
Topological Bound States in the Continuum in Arrays of Dielectric Spheres

Evgeny N. Bulgakov1,2 and Dmitrii N. Maksimov1,2
1Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia

2Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
(Received 11 April 2017; published 26 June 2017)

We consider Bloch bound states in the radiation continuum in periodic arrays of dielectric spheres. It is
demonstrated that the bound states are associated with phase singularities of the quasimode coupling
strength. That makes the bound states topologically protected and, therefore, robust against any variation of
parameters preserving the periodicity and rotational symmetry about the array axis. It is shown that under
variation of parameters the bound states can only be destroyed by either annihilation of the topological
charge or by migration to the sector of the parametric space where the second radiation channel is open.
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Because of numerous applications [1] the ability to
confine light at the nanoscale has become a topic of great
interest in modern science. It is known that as long as
outgoing waves of the same symmetry are allowed in the
surrounding medium an optical state would lose its energy
to the environment. Consequently, the major challenge in
engineering optical bound states is to suppress the radiation
channels. The most trivial solution is to employ the guided
modes below the line of light which are protected by the
total internal reflection [2]. Another opportunity is to cloak
the light guiding structure with Bragg mirrors that block
radiative losses by the photonic band gap [3]. Both methods
virtually exploit the same idea of providing only evanescent
contribution in the far field zone. It is far less trivial though
to engineer a bound state when outgoing waves are allowed
within the given range of parameters, say, above the line of
light. The key idea is to use periodic structures which in the
far zone support an infinite number of diffraction channels
only one of them open at a selected frequency. It turns out
then, quite unexpectedly, that at a specific set of the control
parameters the periodic structure can support a source-free
localized solution accidentally decoupled from the open
channel being, of course, smoothly extended to the far zone
over the evanescent ones [4]. Such solutions with discrete
eigenfrequency embedded in the continuous spectrum of
the scattering states are know as bound states in the
continuum (BSCs) [5]. The idea of BSC dates back to
the 1929 paper by von Neumann and Wigner [6]. Since
then the BSCs have been addressed in various atomic,
solid state, optical, and acoustic systems (see Ref. [5] and
references therein).
So far most theoretically proposed and all experimentally

observed optical BSCs are realized in extended structures
because BSCs are forbidden in compact systems [5,7] with
an exception of structures coated with zero-epsilon meta-
materials [8]. Thus, as soon as a pure all-dielectric system is
considered, one needs a structure infinitely extended at
least in one dimension while confined in the other two.

To the best of our knowledge the only all-dielectric two-
dimensionally confined BSC-supporting structure known
in the literature, albeit theoretically, is a linear periodic
array of high-index dielectric spheres [9]. It is worth
noticing that though two-dimensionally confined optical
BSCs have been achieved experimentally the supporting
structures were extended at least in two dimensions [10]. In
regard to the symmetry it is self-evident that any solution
symmetrically mismatched with the outgoing wave must be
a BSC. Such symmetry protected BSCs [11] are already
seen as an important tool in photonics with applications to
normal incidence narrow-band filters [12] and light
enhancement [13]. More interesting is that periodic struc-
tures allow for a different class of BSCs in the form of
traveling or Bloch waves that are not symmetrically
mismatched with the outgoing solutions [4,14]. In 2014,
Bo Zhen et al. [15] demonstrated that such BSCs in
dielectric slabs are vortex centers in the polarization
directions of far-field radiation. They carry conserved
and quantized topological charges, defined by the winding
number of the polarization vectors, which ensure their
robust existence and govern their generation, evolution, and
annihilation. It is been conjectured that all BSCs in all-
dielectric periodic structure fall within two generic types,
namely, symmetry protected and topologically protected
ones [5]. Here we examine the Bloch BSCs in arrays of
dielectric subwavelength spheres to demonstrate that they
are associated with topological singularity of the quasi-
mode coupling strength.
The system under consideration is an array of dielectric

spheres with permittivity ϵ in air shown in Fig 1. The
extensive numerical simulations have demonstrated that in
that system there exists a single TE (but not TM) Bloch
BSC, where TE, TM stand for pure transverse electric and
transverse magnetic modes [9], correspondingly. The
computational procedure was based on the numerically
efficient method developed by Linton, Zalipaev, and
Thompson [16]. According to Ref. [16] the magnetic
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vector H could be found as a series over spherical vector
harmonics Nm

l ðrÞ;Mm
l ðrÞ

HðrÞ¼−i
ffiffiffi
ϵ

p X∞
j¼−∞

eiajkz
X∞
l¼m�

½aml Nm
l ðrjÞþbml M

m
l ðrjÞ�; ð1Þ

where j is the number of the particle in the array, rj the
coordinate vector in the jth sphere reference frame, m the
azimuthal number, and m� ¼ maxð1; mÞ. In what follows
we only consider the case of zero orbital angular momentum
(OAM) m ¼ 0. Although originally used for the guided
modes below the line of light [16] the method is shown to
converge rapidly [17] above the line of light with the number
of multipoles in the expansion Eq. (1). When the scattering
problem is addressed one can demonstrate after some
algebra [9] that for TE modes b0l ¼ 0, while the coefficient
a0l can be found by solving a set of linear equations,

L̂p ¼ q; ð2Þ

where p is the vector of coefficients a0l , q is the vector
containing the expansion coefficients of the impinging TE
wave over spherical harmonics, and L̂ the interactionmatrix.
In our case the impinging TE solutions in the far-field zone
can be described by the only nonzero component of the
magnetic vector Hz [9],

Hzðr;ϕ; zÞ ¼ J0ðχnrÞeikzz; ð3Þ

with

χ2n ¼ k20 − ðkz þ 2πn=aÞ2; n ¼ 0;�1;�2;…; ð4Þ

where r, z are the cylindrical coordinates, J0ðχnrÞ is the
Bessel function, k0 is the vacuumwave number, and kz is the
Bloch vector. In what follows we will stay above the light

line k0 ¼ kz in the range kza < k0a < π − kza, which,
according to Eq. (4), means that only one channel n ¼ 0
is open. Henceforth, we will use q0 for the expansion
coefficients of this channel.
At this point we return to Ref. [15] where the Bloch

BSCs in dielectric slabs were associated with singularities
of the polarization directions in far field radiation. In our
case the total electromagnetic field with zero OAM is split
into pure (totally decoupled) TE and TM solutions [9] and
the far-field pattern is given by a single radiation channel
(3) with a definite polarization to render the polarization
approach inapplicable. In other words, as the parameters R,
a, and ϵ are detuned from the BSC the TE solution remains
decoupled from the TM channel with the polarization
direction remaining the same. Here to construct a topo-
logical invariant we analyze the formal solution of Eq. (2).
The interaction matrix L̂ in Eq. (2) contains multipole Mie
coefficients as well as the infinite lattice sums describing
multiple scattering events between the spheres. We refer
the reader to Refs. [9,16] for the exact structure of L̂.
Importantly, according to Ref. [16] L̂ has the following
property:

Ll;l0 ¼ ð−1Þlþl0Ll0;l; ð5Þ

and, hence, is not Hermitian. For further analysis we will
use the quasimodal expansion [18] based on the biorthog-
onal basis of left ys and right xs eigenvectors

L̂xs¼λsxs; L̂†ys¼λ�sys; y†sxs0 ¼x†
sys0 ¼δs;s0 : ð6Þ

Then, the inverse of L̂ is then given by

L̂−1 ¼
X
s

1

λs
xsy

†
s : ð7Þ

It should be noticed that L̂, and, thus, λs, xs, ys are
dependent on both kz and k0 [9]. By using Eq. (5) one can
show that

fysgl ¼ ð−1Þlfx�
sgl: ð8Þ

Notice that Eq. (8) along with the normalization condition
in Eq. (6) simultaneously allow only freedom in choosing
prefactor �1 in front of xs. Further on we assume that the
signs of xs are consistently defined in the space of kz, k0.
Applying Eq. (7) we can write the solution of the scattering
problem (2) in the following form:

p ¼
X
s

Ws

λs
xs;Ws ¼ y†sq0: ð9Þ

Finally, by using fqgl ¼ ð−1Þlfq�gl [9] together with
Eq. (8) one can write

FIG. 1. Periodic array of dielectric spheres of radius R with
period a. TE Bloch BSC exists at kza ¼ 0.859, k0a ¼ 3.571,
R ¼ 0.450a, ϵ ¼ 12 with kz as the Bloch vector, and k0 the
vacuum wave number. The BSC magnetic fieldℜfHzg in the y0z
plane is shown on the right.
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Ws ¼ q†
0xs; ð10Þ

which can be interpreted as the expansion of quasimode xs
over the impinging wave. Further onWs will be refereed to
as the quasimode coupling strength.
In the BSC point a source-free solution of Eq. (2) must

exist even without the array being illuminated from the far
zone to yield a simple condition for a BSC

det½L̂ðk0; kzÞ� ¼ 0: ð11Þ

The above condition means that in the BSC point there is an
eigenvector x0 with zero eigenvalue

L̂†x0 ¼ 0; ð12Þ

obviously corresponding to the BSC mode shape. On the
other hand, by transforming Eq. (2) to the biorthogonal
basis [19] in which the interaction matrix is diagonal L̂ ¼
diag½λ1; λ2;…� one finds in the BSC point

W0 ¼ q†
0x0 ¼ 0; ð13Þ

i.e., the BSC is orthogonal to the incident wave q0.
The quasimode coupling strength is in general complex

valued to be written as

W0ðk0; kzÞ ¼ fðk0; kzÞ þ igðk0; kzÞ; ð14Þ

where fðk0; kzÞ; gðk0; kzÞ are real valued functions. In
Fig. 2 we plot the phase of W0ðk0; kzÞ,

θ ¼ argðW0Þ; ð15Þ

in the parametric vicinity of the Bloch BSC from Fig. 1.
One can see from Fig. 2 that the BSC sits on the
intersection of the nodal lines fðk0; kzÞ ¼ 0 and
gðk0; kzÞ ¼ 0, thus being a singular point of phase θ.
Finally, by introducing vector

j ¼ ∇θ ð16Þ

one can demonstrate that the BSC is the center of a vortex
in space of k0, kz.
The above picture is generic for phase singularities in

complex fields nicely described by Dennis [20]. What is
important, the singularity associated with a topological
charge is specified by the winding number

q ¼ sgn

� ∂f
∂k0

∂g
∂kz −

∂g
∂k0

∂f
∂kz

�
; ð17Þ

which prescribes either clockwise q ¼ 1 or counterclock-
wise q ¼ −1 circulation of j around the singular point [20].
The freedom in choosing the sign of xs affects neither the
winding number Eq. (17) nor the position of the nodal point
since it only flips the sign of both fðk0; kzÞ and gðk0; kzÞ
simultaneously. From the mirror symmetry with respect to
z → −z it immediately follows that there exists a complex
conjugate Bloch BSC propagating in the opposite direction
with vector −kz. By changing the sign of gðk0; kzÞ in
Eq. (17) one finds that this BSC has a winding number
opposite to that of its complex conjugate. This observation
gives us a cue to the BSC evolution scenario under
variation of the control parameters with subsequent anni-
hilation of the topological charge. The generic picture is the
following [20]. First, the topological charge is robust
against small variation of the parameters such as a, R,
and ϵ, for the nodal lines only slightly change their
configuration in space k0, kz. As the parameters are
changed further the pair of singularities with the opposite
charge approach the annihilation point in which the nodal
lines are tangent to each other. Finally, after the annihilation
has occurred the nodal lines depart from one another. The
above scenario is illustrated in Fig. 3(a).
As it follows from the mirror symmetry z → −z the

annihilation point must have kz ¼ 0. In Figs. 3(b), 3(c) we
illustrate the above speculation with numerical data. One
can see from Fig. 3(b) that two singularities with opposite
winding number sitting on the intersection of the nodal
lines approach each other in space k0, kz while Fig. 3(c)
shows a phase discontinuity that can only be relocated but
not removed by a phase shift θ → θ þ const. To check the
robustness of the Bloch BSC we numerically traced its
evolution under variation of both R and ϵ starting from the
BSC in Fig. 1. The results are shown in Fig. 4 where one
can see that with the increase of both R and ϵ the position of
the BSC shifts towards the annihilation point kz ¼ 0, where
the BSC disappears through annihilation with its complex

FIG. 2. Phase θ of the coupling strength W0 at the BSC from
Fig. 1 shown by the green circle. Nodal lines fðk0; kzÞ ¼ 0 and
gðk0; kzÞ ¼ 0 are shown by the dashed red and solid blue lines,
correspondingly. The arrows are aligned with the direction of
j Eq. (16).
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conjugate. On the other hand, with the decrease of R and ϵ
the BSC migrates to larger values of kz, k0 and eventually
arrives at the line k0a ¼ 2π − kza to be destroyed by
leakage into the second radiation channel.
Finally, let us consider the annihilation in more detail. To

do this we numerically found the resonant eigenfrequency
ω ¼ Ωþ iΓ, where Ω is the resonance position and Γ the

inverse lifetime as a function of kz for three different values
of R for ϵ ¼ 12. In Fig. 5 we plot Γ=Ω vs kz. One can see
that near annihilation the dependence exhibits two minima
which correspond to the pair of BSCs with the opposite
winding number. In the leading term the dependance could
be approximated as

Γ ∼ ðkz − kBSCz Þ2ðkz þ kBSCz Þ2; ð18Þ

where �kBSCz is the position of the minima. In the
annihilation point kBSCz ¼ 0 according to Eq. (18) we have
Γ ∼ k4z , which complies with the recent findings by Yuan
and Lu [21] who produced the same asymptotic behavior
for standing wave BSCs unprotected by symmetry. The

FIG. 3. Phase singularities of W0. (a) Generic of the scenario
for the evolution towards the annihilation of the topological
charge. The annihilation point is shown by the green star. (b) The
same as Fig. 2 but for R ¼ 0.487a. (c) Three-dimensional plot
with the same data as in (b).
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FIG. 4. Evolution of topologically protected BSC from Fig. 1
under variation of R (blue dashed line) and ϵ (red solid line). N is
the number of open channels in each sector of kz, k0 space.

FIG. 5. The inverse lifetime Γ against kz in the vicinity of
the annihilation point. The BSCs approach annihilation at
R ¼ 0.487a, blue dashed-dotted line; annihilation, standing wave
BSC emerges at R ¼ 0.490a, solid red line; the BSCs are
destroyed at R ¼ 0.491a, dashed green line. The field pattern
Hz of the standing wave BSC in the y0z plane is shown on top.
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field pattern of that BSC is shown on top of Fig. 5 where
one can see that the BSC is not symmetry protected.
In summary, we have demonstrated that the Bloch BSCs

in periodic arrays of dielectric spheres are associated with a
phase singularity of the quasimode coupling strength Ws.
That makes such BSCs topologically protected and robust
against any variation of parameters preserving the perio-
dicity and rotational symmetry about the array axis. It is
demonstrated that the Bloch BSCs can be only destroyed
by either annihilation in kz ¼ 0 or by migration to the
sector of k0, kz space where the second radiation channel is
open. Importantly, according to Ref. [22] Ws is directly
related to the scattering cross section. It was demonstrated
in Ref. [23] that in the parametric vicinity of a Bloch BSC
the singular quasimode dominates the near-field resonant
response. Meanwhile, in the far field the phase of the
resonant term in Eq. (9) controls the interference between
the scattered wave and the background impinging wave to
form a Fano feature which is recognized as a hallmark of
phase singularities in the scattering cross section [24]. In
the recent years we have seen a surge of interest to
topological light [25] including topological states in arrays
of dielectric nanoparticles [26]. The quasimodal expansion
is a natural instrument for describing optical systems with
radiative (non-Hermitian) boundary conditions [18]. We
conjecture that the proposed approach linking quasimodes
to the topological charge could be universal for Bloch
BSCs in periodic dielectric structures.

This work was supported by Ministry of Education
and Science of Russian Federation (State Contract
No. 3.1845.2017/4.6). We appreciate discussions with
Almas F. Sadreev.

[1] S. John, Nat. Mater. 11, 997 (2012).
[2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.

Meade, Photonic Crystals: Molding the Flow of Light
(Princeton University Press, Princeton, NJ, 2011).

[3] P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[4] S. Venakides and S. P. Shipman, SIAM J. Appl. Math. 64,

322 (2003).
[5] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and

M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016).
[6] J. von Neumann and E. P. Wigner, Z. Phys. 50, 291 (1929).
[7] M. G. Silveirinha, Phys. Rev. A 89, 023813 (2014).
[8] F. Monticone and A. Alù, Phys. Rev. Lett. 112, 213903

(2014).
[9] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. A 92, 023816

(2015).
[10] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte,

A. Szameit, and M. Segev, Phys. Rev. Lett. 107, 183901

(2011); S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko,
A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit,
and Y. S. Kivshar, Phys. Rev. Lett. 111, 240403 (2013);
R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B.
Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I.
Molina, Phys. Rev. Lett. 114, 245503 (2015); L. Li and H.
Yin, Sci. Rep. 6, 26988 (2016).

[11] V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon,
J. F. Young, and S. R. Johnson, Phys. Rev. B 62, 4204
(2000).

[12] J. M. Foley, S. M. Young, and J. D. Phillips, Phys. Rev. B
89, 165111 (2014); J. M. Foley and J. D. Phillips, Opt. Lett.
40, 2637 (2015); X. Cui, H. Tian, Y. Du, G. Shi, and Z.
Zhou, Sci. Rep. 6, 36066 (2016).

[13] V. Mocella and S. Romano, Phys. Rev. B 92, 155117
(2015); J. W. Yoon, S. H. Song, and R. Magnusson, Sci.
Rep. 5, 18301 (2016).

[14] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys.
Rev. Lett. 100, 183902 (2008); V. Liu, M. Povinelli, and S.
Fan, Opt. Express 17, 21897 (2009); C. W. Hsu, B. Zhen, J.
Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M.
Soljačić, Nature (London) 499, 188 (2013); Y. Yang, C.
Peng, Y. Liang, Z. Li, and S. Noda, Phys. Rev. Lett. 113,
037401 (2014); L. Ni, Z. Wang, C. Peng, and Z. Li, Phys.
Rev. B 94, 245148 (2016).

[15] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić,
Phys. Rev. Lett. 113, 257401 (2014).

[16] C. Linton, V. Zalipaev, and I. Thompson, Wave Motion 50,
29 (2013).

[17] E. N. Bulgakov and D. N. Maksimov, Opt. Lett. 41, 3888
(2016).

[18] B. Vial, F. Zolla, A. Nicolet, and M. Commandré, Phys.
Rev. A 89, 023829 (2014).

[19] The transformation T̂†
yL̂T̂xT̂

†
yp ¼ T̂†

yq is performed with
matrices T̂x ¼ ½x1;x2;…�, and T̂y ¼ ½y1; y2;…�which obey
the following condtion T̂†

yT̂x ¼ T̂xT̂
†
y ¼ 1̂. Using Eq. (6)

one easily obtains Eq. (13).
[20] M. R. Dennis, Ph. D. thesis, University of Bristol, 2001.
[21] L. Yuan and Y. Y. Lu, Phys. Rev. A 95, 023834 (2017).
[22] H. Miyazaki and Y. Jimba, Phys. Rev. B 62, 7976

(2000).
[23] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. A 94, 033856

(2016).
[24] B. S. Luk’yanchuk,A. E.Miroshnichenko, andY. S.Kivshar,

J. Opt. 15, 073001 (2013).
[25] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photonics

8, 821 (2014); M. Soskin, S. V. Boriskina, Y. Chong,
M. R. Dennis, and A. Desyatnikov, J. Opt. 19, 010401
(2017).

[26] A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko,
P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 114,
123901 (2015); S. Kruk, A. Slobozhanyuk, D. Denkova, A.
Poddubny, I. Kravchenko, A. Miroshnichenko, D. Neshev,
and Y. Kivshar, Small 13, 1603190 (2017).

PRL 118, 267401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
30 JUNE 2017

267401-5

https://doi.org/10.1038/nmat3503
https://doi.org/10.1016/0030-4018(76)90115-2
https://doi.org/10.1137/S0036139902411120
https://doi.org/10.1137/S0036139902411120
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1103/PhysRevA.89.023813
https://doi.org/10.1103/PhysRevLett.112.213903
https://doi.org/10.1103/PhysRevLett.112.213903
https://doi.org/10.1103/PhysRevA.92.023816
https://doi.org/10.1103/PhysRevA.92.023816
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1103/PhysRevLett.111.240403
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1038/srep26988
https://doi.org/10.1103/PhysRevB.62.4204
https://doi.org/10.1103/PhysRevB.62.4204
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1364/OL.40.002637
https://doi.org/10.1364/OL.40.002637
https://doi.org/10.1038/srep36066
https://doi.org/10.1103/PhysRevB.92.155117
https://doi.org/10.1103/PhysRevB.92.155117
https://doi.org/10.1038/srep18301
https://doi.org/10.1038/srep18301
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1364/OE.17.021897
https://doi.org/10.1038/nature12289
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevB.94.245148
https://doi.org/10.1103/PhysRevB.94.245148
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1016/j.wavemoti.2012.06.002
https://doi.org/10.1016/j.wavemoti.2012.06.002
https://doi.org/10.1364/OL.41.003888
https://doi.org/10.1364/OL.41.003888
https://doi.org/10.1103/PhysRevA.89.023829
https://doi.org/10.1103/PhysRevA.89.023829
https://doi.org/10.1103/PhysRevA.95.023834
https://doi.org/10.1103/PhysRevB.62.7976
https://doi.org/10.1103/PhysRevB.62.7976
https://doi.org/10.1103/PhysRevA.94.033856
https://doi.org/10.1103/PhysRevA.94.033856
https://doi.org/10.1088/2040-8978/15/7/073001
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1088/2040-8986/19/1/010401
https://doi.org/10.1088/2040-8986/19/1/010401
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1103/PhysRevLett.114.123901
https://doi.org/10.1002/smll.201603190

