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Itinerant-localized model of strongly correlated electrons: Fermi surface reconstruction
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A number of recent experiments have highlighted a remarkable transformation of a large cuprate Fermi
surface into small pockets in the underdoped region signaling a breakdown of a conventional Fermi liquid theory
in the pseudogap phase. A few phenomenological models have been recently put forward to account for this
transformation. However, none of those models have been derived microscopically or are totally compatible
with experimental data. In the present work we show that the observed Fermi-surface reconstruction can be
accounted for directly within a standard microscopic t–J model of correlated electrons, provided strong electron
correlations are properly taken into account.

DOI: 10.1103/PhysRevB.96.195161

I. INTRODUCTION

The experimental observation of quantum oscillations (QO)
in the lightly hole-doped cuprates in high magnetic field [1]
is an important breakthrough since it indicates that coherent
quasiparticles might exist even in the pseudogap (PG) regime.
The theory does not exhibit a large Fermi surface (FS)
enclosing the total number of charged carriers. Instead, the
FS consists of small pockets with a total area proportional to
the dopant density δ rather than the 1 + δ which is expected
for conventional Fermi liquids (FLs).

This remarkable crossover between those two regimes
occurs at a hole density around δc ≈ 0.19 [2]. Both Hall and
Seebeck coefficients are negative at low temperature in high
magnetic fields below δc. This indicates that, despite the hole
doping, the FS reconstructs into small electronlike pockets
dominating the transport at low temperature. All translational
symmetry-breaking models proposed so far predict, however,
hole pockets (or open “arcs”) at the nodal point (π

2 , π
2 ) in

the Brillouin zone (BZ) and the possibility of an electron
pocket at the antinodal point (π,0). The latter option seems
unphysical, since it is rather unlikely that antinodal pockets and
the PG state might exist simultaneously at the same location
in the BZ. The more exotic route involves a new metallic
state—the so-called fractionalized Fermi liquid (FL∗)—which
exhibits small hole pockets similar to what is observed in
an antiferromagnetic (AF) metal, keeping at the same time
the translational symmetry intact [3]. However, the necessary
high-temperature remnant ingredients for such an approach—
the associated Z2 topological gauge excitations “visons”—
have never been detected in the cuprates so far.

The most promising approach to account for this FS
reconstruction into small electronlike pockets is presumably
the one which assumes that it results from the charge density
wave (CDW) modulation observed in the PG phase for
hole-doping levels δc1 � δ � δc2. The onset temperature of the
CDW correlations forms a “dome” ranging from δc1 ∼ 0.08
to δc2 ∼ 0.16 in the δ–T phase diagram, with a peak of
TCDW ∼ 160 K for δ ∼ 0.12 [4]. This is also where the QO
amplitude is maximal. As a matter of fact, Harrison and
Sebastian [5] proposed a phenomenological model in which
nodal electron pockets can be understood as a consequence
of a bidirectional CDW order. This may provide a way to

explain the small QO observed in Yttrium barium copper oxide
(YBCO), as well as the negative Hall and Seebeck coefficients
observed at low temperature in high magnetic fields. Note that
those pockets are obtained in the presence of the long-range
CDW order. At zero magnetic field the order is short range
and the effect is less visible by a zero field alternative to
QO, angle-resolved photoemission spectroscopy (ARPES).
The sides of the pocket manifest themselves as disconnected
arclike features near the nodal region. The onset of PG is
defined by the opening of an antinodal gap and reconstruction
of the large FS to a small pocket or a Fermi “arc” which
may actually be one side of a Fermi pocket. Since it occurs
approximately at δ = δc > δc2, the CDW correlations should
not be considered as the root cause of the PG phenomenon. It
rather appears as just an instability inside the still-mysterious
PG phase [4].

In spite of its appeal, the approach based on the CDW
modulations to explain the electron-like nature of the small
FS pockets exposed in Refs. [5,6] remains to this date on
a phenomenological level that cannot be justified within a
microscopic framework of the t–J model at the relevant values
for the incoming parameters. Besides, it is still unclear whether
the small FS is indeed merely revealed by QO or possibly
created by the necessary high magnetic field. A natural
question then arises of whether or not the FS reconstruction
observed in the underdoped cuprates can be accounted for
directly within the standard t–J model at zero field. The main
aim of the present work is to demonstrate that this is indeed
the case, provided the strong electron correlations encoded into
the local no double occupancy (NDO) constraint are properly
taken into account.

II. ITINERANT-LOCALIZED MODEL

In the underdoped cuprates, one striking feature is the
simultaneous existence of both localized and the itinerant
nature of the lattice electrons. The interplay between spin
and charge degrees of freedom plays a dominant role in
determining the physics of strongly correlated electrons. It
is therefore convenient to rewrite the t–J model Hamiltonian
in a form well suited to take these degrees of freedom explicitly
into account. One might hope that representing the t–J model
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in a form that takes both aspects into consideration, on an equal
footing, would help to address the problem in a more efficient
way both analytically and numerically.

For this purpose Ribeiro and Wen proposed a slave-particle
spin-dopon representation of the projected electron operators
in an enlarged Hilbert space [7],

c̃
†
i = c

†
i (1 − ni−σ ) = 1√

2

(
1

2
− 2�Si · �σ

)
d̃i . (1)

In this framework, the localized feature of the electron is
represented by the lattice spin �S ∈ su(2), whereas its itinerant
nature is described by the doped hole (dopon) represented
by the projected hole operator, d̃iα = diσ (1 − nd

i−α). Here

c̃† = (c̃†↑,c̃
†
↓)t and d̃ = (d̃↑,d̃↓)t .

The NDO constraint to encode strong correlations reduces
to a Kondo-type interaction [8],
∑

α

(c̃†iαc̃iα) + c̃iαc̃
†
iα − 1 = �Si · �si + 3

4
(d̃†

i↑d̃i↑ + d̃
†
i↓d̃i↓) = 0,

(2)

with �si = ∑
α,β d̃

†
iα �σαβd̃iβ being the dopon spin operator. As a

result, the canonical t–J model can be reduced to a lattice
Kondo–Heisenberg model at a dominatingly large Kondo
coupling to describe the underdoped cuprates [9],

Ht−J =
∑
ijσ

2tij d
†
iσ djσ + J

∑
ij

(�Si · �Sj )

+ λ
∑

i

(
�Si · �si + 3

4
nd

i

)
, λ/t 
 1. (3)

In spite of the global character of the parameter λ, it enforces
the NDO constraint locally due to the fact that the on-site
physical Hilbert subspace corresponds to zero eigenvalues of
the constraint, whereas the nonphysical subspace is spanned
by the eigenvectors with strictly positive eigenvalues. The
unphysical doubly occupied electron states are separated from
the physical sector by an energy gap ∼λ. In the λ → +∞
limit, i.e., in the limit in which λ is much larger than any
other existing energy scale in the problem, those states are
automatically excluded from the Hilbert space so that our
model represents the canonical t–J model. At a finite λ

the NDO constraint is relaxed, and as soon as this happens
the unwanted unphysical states are allowed to contribute to
the theory as well. In the λ → 0 limit, no correlations are
present and the problem reduces to its weak-coupling limit
that exhibits a conventional Fermi liquid behavior.

III. METHOD

We employ the cluster perturbation theory (CPT) method
described in Refs. [10–12] to calculate the spectral function
A(k,ω) = − 1

π
ImG(k,ω), where G(k,ω) is the single-particle

Green function at momentum k and energy ω. We focus our
attention on the spectral function properties at ω = 0 which
are then directly related to a relevant FS.

The CPT scheme is based on an exact diagonalization of
small clusters and on the accountability of an intercluster
interaction by means of an appropriate perturbation theory.
We define the Hubbard operators X

pq

I = |p〉I 〈q|I , where the

|p〉I and 〈q|I are the eigenstates of the I th cluster (from now
on the capital letters denote the cluster indexes). In this basis
the Hamiltonian (3) takes on the following form:

Ht−J =
∑
Ip

εpX
pp

I +
∑
IJ

∑
αβ

T
αβ

IJ Xα
I X

β

J , (4)

where εp is the pth eigenvalue and the α and β denote
composite indexes, e.g., α = (p,q). The first diagonal term
accounts for the interaction within the I th cluster. The
second term describes the intercluster interaction. The T

αβ

IJ

are hopping integrals between clusters. The Fourier transform
of the Green function, Dαβ(k̃,ω) = 〈〈Xα

k̃
|Xβ

k̃
〉〉ω, is taken in the

form [11]

D(k̃,ω)−1 = D0(ω)−1 − T (k̃), (5)

where

D0
αβ(ω) = δαβ

〈Xpp〉0 + 〈Xqq〉0

ω − εq + εp + μ
.

Here μ is the chemical potential and the k̃ is a corresponding
wave vector defined in the reduced Brillouin zone [10]. The
full-lattice electron Green function to calculate spectra reads

Gσ (k,ω) = 1

Nc

∑
αβ

∑
ij

γ
†α
iσ γ

β

jσ e−ik(ri−rj)Dαβ(k̃,ω), (6)

where the expansion in powers of the intercluster interaction is
implied. Here Nc is the number of the sites in the cluster, γ α

iσ =
〈p|diσ |q〉, the wave vector k belongs to the original Brillouin
zone, and ri is the intracluster radius vector. By construction,
the electron Green’s function possesses the symmetries of the
underlying lattice.

This approach is effectively controlled by the inverse power
of the cluster size, 1/Nc. It is clear that the CPT method is well
suited to calculate properties that are driven by short-range
correlations. Long-range correlations are effectively cut off
by the cluster size and are taken into account only “on
average” within a chosen perturbative scheme. This may result
in a quantitatively incorrect description of possible phase
transitions producing, e.g., an overestimated value for the
corresponding transition temperature. However, as soon as the
cluster size Nc gets larger the critical temperature goes down,
as it should be.

There exists two different approaches to perform the cluster
diagonalization within the CPT. The most frequently used per-
forms calculations with a limited number of low-energy states.
It features the Lanczos algorithm as well as the density matrix
renormalization group method [13]. This approach allows one
to deal with relatively large clusters (Nc � 4 × 4), as long as
one discards the high-energy states. Yet this procedure may
lead to incorrect results. The reason for this is that the physics
of the lightly doped Mott insulators cannot be separated into
low- and high-energy sectors. The transitions with relatively
high energies may thus have significant spectral weights and
if we neglect such contributions it may produce a violation of
the total spectral weight. This approach is used in this work
to calculate the spectral properties for 4 × 4 cluster and for
λ ∼ t cases. Within the second approach employed in this work
for 3 × 3 cluster calculation the whole set of eigenvalues and
eigenvectors is calculated entirely. This kind of diagonalization
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allows us to control the total spectral weight by taking into
explicit account the whole set of possible transitions. However,
the price we pay for this reflects itself in the fact that the
maximal cluster size is significantly reduced in size (the
available size of the square clusters are 2 × 2 and 3 × 3).

IV. RESULTS

Our main results are displayed in Fig. 1, which reports
the actual FS evolution with doping. There are basically four
distinct regimes.

(i) Small Fermi “arcs” are realized in the nodal region of the
BZ for the hole-doping level 0.08 � δ � 0.11 as depicted in
Figs. 1(a) and 1(b). The root cause for these arcs is not entirely
clear. They may presumably occur due to a still-unknown
translational symmetry breaking order that may set in close
to half-filling away from the AF phase. Such an order is
supposed to strongly compete with the superconducting order
which results in corresponding short-range correlations. Short
correlation lengths lead to a reduction of the spectral weight
[14]. Because of this the “arcs” are observed rather than the
closed pockets. In high magnetic fields that annihilate the su-
perconducting state, those “arcs” get closed into small pockets.

(ii) An interesting physics is exposed by Figs. 1(c)–1(f).
In fact, they display the FS reconstructed by the bidirec-
tional (checkerboard) CDW order. This is most clearly seen
in Fig. 1(d): There is a nodal electron-like Fermi pocket
accompanied by two holelike pockets located closer to the
“antinodes.” In this way the reconstructed FS appears as a
characteristic feature of the underlying bidirectional CDW
order that competes with the superconducting order [6]. It
starts to form at δ = 0.14 and it becomes mostly pronounced
at δ = 0.16. For larger hole concentrations, the hole pockets
get enhanced, whereas the electron pocket are reduced in size.
Finally, at δ = 0.2, the CDW order terminates. It represents a
broken Fermi “arc” as indicated in Fig. 1(f).

Note that one side of the electron pockets depicted in
Figs. 1(c)–1(e) is of a rather low intensity. This is due to the
fact that in zero magnetic field the CDW order is short range.
The long-range CDW order is likely to be present only in a
strong magnetic field. This is consistent with the observation
of well-defined pockets as seen in the quantum oscillation
experiments [15]. At zero field, the pockets are not well
developed and basically appear as “arcs” as seen in ARPES.

(iii) In the doping range 0.2 � δ � 0.25, the CDW order
disappears, and the PG phase, with no trace of CDW ordering,
is again characterized by the nodal “arc” depicted in Fig. 1(g).

(iv) At hole doping δ � 0.26, the large hole-pocket centered
at (π,π ) is developed as depicted in Fig. 1(h). Such a FS is
typical of conventional FL. The critical hole concentration
that separates large FS from the PG phase is approximately
δPG
c = 0.25.

Although the specific values of the hole concentrations that
mark different phases are shifted towards relatively larger
values compared to those observed in experiments, Fig. 1
agrees qualitatively rather well with the experimental data
for the underdoped cuprates. The overestimated values of
the critical hole concentrations is presumably an artifact
of the finite 3 × 3 size of the cluster building blocks used in the
present CPT theory. Exact diagonalization of larger clusters

(0,0) (π,0)

(0,π)

δ=0.08

(a)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.11

a)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.11

a)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.11

(b)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.14

(c)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.16

(d)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.18

(e)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.2

(f)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.22

(g)

(π,π)

(0,0) (π,0)

(0,π)

δ=0.26

(h)

(π,π)

FIG. 1. The spectral function at the Fermi level in the first
quadrant of the BZ is calculated for model (3) with J = 0.4t ,
λ = 103t , T = 10−3t for different doping levels δ. The second
and third nearest-neighbor hopping amplitudes are t ′ = −0.27t and
t ′′ = 0.2t , respectively. The spectral function is calculated using the
CPT method on a 3 × 3 cluster with the Lorentzian broadening
η = 0.02t .

poses a well-known limitation, however, whereas restricting
ourselves to just a set of low-lying excited states results in an
uncontrolled error.

Although the conventional t–J model captures the large FS
splitting into small pockets/“arcs,” it might seem that the CDW
instability represented in Figs. 1(c)–1(f) does not necessarily
appear as an intrinsic property of the model. The point is that,
within the CPT approach, we employ the 3 × 3 clusters with
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(0,0) (π,0)

(0,π) (π,π)

δ =0.16

(a) (b)

FIG. 2. Panel (a) shows the Fermi surface for the doping level
δ = 0.16 (the other parameters are the same as in Fig. 1) with the
open BCs being removed by imposing the local chemical potentials
(see the main text). Panel (b) schematically shows the Fermi surface at
δ = 0.16 in the presence of the long-range bidirectional CDW order.
The black curve corresponds to the Fermi arc in the absence of the
CDW. The red (blue) lines correspond to the poles associated with
the hole (electron) pockets which are respectively observed in the
presence of the long-range CDW order.

the open boundary condition (BC). This automatically results
in an inhomogeneous distribution of the electron density
within the isolated cluster. (Note, however, that the smallest
possible 2 × 2 cluster does not result in such an induced CDW
order [16]).

This is not the case, however. The CDW order obtained
within the t–J model, the main finding of the present paper,
is not simply due to the choice of the 3 × 3 cluster with the
open BCs. In other words, it is not an artifact of the calculation
method but rather the intrinsic property of the t–J model. In
fact, to remove the impact of the open boundary conditions, we
impose the on-site chemical potentials on each cluster site. This
modification amounts to adding to the Hamiltonian the term:

δH =
∑

i

μini, (7)

where ni = ∑
σ d

†
iσ diσ and the chemical potentials μi are

chosen to make the intracluster electron density homogeneous,
while the ground-state energy is kept intact. This modification
allows us to suppress the intracluster charge density wave
generated by the open boundary conditions. The Fermi
surface at the doping level δ = 0.16 is calculated using this
modification. The result displayed in Fig. 2(a) is in qualitative
agreement with the FS obtained using the unmodified 3 × 3
clusters with the open BCs calculation as depicted in Fig. 1(d).
This should also be compared to the electron spectral function
in the presence of long-range bidirectional CDW at zero
magnetic field as schematically depicted in Fig. 2(b).

To explore the effects produced by larger clusters we derive
the FS reconstruction using the 4 × 4 clusters as building
blocks within the employed CPT. The reconstructed Fermi
surfaces are presented in Fig. 3. The structure of Fermi surface
reconstruction is qualitatively the same as that in the case of
3 × 3 cluster building blocks. For larger clusters, the values
of the critical doping levels of the CDW phase happens to
be in a better agreement with the experimental observations.
Our calculation predict the existence of charge density wave
in the doping level range δ = 0.10–0.16. There are, however,

(0,0) (π,0)

(0,π) (π,π)

δ =0.08

(a)

(0,0) (π,0)

(0,π) (π,π)

δ =0.1

(b)

(0,0) (π,0)

(0,π) (π,π)

δ =0.12

(c)

(0,0) (π,0)

(0,π) (π,π)

δ =0.14

(d)

(0,0) (π,0)

(0,π) (π,π)

δ =0.16

(e)

(0,0) (π,0)

(0,π) (π,π)

δ =0.18

(f)

FIG. 3. The Fermi surfaces calculated by CPT method for the
4 × 4 cluster. The model parameters are the same as in Fig. 1.

some distinctions in the location of the hole and the electron
pockets. The reason for this can presumably be traced to the
even-vs.-odd cluster size effects. At the same time, the basic
structure of the FS remains qualitatively the same.

Our model (3) also allows us to address the issue as to what
mechanism actually drives the observed FS reconstruction.
Figure 4 shows that the key point behind the observed FS
reconstruction in cuprates is the presence of the strong electron
correlations. In the limit of weak correlations (λ < t), a
large Fermi-liquid-like hole FS emerges, whereas for strong
coupling (λ = 6t) the reconstructed FS is almost identical in
shape to that obtained in the strong-coupling limit given by
Fig. 1(d). This clearly indicates that the essential physics
behind the PG phase is truly driven by strong electron
correlations. Note also that although the cluster open BCs
are not affected by λ the emergent FSs in Fig. 4 clearly display
different scenarios, varying between the large hole FS and the
induced CDW regime. This observation implicitly indicates
that the observed FS reconstruction is a true effect.

It is important to understand why the system develops the
CDW correlations instead of the AF correlations in case the
doping level is not too close to the half-filling. This happens
because of a rapid destruction of the AF long-range order
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(0,0) (π,0)

(0,π)

λ=1t

(a)

(π,π)

(0,0) (π,0)

(0,π)

λ=2t

(b)

(π,π)

(0,0) (π,0)

(0,π)

λ=4t

(c)

(π,π)

(0,0) (π,0)

(0,π)

λ=6t

(d)

(π,π)

FIG. 4. The FS with the fixed doping level δ = 0.16 and the
different λ values. Other parameters are the same as in Fig. 1.

(LRO) in the immediate vicinity of half-filling in the presence
of strong electron correlations. The itinerant-localized duality
of the lattice electrons offers the following explanation of
this phenomenon [17]. The localized individual lattice spins
become less correlated with each other due to the competition
between the AF correlations (the characteristic energy scale
∼J ) and the Kondo screening (∼λ) of the local spin moments
by the conduction dopons. The screening breaks the AF bonds.
However, if double occupancy is allowed, this breaking is
not very efficient, since it is then induced by a small (in
this regime) spin–dopon interaction λ. As λ increases, the
screening becomes more effective. Since 1/J 
 1/t , the hole
dynamics is by far the dominant one and it is much faster than
the spin dynamics. The broken AF bonds recover themselves at
a much slower rate than the breaking occurs. As a result, even a
small amount (δ ≈ 0.03–0.05) of fast-moving dopons (holes)
turns out to be, at a large-enough λ, sufficient to completely
destroy the AF LRO.

On the other hand, in underdoped cuprates, the CDW mod-
ulations are strongest at δ ≈ 0.11–0.12. At such doping level,
the AF LRO is already destroyed by strong correlations so that
only rather slow short-range AF correlations survive [14]. In
this parameter range, the AF correlation length turns out to
be much smaller than the CDW one. The latter is noticeably
affected only by the superconducting order fluctuations. As
soon as those fluctuations are suppressed (e.g., by strong
magnetic field), the full CDW long-range ordering sets in as
observed in quantum-oscillation experiments. However, for
large enough spin-spin coupling J this picture breaks down
as will also be shown below. In this case, the AF fluctuations
again destroy the CDW order.

To get an insight into in what way the AF and CDW orders
compete with each other, we first discuss such a competition
within a single 3 × 3 cluster. In Fig. 5(a), we calculate the AF

FIG. 5. Panel (a) shows the dependent of static spin structure
factor on doping level δ for different values of J . Panel (b) displays
the ratio of the AF structure factor to the CDW structure factor.

spin density wave (SDW) structure factor

S(π,π ) = 4

N

∑
ij

〈
Sz

i S
z
j

〉
ei( �ri− �rj ) �Kππ , (8)

where �Kππ = (π,π ), as a function of the hole concentration
at various J . The results of the calculation are presented in
Fig. 5(a). Despite the fact that the SDW decreasing rate is
underestimated due to the finite cluster size, the destruction of
the AF order with doping is clear.

In Fig. 5(b), we compare the AF SDW structure factor with
the CDW one. The charge density wave structure factor reads

P ( �K) = 1

N

∑
ijσ

〈d†
iσ djσ 〉ei( �ri− �rj ) �K. (9)

The CDW modulation vectors Qx = 2π (q,0) and Qy =
2π (0,q), where q ≈ 0.28 is calculated within the 3 × 3 CPT
method. This is in accordance with recent experimental
evidence which gives q ≈ 0.3 [6]. The ratios of P ( �Q) to
S(π,π ) at the different value of J are presented in Fig. 5(b). It
is clear that at δ ≈ 0.14 the CDW order starts to prevail over
the SDW one. Right at this doping level the PG Fermi “arcs”
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(0,0) (π,0)

(0,π) (π,π)

J=0.4t

(a)

(0,0) (π,0)

(0,π) (π,π)

J=0.8t

(b)

(0,0) (π,0)

(0,π) (π,π)

J=1.2t

(c)

(0,0) (π,0)

(0,π) (π,π)

J=1.6t

(d)

FIG. 6. The FS with the fixed doping level δ = 0.16 and the
different J values. Other parameters are the same as in Fig. 1.

start to reconstruct into the electron/hole pockets induced by
the bidirectional CDW. This observation is in agreement with
our 3 × 3 CPT calculations (see Fig. 1).

Finally, within the full lattice CPT, we show that the CDW-
induced FS reconstruction is destroyed by a large-enough spin
exchange coupling, J , as displayed in Fig. 6.

V. CONCLUSION

In conclusion, the FS reconstruction observed in the un-
derdoped cuprates can be accounted for within a conventional
microscopic t–J model. This reconstruction is clearly induced
by strong electron correlations. The bidirectional CDW insta-
bility observed in several recent experiments is also present
in this model. Our work provides strong arguments to believe
that these results are not artifacts of small lattices but rather
represent true physical effects due to strong electron–electron
correlations.
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