Ernzerhoff
(PBE) parametrization [34] and the generalized gradient
approximation (GGA) has been used. Throughout all calcu-
lations, the plane-wave cutoff energy is 500 eV and the Gauss
broadening with smearing 0.05 eV is used. The Brillouin-zone
integration is performed on the grid Monkhorst-Pack [31]
special points 8×8×6. The optimized lattice parameters and
atom coordinates were obtained by minimizing the full energy.

III. RESULTS AND DISCUSSION

A. Ab initio calculations

The stoichiometric compound α-FeSi2 has tetragonal space
symmetry group P 4/mmm with one formula unit per cell. The

structure is shown in Fig. 1(a). The compound is a nonmagnetic
metal with lattice parameters from our ab initio calculations
a = 2.70 Å and c = 5.13 Å, which are in a good agreement
with the experimental values [35]. The structure of α-FeSi2
consists of alternating planes of iron and silicon atoms Fe-
Si-Si-Fe, which are perpendicular to the tetragonal axis of the
cell. Iron atoms are surrounded by eight silicon atoms (RFe-Si =
2.36Å) located in the corners of a slightly distorted in the [001]
direction cube, the next nearest neighbors (NNN) of iron atoms
are Fe atoms arranged along crystallographic axes x and y,
forming the iron plane (RFe-Fe = 2.70 Å). The full density of
states of α-FeSi2 was calculated in the works [36–38] and in
our recent work [39], thus, in the present paper, we give only
the partial spin-projected density (pDOS) of Fe d-electron
states in Fig. 1(b). As seen, both t2g and eg electrons are
delocalized in a wide energy range and magnetism is absent.

However, as was mentioned in Introduction, several recent
studies [18,24,25] discovered that a ferromagnetic state arises
in the films of α-FeSi2. The explanation of the emergence of
the magnetic structure, suggested in these works, is within the
commonly accepted opinion that the magnetism arises due to
an increase of Fe concentration in the material. The used the-
oretical approaches, CPA in Ref. [24] and phenomenological
local environment models in Refs. [18,25], take into account,
however, only a part of the local environment effects because
a full account of them is beyond the reach of the standard
CPA methods by construction, whereas the local environment
models [26,27] take into account the nearest environment
only. In Ref. [29], we found that the next-nearest-neighbor
environment (NNN) plays a crucial role in the magnetic
moment formation. This motivates us to include the NNN
local environment effects into the study of the magnetic
properties of Fe-rich ordered alloys both in the framework of
DFT calculations and the subsequent analysis in the suggested
multiorbital model too. The different local environment of iron
atoms was set by the different spatial arrangement and number
of substitutional Fe atoms in the ordered alloys Fe1+xSi2−x .
In this part of paper, we presented the results of our ab initio
calculations of some of ordered alloys Fe1+xSi2−x . We used
for the calculations the supercell 2a × 2a × c, where a and c

are the lattice parameters of stoichiometric α-FeSi2.
The ordered alloys considered in the present work are

shown in Table I. Alloys A and B contain one and three
substitutional Fe atoms at the Si sites in the Si planes,
correspondingly. In the last three alloys C, D, and E, four
Si atoms were replaced by Fe atoms in different ways: in the
plane perpendicular to c axis (C), in the plane parallel to c

axis (D) и chess-mate replacement (E). The lattice parameters
and calculated magnetic moments on the host iron atoms in Fe
sublattice of α-FeSi2 (Fe0) and on the substitutional iron atoms
(FeI and FeII) obtained after full optimization of geometry are
given in Table I. The geometry optimization results in the
elongation of all cells along c axis and to the compression in
the (ab) plane, which are most pronounced for the C and E
alloys.

The substitution of one Si atom by iron (A) results in the
appearance of large magnetic moments [μ(FeI) = 2.7μB] on
the substitutional FeI atom. Although the alloy A is ordered,
the obtained result coincides with the result obtained in CPA
[24] for a random alloy. The value of the magnetic moment
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TABLE I. The structures of some of ordered alloys, the optimized lattice parameters and the calculated magnetic
moments; the colors encode Si atoms by blue, host Fe0 atoms by grey, and the substitutional FeI and FeII atoms by
black and green, correspondingly.

and pDOS on the substitutional Fe atom are in good agreement
with the ones from Ref. [24]. The general feature of both DOS
is the sharp peak at the energy ∼ − 3 eV, which originates
from the minority t2g state of d electrons (Fig. 2).

A further increase of substitutional Fe concentration leads
to nontrivial results that clearly illustrate the dependence of
Fe magnetic moments on the local environment. As seen
from Table I, the substitution of three Si atoms by Fe ones
(alloy B) results in the appearance of the ferri magnetic state:
the substitutional FeI and FeII atoms become inequivalent,
they acquire large magnetic moments, which are not equal to
each other, and directed into opposite directions. The absolute
values of magnetic moments are close to the ones in alloy A.
Alloy B presents only one of the possible ways to order three
substitutional Fe atoms in the supercell. Other nonequivalent
orderings of the substitutional Fe atoms are shown in Table II.
Our ab initio calculations show that the type of the magnetic
structure, ferrimagnetic or ferromagnetic, is determined by
the spatial arrangement of substitutional Fe atoms. Indeed, the
first two alloys in Table II are ferrimagnetic, and the last three
are ferromagnetic. The same dependence of the iron magnetic
moments on the spatial arrangement (and hence on the local

μ(Fe0) =0.2μB μ(FeI) =2.7μB

FIG. 2. pDOS for host Fe0 (left) and substitutional FeI (right) in
alloy A. Black line shows t2g states and red line shows eg states. The
zero on the energy axis is the Fermi energy.

environment) arises for the alloys with four substitutional Fe
atoms on Si sites (C, D, and E in Table I). The alloy C and
α-FeSi2 are nonmagnetic, while the magnetic moments in
alloys D and E appear on the substitutional FeI and on the
host Fe0 atoms. The pDOSs of substitutional FeI in alloys B,
D, and E are similar to the ones in alloy A, the pDOS of FeII in
alloy B atom is mirror-symmetric to pDOS of FeI. Notice that
the t2g states form a peak in pDOS of the substitutional FeI

atom when the latter has a magnetic moment while the pDOS
of FeI d electrons in the nonmagnetic alloy C is similar to the
one for the Fe atom in α-FeSi2 (Fig. 1 b): t2g and eg electron
states are delocalized in a wide energy range.

Thus our ab initio calculations confirm only part of the
conclusions, derived from the local environment models
[26,27]: ferromagnetism arises with an increase of the Fe
concentration indeed, but the types of the magnetic structure
of the ordered Fe1+xSi2−x alloys that we obtain are essentially
different even at the same concentration of substitutional Fe
atoms (Tables I and II)—the magnetic moments on Fe atoms
are determined by the composition and the configuration of its
local environment. These findings motivate us to investigate
the role played by the different local environments on the
magnetic moment formation in Fe-Si alloys, more carefully
in the framework of the multiorbital model suggested in
Ref. [29] and briefly outlined in Sec. II. As was pointed out in
Ref. [29], the crucial role in the magnetic structure formation
in iron silicides is played by both nearest and next-nearest
local environment. Both are taken into account in a model
calculation.

B. The model calculations

In this section, we describe the results of our model
calculations for the stochiometric α-FeSi2 and its ordered
Fe-rich alloys Fe1+xSi2−x(B, C, and D in Table I). The hopping
matrix elements fully reflect the crystal symmetry and split
the atomic states of Fe ions according to the symmetry of
the local environment. For this reason, we decreased the
number of fitting parameters in the model calculations and kept

054429-5



ZHANDUN, ZAMKOVA, OVCHINNIKOV, AND SANDALOV PHYSICAL REVIEW B 95, 054429 (2017)

TABLE II. The ordered alloys with three substitutional Fe atoms at the Si sites. Si atoms are shown by blue balls,
host Fe0 by grey, substitutional FeI and FeII atoms are shown by black and green balls, correspondingly.

constant all on-site parameters (see Sec. II): Hubbard U = 1,
i.e., all other parameters are given in units of U; J = 0.4,

εSi = 6, and εFe = 0. The calculations for different sets of
parameters show that it is not the absolute values of the on-site
energies that are important but rather their relative positions.
So, we put εFe = 0 and fit the energies εSi from the condition
of the matching of the number of electrons on the Fe and Si
atoms in the DFT and model calculations for all considered
here compounds. The constant of the exchange interaction
between nearest Fe atoms J ′ = 0.05 was taken the same for
all compounds due to the small distance between the nearest
neighbors Fe-Fe . So , even after these simplifications, we have
to work in a five-dimensional space, since the model still has
five hopping parameters: t1 (Fe-Fe) and t2 (Fe-Si) between
the nearest neighbors (NN), t3 (Fe-Fe), t4 (Fe-Si) between
next-nearest neighbors (NNN), and t5 for Si-Si hoppings. The
relation tπ = 1

3 tσ for NN and tπ = 1
2 tσ for NNN was kept in

all model calculations; for this reason, hereafter, we will use
tσ ≡ t . The values for these hopping parameters are found from
the requirement that after achieving self-consistency in both
the model and the ab initio calculations (GGA), the d-DOS
and magnetic moments on Fe atoms have to be as close to each
other as possible. The best fit of the model magnetic moments
and DOS to the ab initio ones can be achieved only when
the hopping integrals are positive for the NN and negative
for NNN. Along all model calculations we used equilibrium
lattice parameters, obtained from the ab initio calculation (see
Table I). We also take into account that the values of hopping

integrals should correlate with the distance between neighbors
in all ordered alloys and in α-FeSi2. The values of hopping
parameters that provide the best fit are shown in the Table III.

1. α-FeSi2

We begin with the stoichiometric α-FeSi2 [Fig. 1(a)]. It
has the tetragonal lattice with the space group P 4/mm. Each
of Fe atom in the α-FeSi2 has only Si atoms in the nearest
local environment and only Fe atoms as the second neighbors.
These three hopping integrals, between NN Fe-Si (t2), between
NNN Fe-Fe (t3), and between Si-Si (t5) were used as fitting
parameters as was discussed in Sec. II.

As criteria of fitting we used the best possible proximity of
the model (i) population numbers, (ii) the magnetic moments
on Fe atoms, and (iii) the partial density of d-electron states on
Fe atoms to their GGA counterparts. Besides, it was required
that the values of hopping integrals in all ordered alloys and
in α-FeSi2 (see above) correspond to the distance between
neighbors, i.e., if the distance between first or second neighbors
in any compound is larger then the value of the corresponding
hopping integral should be smaller and vice versa.

The values of t2, t3, and t5 parameters, which provide the
best fitting in stoichiometric α-FeSi2and its Fe-rich alloys, are
shown in Table III. At these sets of the model parameters,
the d-orbital population numbers nd

↑ and nd
↓ on Fe atoms in

average deviate from the DFT ones by 6%–10% [see Table IV
for (α-FeSi2); not given here for the Fe-rich alloys]. This choice

TABLE III. The distances d (Å) between nearest neighbors (NN) and next-nearest neighbors (NNN) and
the values of hopping integrals t , which provide the best fit of the model charge densities to the GGA-DFT
ones.

α-FeSi2 B C D

d t d t d t d t

Fe-Si (NN) 2.36 1.0 2.38 0.95 2.37 1.0 2.39 0.95
Fe-Fe (NN) − − 2.40 0.9 2.44 0.85 2.43 0.85
Fe-Si (NNN) − − 2.62 −0.55 2.24 −0.8 2.56 −0.45
Fe-Fe (NNN) 2.70 −0.65 2.60 −0.70 2.53 −0.75 2.56 −0.72

2.78 −0.60
Si-Si (NN) 2.34 2.0 2.39 2.0 2.53 1.5 2.41 2.0
Si-Si (NNN) 2.80 1.0 2.61 1.5 − − 2.78 1.0

054429-6



SELF-CONSISTENT MAPPING: EFFECT OF LOCAL . . . PHYSICAL REVIEW B 95, 054429 (2017)

TABLE IV. The comparison of orbital population numbers (nd
↑,

nd
↓), magnetic moments (μ), and the number of electrons (Nel) for

α-FeSi2 in the model with GGA-DFT ones. The ab initio (blue lines)
and the model (black lines) pDOS of Fe d electrons (left: t2g electrons,
right: eg electrons) in α-FeSi2 are compared in the figure under the
table.

VASP Model
nd
↑ nd

↓ nd
↑ nd

↓
dxy 0.77 0.76 μ = 0.1μB 0.67 0.66 μ = 0.2μ
dxz 0.72 0.71 Nel = 6.6 0.70 0.68 Nel = 6.6
dyz 0.72 0.71 0.79 0.68

dx2−y2 0.58 0.55 0.63 0.61
dz2 0.67 0.63 0.70 0.60

provides fine agreement between the DFT and model magnetic
moments (μ) and the number of electrons (Nel) [Table IV
(α-FeSi2), Sec. B2 (Fe-rich alloys)]. The corresponding partial
model and DFT DOSs for Fe d electrons in α-FeSi2 are
compared in the bottom of the Table IV. We have to emphasize
again that in the model many matrix elements are neglected
compared to the DFT approach. Therefore we should not
expect a detailed matching of the model DOS to the DFT one.
Qualitatively, nevertheless, the model DOS acquires the main
features, which appear in the ab initio pDOS at this choice
of parameters both for α-FeSi2 (Table IV) and for the Fe-rich
alloys (for example, see Fig. 6).

In order to understand the effect of NN and NNN neighbors
in the local environment on the magnetic moment (MM)
formation, we calculated the dependence of the MMs on the
hopping integrals t2 (NN Fe-Si) and t3 (NNN Fe-Fe). The
map of the magnetic moment dependencies on the hopping
integrals t2 and t3 is shown in the top panel of Fig. 3. As
seen, the crucial role in the MM formation is played by
hoppings between NNN Fe-Fe (t3). Indeed, with |t3| > 0.6,
the experimentally existing nonmagnetic state is stable, a
decrease of |t3| leads to the transition into a ferromagnetic state.
Furthermore, the boundaries between regions with magnetic
states and nonmagnetic ones are very sharp (Fig. 3, top): the
MM decreases till zero very fast as a function of hopping t3
between iron atoms. The hopping between NN Fe-Si (t2) has
effect only on the magnitude of the MM in the ferromagnetic
region. The mechanism of ferromagnetism destruction with
hopping t3 is clearly seen from the bottom panel of Fig. 3.
Switching off the hopping between NNN Fe-Fe (t3 = 0) makes
the d bands atomlike with a slight smearing. An increase of
the t3 hopping leads to a delocalization of these atomlike d

bands and destruction of the magnetism. Hence an increase
of the distance between NNN (or, a decrease the hopping
integral t3) would result in a transition from a nonmagnetic

NN t2 (Fe-Si) 

NNN t3 (Fe-Fe) 

FIG. 3. (Top) Nearest and next-nearest neighbors of Fe0 with
corresponding hopping integrals (Fe and Si atoms are shown by
grey and blue balls, correspondingly) and the t2-t3 map of magnetic
moments; the blue lines show the values of hopping integrals t2and t3
from Table IV. (Bottom) Model pDOS for hopping integral t3 = 0.0
(left) and t3 = −0.65 (right). Hopping integral t2 = 1.0.

phase to a magnetic one. This conclusion from the analysis
of the model is confirmed by the ab initio calculation: the
increase of the lattice parameters a and b of α-FeSi2 (or the
distance NNN Fe-Fe) by 7% (a = b = 2.9 Å and c = 5.13 Å)
causes formation of MMs μ = 0.6μB on the Fe atoms. Thus it
is rather the hopping integral between the NNN Fe-Fe atoms,
not the NN Fe-Si hopping, that determines the existence of a
magnetic or a nonmagnetic state in α-FeSi2, because the NN
of Fe atom consist of Si atoms in both cases.

2. Fe-rich alloys

To emphasize the importance of the NNN in the MM
formation on iron atoms, we consider the alloys C and
D from Table I. These alloys reveal essentially different
magnetic behavior at the same concentration but different
spatial arrangements of the substitutional Fe atoms.

As it follows from ab initio calculations, the ordered alloy D
reveals ferromagnetism, whereas alloy C remains nonmagnetic
(Table I). These ordered alloys have two nonequivalent Fe
atoms: Fe0 is the host iron atom in the iron sublattice of
α-FeSi2 and FeI is the substitutional Fe atoms in the Si
sublattice. Different spatial arrangement of the substitutional
Fe atoms results in the different environment of the host and
subtitutional Fe atoms in alloys D and C. These environments
are shown in Fig. 4 (top). There is an important difference
in the NNN environment of Fe0 and Fe1 in C and D alloys.
In the C alloy both Fe0 and FeI atoms have four Fe atoms
along crystallographic axes a and b as NNN at the same
distances R = 2.53 Å (Table III). The host Fe0 in the alloy
D also has four NNN Fe atoms, but at different distances:
two Fe neighbors along axis a with the distance R = 2.56 Å
and two ones along axis b with R = 2.78 Å. These unequal
distances arise due to the different symmetry of crystal lattices:
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DC

t1 ( Fe-Fe ), t2 ( Fe-Si ) t1 (Fe-Fe ), t2 (Fe-Si ) t1 ( Fe-Fe ), t2 (Fe-Si ) t1 (Fe-Fe)

Fe0 Fe0Fe1 Fe1

t3 (Fe-Fe ) t3 (Fe-Fe ) t3a (Fe-Fe ), t3b (Fe-Fe ) t3b (Fe-Fe ), t4 (Fe-Si ) 

FIG. 4. Alloys C and D. (Top) NN and NNN environment of iron atoms. Si atoms are shown by blue balls, grey and black balls stand for
Fe0 and substitutional FeI atoms, correspondingly. (Middle) Dependence of the MMs on hopping integrals t1 and t2 (hopping integrals t3 and
t4 are switch on). (Bottom) Dependence of MMs on hopping integrals t1 and t2 (hopping integrals t3 and t4 are switch off). Blue lines show the
values of hopping integrals t1 = 0.9 and t2 = 1.0 for alloy C and t1 = 0.85 and t2 = 0.95 for alloy D (Table III); these values provide the best
fitting to the ab initio charge density.

the C lattice is tetragonal with the space group P 4mm,
while the D one is orthorhombic with space group Pmmm.
Thus the distortions of the underlying tetragonal lattice of
α-FeSi2 arising in these alloys are different. Notice that the
distances between the NN Fe-Si and the NN Fe-Fe in both
alloys are the same. Besides, the atom FeI has only two
NNN Fe atoms at the distance R = 2.78 Å in the alloy D.
This distance is larger than the corresponding one in alloy C.
Therefore we are forced to introduce in alloy D two hopping
integrals for the short ta3 and long tb3 distances between NNN
Fe-Fe, while only one hopping integral t3 is required for
the description of alloy C. The values of hopping integrals
providing the best found fitting to the ab initio calculation
according to Eq. (2) are given in Table III. The Hartree-Fock
self-consistent MMs generated by the model at these values of
hopping parameters are μmod(Fe0) = μmod(Fe1) = 0 in alloy
C and μmod(Fe0) = 1.4μB, μmod(FeI) = 2.5μB in alloy D.

Let us compare the dependencies of the Fe magnetic
moments on the NN hopping integral t1 and t2 at fixed values
of NNN hopping integral t3 and t4, shown at the middle panel

of Fig. 4. The range of the magnetic moments existence on
both Fe0 and FeI atoms in alloy D is restricted by the values of
|t1| < 1. The magnetic state with moments close to ab initio
values [μ(Fe0) = 1.5μB and μ(FeI) = 2.5μB] is on the narrow
boundary between ferro- and paramagnetic phases. In alloy C,
the nonmagnetic state is stable in all ranges of the hoppings
between NN t1 and t2. Namely, the circumstance that the
magnetic moments are close to the instability line make
them very sensitive to changes of the NNN hoppings. Indeed,
which of the solutions, magnetic or nonmagnetic, will arise,
is controlled by the value of hopping integral t3: tC

3 (Fe-Fe) =
−0.75 leads to the formation of the paramagnetic state in alloy
C, whereas a decrease of t3 in alloy D, t D

3 (Fe-Fe) = −0.60,
gives birth to a ferromagnetic state in alloy D. The increase
of |tC

3 (Fe-Fe)| compared to |t D
3 (Fe-Fe)| occurs due to the

shorter distance between Fe atoms in the NNN environment in
alloy C (Table III). Moreover, a decrease of |t3| results in the
appearance of magnetic moments on both Fe atoms in alloy C;
at tC

3 = 0.0, the map of magnetic moments in alloy C becomes
similar to the one for alloy D (Fig. 4, bottom). At first glance,
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FIG. 5. Alloy C: model pDOS (left panel) and the map of the
magnetic moments (right panel) for the different values of hopping
integral t3(Fe-Fe). The blue lines at the last map show the values of
hopping integrals t1 = 0.9 and t2 = 1.0 (Table III), which provide the
best fitting to the ab initio charge density.

one could expect that the formation of the Fe-Si bond should
destroy the moment on the Fe atom. However, the magnetic
moments on Fe atoms happen to be much less sensitive to the
hopping parameter t2 between NN Fe and Si atoms. Indeed, all
the t1-t2 maps for Fe moments, calculated within this model,
are elongated along the axis t2.

The physics of the destruction of the magnetic moments
on Fe atoms can be interpreted from the point of view of the
d-band formation. Figure 5 illustrates this for alloy C via the
evolution of the FeI d-electron pDOS and the corresponding
magnetic-moment maps with the increase of only the hopping
integral t3 while all other hopping integrals are kept fixed. As
seen, at the first steps of increase of t3, a gradual smearing of
initially (at t3 = 0) atomlike levels and a slight change of the
map of magnetic moments occurs. Then, similar to the case of
α-FeSi2, at t3 = −0.75, an abrupt destruction of the magnetic
moments arises and the difference between the minority and
majority spin states in pDOS disappears.

Let us now discuss the origin of the unusual ferrimagnetic
state in the type of alloy B (Table I) that contains three
substitutional Fe atoms on the Si sites. The ordered alloy B

FIG. 6. The comparison of the ab initio (blue lines) and the model
(black lines) pDOS of FeI d electrons (left) and FeII d electrons (right)
in alloy B. (Top) t2g electrons and (bottom) eg electrons.

has the tetragonal lattice with space group P 4mm. There are
three nonequivalent Fe atoms in the unit cell: Fe0 is the host
iron sublattice of α-FeSi2, FeI, and FeII are the nonequivalent
substitutional Fe atoms in the Si sublattice. In accordance
with ab initio calculations, the absolute values of magnetic
moments on FeI and FeII atoms are close to each other but have
opposite directions: μ(FeI) = 2.3μB and μ(FeII) = −1.9μB.
The model MMs obtained for the values of hopping integrals
from Table III are μmod(FeI) = 2.8μB, μmod(FeII) = −2.1μB,
and μmod(Fe0) = 0.7μB. The specific feature of Fe pDOS
in the alloy B is that the FeII pDOS is mirror-symmetric
to the pDOS of FeI atoms. This feature arises in both first-
principles and model calculations. The comparison of pDOSs
for substitutional Fe atoms is shown in Fig. 6. As in previous
cases, we built the t1-t2 maps of MMs for three nonequivalent
Fe atoms (Fig. 7). The bright illustration of the importance of
NNN interactions is that in spite of the fact that the NN local
environment of substitutional Fe atoms is the same (Fig. 7, first
column), they have completely different maps of magnetic
moments. There is a wide range (at |t1| � 0.5) of negative
MMs in the map for FeII atom (Fig. 7, bottom panel, middle
column) with a sharp boundary between positive and negative
values of MMs, whereas in the same region of the FeI t1-t2
map, the MM remains positive. These distinctions occur due
to the different number of Fe atoms in the NNN environment.
Indeed, switching off the hoppings between NNN neighbors
(t3 and t4) changes the behavior of magnetic moments on FeII

atom: the region with the negative moment disappears and
the maps for FeI and FeII atoms became almost identical (cf.
middle and bottom panels in Fig. 7, last column). This numeric
experiment explicitly shows that the role played by the NNN
local environment is critically essential for the emergence of
the Fe atoms with the opposite MMs and, correspondingly, for
the development of the ferrimagnetic state.

Thus our analysis of the Hartree-Fock solutions of the
multiorbital models of iron silicides and the supporting first-
principles calculations allow us to conclude that the decisive
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FIG. 7. Alloy B. (Top, left) NN and NNN environment of Fe0 atoms; color encodings: Si are blue, Fe0 are grey, substitutional FeI and FeII

are black and green balls, correspondingly. (Top, center) The dependence of Fe0 MMs on hopping integrals t1 and t2 (hopping integrals t3 and
t4 are switch on). (Top, right) The dependence of MM on the Fe0 atom on the hopping integrals t1 and t2 (hopping integrals t3 and t4 are switch
off). (Middle and bottom) Same for FeI and FeII atoms, correspondingly. Blue lines on the maps show the values of hopping integrals t1 = 0.9
and t2 = 0.95 (Table III), which provide the best fitting to the ab initio charge density.

role in the destruction/formation of the iron magnetic moments
is played by the NNN local environment or, more specifically,
by the number of neighbors Fe-Fe and the by the spacing
between them. The results of our calculations show that the
previous statement [26–28], that the destruction of magnetic
moments in the iron silicides is caused by the increase of Si
atoms in the NN environment is inaccurate. The obtained in our
calculations strong influence of NNN Fe-Fe couples is caused
by the peculiarity of the α-FeSi2 crystal structure, where the the
iron atoms form planes. Since NNN Fe-Fe are arranged along
crystallographic axes, strong σ bonds between Fe atoms are
formed. So in alloy C and α-FeSi2, which contains iron (001)
planes with a shorter distance between Fe-Fe than in alloy D,
these d bonds result in the delocalization of the electrons and
a decrease of the MMs up until their destruction (Fig. 5). At
the same time in alloys C and D, Fe atoms have the same
number of Si atoms in the NN environment and this does not
prohibit them to have different MMs. It is very instructive to
have a look from this point of view at the MM formation in

alloy A where the substitutional Fe atoms have maximal MMs
compared to the ones in all other alloys considered here. The
NNN environment of the substitutional FeI atom in alloy A
(Table I, first column) consists of only Si atoms; the hoppings
between Fe-Fe, which are responsible for the destruction of
moment are absent. This facts lead to the formation of a large
value of MM on this iron atom.

In order to demonstrate the decisive role of the d-d-hopping
integral t3 between NNN Fe-Fe on the formation of the MM
on Fe atoms, we calculate the dependence of Fe MM on this
hopping for α-FeSi2 and the alloys C and B. This dependence
is shown in Fig. 8. As seen, the increase of t3 in alloy C and in
α-FeSi2 causes a destruction of the Fe MMs, whereas in alloy
B the abrupt flip of the FeII magnetic moment occurs with an
increase of t3. The model results are confirmed by the ab initio
calculations. Obviously, the hopping integral t3 changes its
value with an increase of the spacing between NNN Fe-Fe.
Since the integral of the hopping matrix element contains an
overlap of the wave functions, we assume that it depends on
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α − FeSi2 alloy C alloy B

FIG. 8. The dependence of MMs on the host Fe0 and the substitutional FeI and FeII atoms on hopping t3 in α-FeSi2, alloys C and B (from
left to right). The solid lines are the dependencies, obtained in model calculations, the dots show the MMs from ab initio calculations at a
distance R between NNN Fe-Fe, according to (6). The scale for the distances (in angstroms) is given on the top of the figures.

the distance R between the ions exponentially,

t3(R) = tmax
3 exp(γR), (6)

where tmax
3 = t3(Rmin) and R = R − Rmin(Å). Taking the

values tmax
3 = −0.75 and Rmin = 2.53 from Table III, we have

found the parameter γ = −0.8926 Å−1. Using Eq. (6), we
obtained the distances R between NNN Fe-Fe corresponding
to the model parameters t3. Then the values of the MMs for the
lattice parameters corresponding to these distances have been
calculated within the GGA-to-DFT approach. These values
are shown in Fig. 8 by dots. Remarkably, although only t3
hopping was changed with distance R in the model calculations
(the values of the other hopping parameters were kept fixed
according to Table III), we obtained a good agreement between
the model and the ab initio magnetic moments. This again
proves the significance of the NNN Fe-Fe couplings for the
MM formation.

.

C. Ab initio calculation of the Si-rich alloys

Our model calculations lead to the conclusion that the Fe
local MM formation is controlled either by a decrease of
the number of Fe-Fe couples in Fe layers or by an increase
of the distance between Fe atoms in pairs. Moreover, we
can state that the increase of the cell’ s magnetic moment
with increase of x in Fe-rich alloys Fe1+xSi2−x is associated
namely with the appearance of high-spin Fe species in the
Si layers, which are surrounded mainly by the Si atoms.
However, these conditions can be fulfilled also by an increase
of the Si concentration. To make sure that this unexpected
conclusion derived from the model is correct, we carried out
the ab initio GGA calculation of Fe magnetic moments for
the Si-rich ordered alloys Fe1−xSi2+x . The alloy structures
must satisfy the conditions listed above. By adding Si atoms
into the iron planes, we can decrease the number of the
Fe-Fe couples. Besides, the substitutional Si atoms increase
the spacing between the Fe atoms.

Figure 9 displays three different variants of substitution of
Fe atoms in the Fe planes by the Si atoms. All calculations
were carried out for the supercells 2a × 2b × 2c of α-FeSi2,
containing six iron atoms and two additional Si atoms. After

full optimization of the supercells, all considered alloys
become magnetic, but the magnitude of the magnetic moment
μ per supercell depends on the particular arrangement of
substitutional Si atoms: μ = 3.2μB [Fig. 9(a)], μ = 3.1μB

[Fig. 9(b)], and μ = 1.7μB [Fig. 9(c)]. The emergence of local
MM on different Fe atoms in the first two alloys [Figs. 9(a)
and 9(b)] corresponds to the expectations, derived from the
model. Indeed, since the number of iron NNN surrounded an
Fe3 atom in the first alloy [Fig. 9(a)] is decreased by two,
a local magnetic moment μ(Fe3) = 0.8μB on the Fe3 atom
arises. Similarly, local MM appears on the Fe1 and the Fe5

atoms in the second alloy [Fig. 9(b)] due to an increase of
the distance between NNN Fe-Fe till �2.8 Å. The third alloy
[Fig. 9(c)], however, presents an example where, it seems,
the model is oversimplified: the GGA calculation produces
zero moment on the Fe5 atom without Fe atoms in NNN
surrounding, while according to our model the biggest local
magnetic moment have to arise on the Fe5 in this case. We
assume that the term responsible for it and which is missed in
our model is the crystal electric field (CEF), created by the Si
surrounding. The Fe5 in the third alloy [Fig. 9(c)] sits in the
most symmetrical local surrounding P 4/mmm by Si atoms,
where the CEF splitting has to be stronger than in the first two
cases [Figs. 9(a) and 9(b)].

One can see from Fig. 9 that the lattice parameters in all
Si-rich alloys are larger than the ones in the stoichiometric
α-FeSi2. However, the appearance of ferromagnetism in the
compounds is not related to the lattice strain. To prove
it, we performed DFT calculations for three stoichiometric
α-FeSi2 structures with lattice parameters from Fig. 9. Only
lattice strain is insufficient for the emergence of the Fe
atoms magnetic moments. So, in the structure with the lattice
parameters from Fig. 9(c), the magnetic moment does not
appear, for the other two sets of the lattice parameters the Fe
magnetic moments are about μ = 0.2μB. Therefore we come
to the counterintuitive conclusion: it is the increase of the Si
atoms concentration that is responsible for the emergence of
magnetism, not the strains.

The statement that the magnetic moments in Fe-Si alloys
can arise due to an increase of the Si concentration allows us
to suggest an alternative explanation of the ferromagnetism in
the α-FeSi2 (111) film on the Si(001) substrate, successfully
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FIG. 9. Different environments for Fe ions lead to the formation of local MMs when part of the Fe ions are replaced by Si ions (the host Si
atoms are not shown). The optimized lattice parameters and the calculated MMs of the Fe atoms are given under the structures.

stabilized by the authors of Ref. [24]. The authors of
Ref. [24] explain the ferromagnetism of the α-FeSi2 film
by the small concentration (about 3%) of the additional
substitutional Fe atoms. The calculation in Ref. [24] were
performed in the framework of CPA, which is not able to
take into account the local-environment effects. We assume
that the observed moment arises not due to an increase
of the Fe concentration as stated in the work [24], but
due to an increase of Si concentration that arises due to
a diffusion of the Si atoms from the Si substrate. For
example, the lattice parameters in the considered here Si-rich
alloys are such that the (111) elementary-cell sizes of the
α-FeSi2 are very close to the Si(001) − (3×2)(11.5×7.68 Å):
(11.83×7.89 Å), (11.76×7.83 Å), and (11.67×7.93 Å) for
the first [Fig. 9(a)], second [Fig. 9(b)], and third [Fig. 9(c)]
alloys, correspondingly. This corresponds to the mismatch
about (−1.5%)–(−2.5%). Such a low mismatch presents an
opportunity to stabilize the epitaxial films of the α-FeSi2
structure with similar arrangements of Si atoms. The magnetic
moment μ � 0.2–0.4 μB/f.u. arises for all types of the
substitutions shown in Fig. 9, which is consistent with the
observed in Ref. [24] values.

IV. CONCLUSIONS

The fact that a large, if not the decisive, role in the
mechanism of the magnetic structure formation in different
compounds is played by the local environment of the magnetic
species is well known from the physics of surfaces and
interfaces. The effects of local environment are especially
important in alloys, in which a slight difference in the local
environment can result in significantly different magnetic
structures. The substitutionally disordered systems such as
metallic alloys play an increasingly important role in techno-

logical applications and, hence, a lot of efforts are invested
into a theoretical understanding of their properties. Although
CPA is nowadays the most successful ab initio theoryfor the
calculations of disordered alloys, its standard formulation
neglects the effects of NNN environment. Along with the
development of ab initio methods (as nonlocal CPA [40]), an
understanding of a specific property of a specific compound
can be reached in the framework of suitable models with
parameters obtained from ab initio calculations for a the
material of interest. A combination of the ab initio and the
multiorbital-model calculations for the iron silicides was used
in our work. We consider the model by the perturbation theory
from the weak-coupling side. This places the model to the
class of the itinerant-electron models. Our model, compared
to the Stoner’s one, is strongly improved: here the magnetism
is formed not due to just Stoner’s parameter, but due to all
main intra-atomic interactions. It is shown that certain type
of hopping terms control the formation of magnetism. One
of the advantages of the suggested approach is that, on the
one hand, it is a model approach, which allows to apply
the standard diagram perturbation theory and, therefore, to
consider excitations, thermodynamics, etc. On the other hand,
it is a first-principles approach, since it does not contain
any parameters, which should be fitted from experiment.
The reason why we chose the mean-field approximation for
the first-step model consideration (which for the itinerant
electrons is the Hartree-Fock approximation) is that any next
approximation in the model contains spin waves, damping of
the excitations, and their spectral weights, the characteristics
of which can not be extracted from the Kohn-Sham scheme.
Since the model does not contain local moments, the words
“formation of the magnetic moment” (local characteristics)
and “emergence of the magnetic phase” (long-rage order) are
not distinguishable within the used approximation. Clearly,
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a deeper understanding of the magnetism nature in these
compounds requires calculation of the temperature-dependent
magnetic susceptibilities. In turn, the latter requires the knowl-
edge of the spin-waves spectra and their decay, the interaction
of collective excitations with conduction electrons, and the
degree of the on-site moment fluctuations. However, the
following are unavoidable necessary first steps: (a) formulation
of the model, (b) calculation of its properties within the
Hartree-Fock approximation, and (c) finding the parameters
for real materials by fitting the model density of electrons
to the ab initio one. These steps and the analysis of the
results, which are controlled by first-principles calculations,
are presented in our work and are the essence of the suggested
method of hybrid ab initio and model calculation method (HAI
MCM). The feature (c) distinguishes our model approach from
other ones. The model consideration presents an opportunity to
elucidate the role played by the effects of NN and NNN local
environment of the Fe atoms on the formation of magnetic
moments. The feature that distinguishes our model approach
from other ones is that the parameters of the model are
determined by fitting its self-consistent charge density to the
one obtained by ab initio calculations. This allows to study the
effects of NN and NNN local environment of the Fe atoms on
the formation of magnetic moments.

The presented study of the effect of silicon-atoms’ sub-
stitution by the iron atoms and vice versa on the magnetic
properties in the iron silicide α-FeSi2 within the suggested
multiorbital model has shown that while the stoichiometric
material α-FeSi2 is nonmagnetic, the appearance of substi-
tutional iron atoms in the α-FeSi2 may result in different
magnetic structures, either ferromagnatic or ferrimagnetic.
Which particular structure emerges is determined by the
number and the spatial arrangement of the substitutional
iron atoms. The latter statement is strongly supported by the
fact that different magnetic structures can appear at the same
concentration of substitutional Fe atoms. Besides, as follows
from the Hartree-Fock model calculations, the formation of
magmetic moments is essentially determined not by the NN
Si atoms but by the NNN environment, particularly, by the
Fe atoms along the crystallographic axes: the MMs on iron
atoms are very sensitive to the values of NNN Fe-Fe hopping
parameters t3. We demonstrated it by a comparison of the
maps of moments’ dependence on the hopping parameters
with and without contributions from NNN. It is important that
the nonmagnetic states in the stoichiometric α-FeSi2 arise at
NNN t3 �= 0 only. The model with NN hoppings only, even if
all NN to Fe atoms are Si atoms, does not have the solutions
with zero moments on Fe. This allows us to suggest that the
magnetism in the nonmagnetic α-FeSi2 can be induced by a
negative pressure.

The various magnetic structures (ferro-, ferri-, or non-
magnetic) in Fe-rich alloys are also controlled by the NNN
Fe-Fe hopping parameters t3. The different ways of Si atom
substitution by Fe atoms result in the diverse local distortions
of the underlying lattice and, in turn, to quite different hopping
parameters t3 and magnetic properties. It is most clearly
demonstrated by the magnetic behavior of several alloys with
the same concentration of substitutional atoms, e.g., alloys C
and D considered in this work (Sec. II B). The comparison
of the magnetic-moments maps shows that namely the NNN

Fe-Fe hopping parameters t3 are responsible for a nonmagnetic
state in alloy C and a ferromagnetic one in alloy D. Notice
that despite of the different lattice distortions in C and D
alloys, the spacing between NN (as well as number of NN Si
atoms) is the same in both cases. Hence the local environment
models, which do not take into account the NNN hoppings,
cannot explain this distinction. Unlike the local environment
models [26,27], we observe that the dependence of the Fe
magnetic moment on the hopping t2 between NN Fe and Si
atoms is weak; all the t1-t2 maps for Fe moments, calculated
within this model, are elongated along the axis t2. One more
characteristic feature of the maps as a function of NN Fe-Fe
hopping integral t1 is the presence of sharp boundaries in the
region between magnetic and nonmagnetic states. This part of
the phase diagram is most interesting for possible applications.
Indeed, one can expect that the system being in the vicinity of
of the magnetic-instability line has to be much more sensitive
to different external perturbations, than in other parts of the
phase diagram (some suggestions how to use it are discussed
below). For the same reason, it is not surprising that the
contribution of the NNN interactions becomes important. It has
to be emphasized that our conclusion about the decisive role
of NNN local environment in the magnetic moment formation
presents an alternative explanation to the conclusions of earlier
(much less detailed) models of local environment [26,27],
where a decrease of the moment on Fe atoms was ascribed to
the increase of number of Si in NN sphere. According to our
calculations, the main role in the formation of local magnetic
moments is played by the decrease of the number of Fe-Fe pairs
along the crystallographic axes and/or increase of the distance
between them. This conclusion is especially interesting since
most of models do not take the NNN hoppings into account.

The unexpected and somewhat counterintuitive conclusion,
following from the model calculations, is that not only an
increase of the Fe but also of the metalloid concentration can
lead to the emergence of the local magnetic moment on Fe
atoms. Indeed, the number of the Fe-Fe pairs can be reduced
by replacing of the Fe atoms in iron planes by Si atoms.
Moreover, the distances between Fe atoms in these planes are
increased due to the distortion of the underlying lattice. So, the
conditions leading to the emergence of the magnetism are met.
The ab initio calculation of the ordered Si-rich alloys confirms
this conclusion. Hence we can explain the ferromagnetism in
the α-FeSi2 (111) film, obtained by the authors of Ref. [24], in
a more realistic way. In our opinion, the observed in Ref. [24]
moment results from the increase of Si concentration due to a
diffusion of the Si atoms from the Si substrate, but not due to
an increase of the Fe concentration.

The presented analysis allows us to suggest a way for the
stimulation of the magnetic state formation in iron silicides.
The key parameters responsible for the magnetism are the
hoppings between Fe atoms t1 and t3, which are the most
sensitive parameters to different types of pressure. The latter
can be done either by fitting the lattice parameter of the
substrate for an α-FeSi2 film (chemical pressure), or by a
substitution of Fe or Si atoms. As was pointed out in Ref. [25],
the best orientation relationships that stabilize the epitaxial
α-FeSi2 are α-FeSi2 (201) || Si(110), α-FeSi2 (110) || Si(110),
or α-FeSi2 (111) || Si(001). Such planes contain additional
Si atoms in Si-rich alloys from Fig. 9 and the sizes of the
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corresponding unit cells are very close to the Si-substrate one.
A small mismatch has been placed for all mutual orientations
of the film and the substrate and presents an opportunity to
stabilize the epitaxial films of the α-FeSi2 structure. Moreover,
the possibility of tuning the hopping parameter t3 in iron
silicides has large technological interest because it gives an
opportunity to control the appearance of different magnetic
configurations in the cause of fabrication of new alloys or
nanostructures with the prospective magnetic properties. At
last, the existence of the region with sharp transition from
ferro- to paramagnetic or from ferro- to ferrimagnetic state
strongly improves the prospects for practical applications
of iron-silicide films (like, e.g., switching on and off the
magnetic state by external fields) and, hopefully, will stimulate

technologists to find a way to make films near the instability
line with desirable characteristics.
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