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Breakdown of the Nagaoka phase at finite doping
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The Nagaoka (U = ∞) limit of the Hubbard model on a square lattice is mapped onto the itinerant-localized
Kondo model at infinitely strong coupling. Such a model is well suited to perform quantum Monte Carlo (QMC)
simulations to compute spin correlation functions. For periodic boundary conditions, this model is shown to
exhibit no short-range ferromagnetic (FM) spin correlations at any doping δ � 0.01 and at finite temperature
T = 0.1t. Our simulations give no indication that there is a tendency towards ferromagnetic ordering in the ground
state, with more than one hole. Employing on the other hand the open boundary conditions (or mixed boundary
conditions) may result in the qualitatively different results for the thermodynamic limit depending on the way one
chooses to approach this limit. These observations imply that the relevant thermodynamic limit remains unclear.
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I. INTRODUCTION

The strong electron correlations are at work to full extent
in the Nagaoka (U = ∞) limit of the Hubbard model. Indeed,
in this case an infinitely strong Coulomb repulsion strictly
prohibits the double electron occupancy of the lattice sites,
and the no double occupancy (NDO) constraint becomes of
the utmost importance. In the infinite U limit, the Hubbard
Hamiltonian reduces to

HU=∞ = −
∑
ij,σ

tij c̃
†
iσ c̃jσ , c̃

†
iσ = c

†
iσ (1 − ni−σ ), (1)

where tij is a symmetric matrix whose elements represent
the hopping amplitude t > 0 between the nearest-neighbor
sites and which are, otherwise, zero. Despite its seemingly
simple form, this Hamiltonian cannot be diagonalized due
to the fact that the projected electron operators c̃σ fulfill
complicated commutation relations resulting from the explicit
manifestation of strong correlations.

The physics behind the model (1) is certainly far from
trivial. Indeed, Nagaoka [1] proved a theorem stating that for
one hole the ground state of the U = ∞ Hubbard model is
a fully saturated ferromagnet. This provides an interesting
example of a quantum system in which ferromagnetism
appears as a purely kinetic energy effect with hole hopping
(itinerant ferromagnetism) emerging as a result of the strong
correlations from the NDO constraint.

Unfortunately, despite extensive work over many years,
this model and itinerant ferromagnetism are still poorly under-
stood. One of the important questions to be addressed concerns
the thermodynamic stability of the Nagaoka phase. That is,
whether or not the Nagaoka state is stable when the density of
holes is finite in the thermodynamic limit. There are arguments
both for [2–9] and against [10–13] the thermodynamic stability
of the Nagaoka phase and comparisons between various
approaches have been made carefully (for a recent example,
see [14]). The basic problem that prevents one from reaching a
definite conclusion on that is the large-U limit or, equivalently,
the local NDO constraint which is very difficult to deal with
in a controlled way.

Analytical approaches basically imply a mean-field (MF)
treatment in which the local NDO constraint is uncontrollably
replaced by a global condition. For example, the standard slave
fermion (SF) MF theory which treats the NDO constraint
only on average is known to predict a stable FM phase
for the U = ∞ Hubbard model over an unphysically large
doping range. It was however shown that the SF MF approach
produces spurious results and it is therefore not reliable for the
description of the Nagaoka ferromagnetism [15].

Available variational approaches [2,4,8,16–19] show that
variational estimations that involve more realistic refined trial
wave functions result in a smaller value of the critical hole
concentration. For example, by advanced analytical means, a
rather small upper bound on the critical hole concentration,
namely δc = 0.25, was obtained [20]. This result has been
recently confirmed by the variational Monte Carlo investiga-
tion [21]. In case the mean-field treatment provides an exact
result, i.e., in infinite spatial dimensions, the fully polarized
FM ground state is never stable [22]. One might therefore think
that a proper treatment of the NDO constraint could improve
the MF results shifting the critical hole concentrations towards
progressively smaller values.

II. MODEL

In the present section we reformulate the standard infinite
U -Hubbard model (1) in a form that explicitly takes into
account some basic facts concerning the physics of strongly
correlated electrons at low doping. This enables us to apply
numerical quantum Monte Carlo calculations in a more
efficient way.

In the underdoped cuprates, one striking feature is the
simultaneous localized and itinerant nature of the lattice
electrons. One might hope therefore that representing the
model (1) in a form that takes both aspects into consideration
on equal footing would help to address the problem in a
more efficient way. To this end, Ribeiro and Wen proposed
a slave-particle spin-dopon representation of the projected
electron operators in the enlarged Hilbert space [23],

c̃
†
i = c

†
i (1 − ni−σ ) = 1√

2

(
1

2
− 2�Si �σ

)
d̃i . (2)
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In this framework, the localized electron is represented by
the lattice spin �S ∈ su(2), whereas the doped hole (dopon) is
described by the projected hole operator d̃iα = diσ (1 − nd

i−α).

Here c̃† = (c̃†↑,c̃
†
↓)t and d̃ = (d̃↑,d̃↓)t .

In terms of the projected electron operators, the constraint
of no double occupancy (NDO) that encodes the essence of
strong correlation takes on the form∑

α

(c̃†iαc̃iα) + c̃iαc̃
†
iα = 1. (3)

It singles out the physical 3D on-site Hilbert space. Only
under this condition the projected electron operators are
isomorphic to the Hubbard operators. Within the spin-dopon
representation (2), the NDO constraint reduces to a Kondo-
type interaction [24]

�Si · �si + 3
4 (d̃†

i↑d̃i↑ + d̃
†
i↓d̃i↓) = 0, (4)

with �si = ∑
α,β d̃

†
iα �σαβd̃iβ being the dopon spin operator.

The on-site operator

P = 1 − �Si · �si + 3
4 (d̃†

i↑d̃i↑ + d̃
†
i↓d̃i↓), P2 = P

commutes with the Hamiltonian and projects out the unphysi-
cal states. In terms of the projectors, Eqs. (2) can be rewritten
in the form

c̃
†
iσ =

√
2 sgn(σ )Pi d̃i−σPi , (5)

where sgn(σ = ↑,↓) = ±. In view of this, we have

HU=∞ = P
∑
ij,σ

2tij d̃
†
iσ d̃jσP, P =

∏
i

Pi . (6)

Equivalently, Eq. (6) can be represented in the form of the
lattice Kondo model at dominantly strong Kondo coupling
λ � t [24]:

HU=∞ =
∑
ijσ

2tij d
†
iσ djσ + λ

∑
i

(
�Si · �si + 3

4
nd

i

)
, (7)

where we have dropped the “tilde” sign of the dopon operators,
as it becomes irrelevant in the presence of the NDO constraint.
In spite of the global character of the parameter λ, it enforces
the NDO constraint locally due to the fact that the on-site
physical Hilbert subspace corresponds to zero eigenvalues of
the constraint, whereas the nonphysical subspace is spanned
by the eigenvectors with strictly positive eigenvalues.

The unphysical doubly occupied electron states are sepa-
rated from the physical sector by an energy gap ∼λ. In the
λ → +∞ limit, i.e., in the limit in which λ is much larger than
any other existing energy scale in the problem, those states
are automatically excluded from the Hilbert space. Right at
the point λ = +∞ the proposed model (7) is equivalent to
the (U = ∞) Hubbard model of strongly correlated electrons.
Away from that point, this model describes a phenomenolog-
ical Kondo model in which the strength of the correlation is
controlled by λ. In 1D, Eq. (7) reproduces the well-known
exact results for the (U = ∞) Hubbard model [25].

At this point a following remark is in order, concerning the
correspondence between the two limits U → ∞ and λ → ∞.
It might seem that this limit is equivalent to merely setting
tij = 0 in Eq. (7) which reduces the problem to the on-site

one. This is however not true for the original Hubbard model,
where the eigenfunctions are strongly entangled and very
complicated.

The point is that, in the strong coupling limit (λ/t � 1),
the local spin-spin correlator between conduction dopons and
localized moments 〈�Si · �si〉 converges to a value of −3/4 〈nd〉.
This is precisely canceled out by the term 3/4 nd that enters
the kinetic term in Eq. (7). Because of this the theory remains
finite. The energy per site takes on the form

E = A + O(λ−1).

It starts with a λ independent term A since all the unphysical
states are excluded in this strong coupling limit. The leading
term depends on t in a nontrivial way, since in the large λ limit
the underlying Hilbert space is modified by the NDO con-
straint. For example, in 1D, the leading term takes the form [25]

A = −2t

π
sin(πδ),

where δ is a hole concentration. The corresponding subleading
terms can be found using the results for a strongly coupled
1D Kondo model [26].

III. EXACT DIAGONALIZATION: PERIODIC
BOUNDARY CONDITIONS

A. Large clusters with one and two holes

To get some insight into what kind of magnetic order
one might expect at finite doping, we start by performing
exact diagonalization of the finite lattice clusters. In this
as well as in the two subsequent sections, we use periodic
boundary conditions (PBCs). Some interesting and important
modifications caused by the use of other possible boundary
conditions will be discussed in detail in Sec. V.

The size of the Hamiltonian matrix to be diagonalized
is 3N × 3N , where N is the number of sites. This makes
a diagonalization difficult even for N ∼ 20. However, the
Hamiltonian is a block-diagonal matrix, where each block
corresponds to a given number of electrons and a total spin
projection. Let us first restrict a number of holes to that
of nh = 1,2 and fix the total spin projection to be Qz =
Qmax,Qmax − 1. In this case we can significantly enlarge
the lattice size due to the fact that the size of the largest
Hamiltonian block (nh = 2,Q = Qmax − 1) is proportional to
the N (N − 1)(N − 2)/2.

In Fig. 1 we report the results on the exact diagonalization
of finite clusters with a maximal size up to 12 × 12 sites
and the periodical boundary conditions (PBCs). The upper
curve corresponds to the case of nh = 1 and it displays the
difference between a fully polarized state and a state with one
spin flipped, �E = E(Qmax − 1) − E(Qmax). In case of one
hole our results agree with Nagaoka’s theorem, which predicts
that a fully polarized state is the ground state. The lower curve
displays the same quantity for the case of nh = 2. In case of
two holes the energy of a fully polarized state lies higher than
that of a state one spin flipped for all the considered lattices
sizes. Such a behavior of the energy levels shows that the fully
polarized state is not a ground state for two holes. In other
words, the Nagaoka state with two holes is unstable which
fully agrees with results published elsewhere [27].
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FIG. 1. The figure shows the energy difference �E = E(Qmax −
1) − E(Qmax) between the states with Q = Qmax and Q = Qmax − 1
for the different numbers of holes nh. The lattice size N = L × L

and the doping level δ = nh/L
2.

B. Small cluster exact diagonalization

We further proceed by computing the lowest energy as a
function of various hole numbers nh and total spin projections
Qground for different clusters with the size up to 4 × 4. The
obtained results presented in Fig. 2 show that a fully polarized
FM state is a ground state only if there is one hole in a lattice.
For more than one hole, a fully polarized state is never a ground
state. Our results coincide exactly with those obtained by other
methods [28].

On the other hand, for hard-core spinful bosons, the ground
state appears as a fully polarized state at any number of holes.
This agrees [29] with the statement exactly proven elsewhere
that, for spinful bosons, the hard-core ferromagnetism is stable
for all hole densities [30].

Another interesting issue to address concerns the character
of a possible associated quantum phase transition. Let us
assume that there is a thermodynamically stable fully polarized
state at finite doping in the region of 0 � δ � δcr. Is then
the onset of leading instability of this fully polarized phase
implies that it occurs gradually, through small �Q = 1
changes in the total spin? Or instead, such a transition is
discontinuous, meaning a large abrupt change in the total
spin �Q � 1? The results of the exact diagonalization of the
small clusters displayed in Fig. 2 indicate that the transition
from the Nagaoka state to the state with two holes always
occurs through an abrupt spin change that increases with the
lattice size. In particular, the results presented in Fig. 2(a)
tell us that �Q = 2, whereas those for Fig. 2(d) indicate
that �Q = 7. This therefore seems to indicate at first sight
that the breakdown of the Nagaoka phase at T = 0 is of a
discontinuous character. However, the “oscillation” character
of the curves displayed in Fig. 2 show that, at larger number
of holes, nh > 2, there are in fact transitions with �Q = 1 or
even �Q = 0. It is not therefore clear what type of transitions
actually survives in the thermodynamic limit. In any event, the
finite cluster calculations displayed in Fig. 2 do not support

the statement that the destruction of the Nagaoka state is
necessarily accompanied by an abrupt change of the total spin.

The exact small-cluster diagonalization can also be used to
compute the spin-spin correlations 〈Qz

i Q
z
i+1〉 between nearest-

neighbor sites. Figure 3 shows these correlations computed on
the same clusters as those depicted in Fig. 2. In the hard-core
boson case, the correlation functions are purely ferromagnetic
and scale as n2

e . This clearly corresponds to the fully polarized
states. For the hard-core fermions, however, the correlations do
not reveal any FM magnetic order except for the one-hole case,
where the correlations coincide with those in the hard-core
boson case. In the fermionic case, a sort of AFM order builds
up instead, with a magnitude of the correlations decreasing
with the total lattice size. In the next section, we confirm this
result by QMC calculations for larger lattice clusters.

IV. QUANTUM MONTE CARLO CALCULATIONS

An alternative approach is based on a computation of spin-
spin correlation functions by employing the QMC algorithm.
In this way one can estimate a magnetic correlation length in
the asymptotic regime r � a. In case this quantity shows no
appreciable dependence on finite-size effects, one may draw
certain reliable conclusions on a character of the underlying
magnetic order.

One must however take proper care of the fact that we are
dealing with a strong-coupling problem. Namely, since we are
interested in the large λ limit, it seems appropriate to separate
the Hamiltonian (7) in the following way: HU=∞ = H0 + Hint,

where the leading term is now

H0 = λ
∑

i

(
�Si · �si + 3

4
nd

i

)
,

and the “interaction” term is

Hint = 2t
∑
ijσ

d
†
iσ djσ , t/λ  1.

Although the exact diagonalization remains of the same
complexity, the spin-spin correlators can be computed in a
more efficient way by employing the localized and itinerant
degrees of freedom displayed by our model (7). The conver-
gence of the QMC depends on a selected basis. Taking the
Hamiltonian in this form allows us to achieve the significant
weakening of the sign problem in the low-doped case due to
two facts. First, it allows us to diagonalize the H0 term in
the one-site representation and rewrite Hint in the new basis.
During the simulation we can set λ finite and then unphysical
configurations that involve λ terms can occasionally occur.
Since all measurements occur in the absence of these configu-
rations, they do not contribute to the final result. This approach
significantly improves the ergodicity of the algorithm and does
not contradict the detailed balance principle. Second, in those
circumstances the sign problem weakens because of the fact
that, in the spin-dopon representation, the greater the density
of dopons, the smaller is the average sign. For example, in case
of exactly one dopon, the sign problem is absent. However, if
standard electron operators are used the average sign in the
same case is extremely small, and this is something we must
definitely avoid.
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(a) (b)

(c) (d)

FIG. 2. The spin value in the ground state for the different numbers of electrons ne = N − nh. Periodic boundary conditions are imposed.

To compute the spin correlators we adopt the continuous
time worldline (CTWL) QMC algorithm based on the repre-
sentation of the partition function in the interaction picture:

e−βHU=∞ = e−βH0Tτ

[
exp

(
−

∫ β

0
Hint(τ )dτ

)]
, (8)

where Tτ stands for the τ -ordering operator, and the partition
function ZU=∞ = tr e−βHU=∞ . All the necessary details for
the CTWL QMC algorithm to be applied to treat the lattice
Kondo-Heisenberg model can be found in a recent paper
published elsewhere [31]. The numerical simulations exposed
in that work are simply to be restricted to the case of J = 0.

The spin-spin correlation function g(r) for the physi-
cal electron operators is calculated for a fixed number of
dopons δ:

g(r) = 4

�(r)

∑
ij

〈(
Sz

i + sz
i

)(
Sz

j + sz
j

)〉
δ̄(r − |Ri − Rj |), (9)

where Ri is the radius vector of the site i, �(r) = ∑
ij δ̄(r −

|Ri − Rj |), and

δ̄(x) =
{

1, if |x| � 0.5a,
0, otherwise, (10)

with a being the lattice constant and 〈· · · 〉 being an average
over the spin configurations generated in the QMC run. The
correlation function is normalized by the condition g(r = 0;
δ = 0) = 1. All numerical results are obtained for a 20 × 20
lattice cluster with periodic boundary conditions.

Figure 4 displays the corresponding spin-spin correlators
for the hard-core bosons [Fig. 4(a)] and the hard-core fermions
[Figs. 4(b) and 4(c)]. In the boson case, the FM order is clearly
observed in full accordance with the exact result [29]. The
small-cluster exact diagonalization results displayed in Fig. 3
clearly show that the correlation function scales at T = 0 as
n2

e . This implies that g(r) ≈ 1 at δ  1. Finite-temperature
effects considerably suppress the correlation function as seen
in Fig. 4. However, it remains finite since g(r) ≈ 0.2, r � a.
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(a) (b)

(c) (d)

FIG. 3. The 〈Qz
i Q

z
i+1〉 correlation between nearest sites for the different numbers of electrons ne = N − nh. Periodic boundary conditions

are imposed.

The observed order in hard-core bosons case is of course
not truly long ranged since it does not exist in 2D at
finite temperature but rather quasi-long-range feature. The
associated FM correlation length is finite but much larger than
the cluster size. In fact it scales exponentially with 1/T as
T  t .

Figure 4(b) displays the fermion spin correlators for the
different doping levels. In sharp contrast to the hard-boson
case, there is no tendency towards FM ordering at finite
doping. The spin-spin correlations in real space show no
evidence of even short-range FM correlations, but rather weak
AF correlations instead [32]. In case there indeed were a
continuous phase transition at a critical doping δc at which a
true long-range FM order in a ground state in 2D does emerge,
then, in the associated quantum critical region specified in
particular by the requirements δ = δc, T  t , the system must
necessarily display a finite FM spin-spin correlation length
that scales as T −1/z where z � 1 is a dynamic exponent. This
exponent parametrizes the relative scaling of space and time.

The precise value of z could have been guessed provided an
appropriate effective action to describe the low-energy physics
of the U = ∞ Hubbard model would have been available,
which however is not the case. Just to get an idea as to what
might be the order of magnitude of the spin-spin correlation
length away from the critical point, let us assume that z = 1 (In
Fermi-liquid-like systems this would imply that there are no
overdamped modes associated with an ordering field [34]). In
this case ξFM ∝ λT , where the de Broglie wavelength at finite
temperature λT = v/T . This relation implies that thermal and
quantum fluctuations are equally important in this (critical)
regime. The characteristic velocity of the quasiparticle low-
energy excitations v ∝ ta. At a given temperature T = 0.1t ,
we therefore get ξFM ∝ 10a. In other words, the long-range
magnetic order in the ground state would manifest itself at
finite temperature through a finite correlation length of order
of at least a few lattice spacings. We however never observe
the spin-spin correlation functions that display such a behavior
down to a very small doping level of δ = 0.01.
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(a)

(b)

(c)

FIG. 4. (a) Correlation functions for L = 10 for different doping
levels for the hard-core boson case at T = 0.1t . (b) The same for
fermion case. Solid (dashed) lines show results obtained for L = 20
(L = 10), respectively. Number of lattice size is N = L × L. (c) The
highlighted fragments of (b) with the doping level being separately
presented.

V. DISCUSSION: ROLE OF BOUNDARY CONDITIONS

We have shown that the spin-spin correlation function
analysis provides strong arguments against thermodynamic
stability of the Nagaoka phase. However, a different conclusion
was reached in a recent work [35] that employs a density
matrix renormalization group (DMRG) approach to study a
phase diagram of the infinite U Hubbard model on two- to
six-leg ladders. The authors find a fully polarized FM phase
at zero temperature, when δ, the density of holes per site, is in
the range 0 < δ < 0.2. As those results are largely insensitive
of the ladder width, they consider them representative of the
2D square lattice. These two conclusions seemingly contradict
each other. In this section we intend to clarify this issue.

The important distinction between our work and the paper
[35] has to do with the choice of boundary conditions. In the
latter open boundary conditions (OBCs) are used, whereas we
use the PBCs instead. We check by the exact diagonalization
on rather large clusters how significant is this difference. To
this end, we consider 12 × 12 clusters with one and two holes.
As we showed in Sec. III, in this case, the PBCs imply that
the two-hole Nagaoka (fully polarized) state is never a ground
state of the system. In case of the OPB a one-hole state is again
fully polarized as it should be as is in the case for the PBC
in agreement with Nagaoka’s theorem. However, the two-hole
case is now represented by the two distinct phases.

Figure 5 shows the phase separation for the different
lattice sizes and different boundary conditions, with Fig. 5(a)
corresponding to the OBCs. The fully polarized (FP) phase
implies that the E(Q = Qmax) < E(Q = Qmax − 1). In this
case, the FP ground state is allowed though it is not necessarily
realized. In contrast, the one spin flipped (SF) phase depicted
by the shaded area corresponds to the case of E(Q =
Qmax) > E(Q = Qmax − 1). This phase strictly prohibits a
fully polarized ground state, because an energy of at least
one spin flipped state is lower than that of the fully polarized
state. The phase diagram in Fig. 5(a) is in an accordance with
the results of Ref. [35]. At sufficiently large length of the two-,
four-, six-leg chains a fully polarized two-hole state is lower
than that with one spin flipped.

Our calculations agree with those obtained within the
DMRG approach for large enough chain length. For example,
at the critical hole concentration δc = 0.2, a two-leg chain
exhibits a fully polarized ground state only when the chain
length is equal to or larger than 5. In this case, the critical
number of the doped holes at which the FP state becomes
more favorable should be equal to (2 × 5) × (1 − 0.8) = 2,
which agrees with the results depicted in Fig. 5(a).

We thus see that the OBCs allow for the existence of the
fully polarized ground state at a sufficiently large lattice (a
length along one of the axes � 5). There is however one
exception. As seen from Fig. 5(a), the square L × L lattice
clusters with two holes have at least one state, which has
lower energy that the fully polarized one. The Nagaoka state
is unstable in this case. This is an interesting observation,
since usually just square lattice clusters are used in the actual
carrying out the 2D-limiting procedure.

Let us now turn to the case of the so-called mixed boundary
conditions (MBCs). The results are reported in Fig. 5(b). The
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(a) (b) (c)

FIG. 5. The figure shows the energy difference between the fully polarized (FP) state (Q = Qmax) and the one spin flipped (SF) state
(Q = Qmax − 1) in case of two holes for the different lattice sizes N = Lx × Ly . The SF areas correspond to the case E(Qmax − 1) < E(Qmax),
the FP areas correspond to the case E(Qmax − 1) > E(Qmax). (a) The lattice with the open boundary conditions. (b) The lattice with the periodic
boundary condition for the axis x and the open boundary condition for the axis y. (c) The lattice with the periodic boundary conditions.

MBCs imply that the PBCs are imposed along the x axis and
the anti-PBCs along the y axis. As seen from Fig. 5(b), in case
the periodicity holds along the “long” side of a lattice rectangle,
then the SF state is more favorable; in the opposite case, the
fully polarized state is preferable. This is quite natural, since
if a 2 × 50 lattice cluster is bent into a ring along the short
side so that only two sites on the opposite sides interact, this
clearly will produce no noticeable effects.

Finally, Fig. 5(c) shows that the PBCs used in our work
imply that the state with Q = Qmax − 1 is always more
favorable than the polarized one. In other words, the fully
polarized state with the PBCs is never a ground state.

VI. CONCLUSION

In conclusion, we show that there is an influence of the
boundary conditions on the thermodynamic limit for the
(U = ∞) Hubbard model. The contribution that comes from
the fixing boundary conditions may play a key role even
for very large lattice cluster calculations. In principle, this
happens because such contribution and that which comes from
the difference in energy between a fully polarized and the
unpolarized states are of the same order—O(1/N ) [27].

Within the approach based on the PBCs (for which the
original Nagaoka theorem was formulated), the lack of a clear
sign of FM short-range spin correlations in the parameter
range studied in our work provides strong arguments against
thermodynamic stability of the Nagaoka phase at least for the
hole concentrations δ � 0.01. It is very likely to conclude that
the critical hole concentration is in fact equal to zero. There
are actually only two acceptable options in the thermodynamic
limit in this case, namely, either the FM order does not exist at
all, which is the case for the hard-core fermions, or it is realized
at all possible hole densities. This last (unphysical) option
corresponds to implementing the hard-core bosonic statistics
for the constituent particles. Employing on the other hand
the OBCs (or MBCs) may result in the qualitatively different
results for the thermodynamic limit depending on a way one
chooses to approach this limit (by using square or rectangular

building blocks, e.g., in case of the OBCs). These observations
imply that the relevant thermodynamic limit remains unclear.

APPENDIX

In the Appendix we provide a derivation of the Nagaoka
theorem within a framework of the spin-dopon representation.
For simplicity we restrict ourselves to the case of a D-
dimensional hypercubic regular lattice. In this case the sign
of t is irrelevant so that we can fix the Hamiltonian to be

HU=∞ = −2t
∑
ijσ

d
†
iσ djσ + 3λ

4

∑
iσ

d
†
iσ diσ

+ λ
∑

i

�Si · �si, t > 0. (A1)

The limit λ → ∞ reduces the on-site Hilbert space to that
comprising a spin-up state |↑〉i = |↑0〉i , a spin-down state
|↑〉i = |↑0〉i , and a vacancy state |0〉i = |↑↓〉i−|↓↑〉i√

2
. We should

therefore consider

H = −2t
∑
ijσ

d
†
iσ djσ (A2)

in the reduced Hilbert space.
We define the basis one-vacancy states as

|i,{σ }〉 = |σ1σ2 · · · 0i · · · σN 〉,
where σk = ↑↓ and {σ } is a multi-index describing an arbitrary
set of the lattice spins. The vacancy state |0〉i is a total spin
singlet defined above.

Let

|�〉 =
∑

(i,{σ })
ψ(i,σ )|i,{σ }〉

be an arbitrary one-hole normalized state. Let us define a state
|〉 with Q = Qmax = Qz = (N − 1)/2 as

|〉 =
∑

i

φi |i,{↑}〉. (A3)
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Here �Q = ∑
i(�Si + �si) is a vector of the total spin of

the electrons φi = (
∑

σ |ψi,σ |2)1/2, and the multi-index {↑}
represents that all the lattice spins point upwards. The energy
of the state |�〉 is evaluated to be

〈�|H |�〉 = −t
∑
ij,στ

ψ̄iτψj,σ � −t
∑
ij

φ̄jφi

� −t
∑
ij

|φi |2 = −tz, (A4)

where z is a coordination number. To obtain (A4) we have
repeatedly used the Schwartz inequality [36]. From (A3) it
follows that the energy of the ground state

Egr = −tz.

The last inequality in (A4) is saturated for the state (A3)
provided φi = const = 1/

√
N . Such a state describes the fully

polarized lattice spins and a hole with the highest mobility. This
indicates that the fully polarized ferromagnetic state

|gr〉 = 1√
N

∑
i

|i,{↑}〉

is indeed the ground state of the system. This state has Q =
Qz = (N − 1)/2.

Now it is left to show that there is no other state with
E = −tz and Q < Qmax. Let us denote the state with E = −tz

and arbitrary given N↑ and N↓ by

|〉 =
∑
(i{σ })

ψ(iσ )|i,{σ }〉.

The Schrödinger equation

H |〉 = −tz|〉
then gives

ψ(iσ ) = z−1
∑

jτ=n[iσ ]

ψ(jτ ). (A5)

Here n[iσ ] denotes nearest neighbors of (iσ ). The unique
solution to (A5) reads [1]

ψ(iσ ) = const. (A6)

This again corresponds to the state with Q = Qmax and Qz =
(N − 1)/2, so that there is no state with E = −tz and Q <

Qmax.
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