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A change in the time dependence of the second moment of the distribution of intensities of coherences with
various orders in the spectrum of multiple-quantum NMR in a solid at the inclusion of an inhomogeneous
magnetic field in the effective interaction is studied. Both the secular dipole–dipole and nonspecular two-
quantum interactions are considered as nucleus–nucleus interactions, which correspond to traditional exper-
imental realizations. It is shown that, with an increase in the magnitude of the inhomogeneous field, an expo-
nential increase in the second moment of multiple-quantum NMR with time changes to a power-law
increase. The results obtained in this work indicate that this second moment, which determines the average
number of dynamically correlated spins, can be used as a convenient characteristic for studying a transition
to a many-body localized state.
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A system of interacting nuclear magnetic moments
in a solid is a convenient adequate model object for
studying various problems of statistical physics [1].
Multiple-quantum NMR spectroscopy [2, 3] is an
efficient method for studying both local properties and
dynamics in these systems. For example, multiple-
quantum spectroscopy was used to observe atomic
clusters in solids [4], one-dimensional chains [5], an
increase in the number (up to ) of dynamically
correlated spins with the time [6], etc. Finally, it has
been recently proposed [6–9] to apply the multiple-
quantum NMR method to study the properties of a
transition to a many-body localized state in inhomo-
geneous spin systems (i.e., in the presence of an inho-
mogeneous magnetic field) [10–17]. This state of mat-
ter attracts attention because of its extraordinary prop-
erties. On one hand, as in an Anderson insulator
without interaction [18], diffusion is absent and equi-
librium is not established in this state. On the other
hand, the interaction between spins in such a state
results in the dephasing of spins and, thereby, in the
appearance of dynamic correlations between them at
large distances. The average size of clusters of dynam-
ically correlated spins in multiple-quantum NMR
spectroscopy is characterized by the second moment

of the distribution of intensities of coherences with
various orders in the spectrum [19–21].

In this work, we study for the first time the effect of
an inhomogeneous magnetic field on an increase in
the second moment of multiple-quantum NMR with
the time and demonstrate that its exponential increase
changes to a power-law increase, which is apparently a
manifestation of many-body localization. The pro-
posed approach is based on analytical estimates of
time-dependent spin correlation functions in the
approximation of a large number of neighbors, which
is accepted for NMR in solids. In contrast to our
approach, most of the studies of multiparticle local-
ization are based on the analysis of one-dimensional
systems and on the numerical calculation of the
dynamics of small spin clusters.

The multiple-quantum NMR method involves the
measurement of the time correlation function [2, 3]

(1)

where  is the operator of evolution with the Ham-
iltonian of the internal interaction  or this interac-
tion transformed by radiofrequency pulses to a new
effective Hamiltonian ,  is the
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operator of rotation by an angle of ϕ about the  axis,
 is the -component of the vector operator

of total spin of the nuclear system ( ),  is
the -component of the spin operator ( ) at the
site , and  stands for evolution with “reversed time.”
Experimental conditions  will be accepted in the
final formulas.

The secular part of the nuclear–nuclear dipole–
dipole interaction in a strong external static magnetic
field responsible for the broadening of NMR lines
and, correspondingly, for the dynamics of the spin sys-
tem has the form [1]

(2)

where ,  is the vector
connecting the spins  and ,  is the angle between
the vector  and the external static magnetic field, and

. Here and below, the energy is given
in frequency units.

In the traditional multiple-quantum NMR scheme
[2, 3], the irradiation of the sample by a multipulse
sequence usually transforms the Hamiltonian (2) to
the so-called two-spin/two-quantum Hamiltonian

(3)

and time correlation functions (1) determined by the
directions  are chosen. Other variants are
also possible. In particular, directions  and 
were chosen in [22] and directions  and 
were chosen in [23]. The last choice made it possible
to measure an increase in correlations in the process of
development of the free induction decay, when the
evolution of  is determined by the dipole–dipole
interaction (2).

The authors of [9] proposed and used a multipulse
sequence with 16-pulse cycle, which provided the
Hamiltonian

(4)

with arbitrarily related parameters , , and  and,
naturally, with the inversion of their signs at the stage
of evolution with reversed time.
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The multiple-quantum NMR spectrum is obtained
after the Fourier transform of the time correlation
function  (1) with respect to the variable . The
second moment of the multiple-quantum spectrum
[19–21] is given by the formula

(5)

where  In [20], we transformed
Eq. (5) at  to the formula more convenient for
calculations:

(6)

The symbol  means that the spin  is reversed
in the Hamiltonian appearing in the time evolution
operator; i.e., this Hamiltonian now has the form

, where  and  are replaced by 

and , respectively.
It is remarkable that the terms with  in Eq. (6)

change sign at . The sum of these terms ensures
the initial condition  in Eq. (5) at  and

. We will neglect this contribution when consid-
ering large clusters with . We calculated the
quantity  in [20] for homogeneous spin systems
with a large number of neighbors surrounding each
nucleus in the lattice. The nucleus–nucleus interac-
tion was described in [20] by Hamiltonian (4) with the
parameters  and , and the transition to
the parameters , , and  was
examined in [24].

To analyze the effect of inhomogeneous magnetic
fields  in Eq. (4) on the second moment of the mul-
tiple-quantum spectrum, we consider the case 
with the normal distribution law with the variance 
for inhomogeneous magnetic fields:

(7)

First, we take the Hamiltonian (4) with the param-
eters  and  and choose the axes  and

. In this case, to estimate the time dependence
 in [20], we summed chains of f lip-flop spin

pairs , which are coupled by the  interac-
tion, connecting the initial spin  and the “reversed”
spin  in Eq. (6).

The autocorrelation function of the transverse
components of the spins at a large number of neigh-
bors was approximated by a Gaussian with the second
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moment  caused by the  interactions.
Inhomogeneous fields lead to an additional relaxation
of the autocorrelation function of transverse spin com-
ponents, which is manifested in an increase in the sec-
ond moment of the Gaussian describing them

(8)

After such a change, by formulas derived in [20], the
desired estimate is obtained in the form

(9)

where . At , Eq. (9) gives an

exponential increase with the time:

(10)

If , which is the case at a large inhomogene-
ity , the second term in Eq. (9) vanishes
and the first term gives a power law

(11)
According to [20], such a result implies that only the

 interactions are retained in Eq. (2) and the f lip–
flop contribution to the Hamiltonian is neglected
because it is suppressed by inhomogeneous fields.
Expression (11) is the first term of the expansion in a
power series of time for the result obtained in [20]:

(12)

At large times, when the interaction between nearby
spins satisfies the condition , the dependence
is transformed to

(13)

where  is the volume per site of the lattice. Here, we
used the results of calculation of the sum in Eq. (12)
after its change to the integral over the space obtained
in [25–27] at the calculations of the form of the spec-
trum of magnetically diluted of spin systems. Depen-
dence (13) is presented for three-dimensional lattices.
For systems of a lower dimension , using estimates
from [27], we obtain the dependence .

A similar problem was solved in [9–13, 16] when
estimating an increase in quantum correlation, i.e.,
entanglement between the spin  and its environment
in the state of many-body localization. Following the
cited works, at large times for each of the nearby spins
for which , we take an oscillation-averaged
contribution of 1/2 to the sum (12). Further, if the 
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interaction in Eq. (2) is taken with the constant
, the sum will be determined by

the number of spins inside a sphere with the radius
. The contribution from other spins

is small because of the fast weakening of the inter-
action with distance. The resulting estimate is

. Finally, we note that a similar
estimate for the dipole–dipole interaction with a
power-law dependence on the distance provides a cor-
rect time dependence , but with an under-
estimated coefficient as compared to the results in [27]
and Eq. (13).

We now consider the Hamiltonian (4) with the
parameters  and  at the directions of the
axes  and  in Eq. (6). In this case, the chain
between the initial spin and reversed spin  in Eq. (6)
is constructed by alternating the  and  interac-
tions. Following [20], to estimate an increase in

, we estimate the contributions from two seg-
ments of evolution in Eq. (1) independently, i.e.,
under the assumption that

(14)

where  (and ) is defined in the form of a series
of convolutions of the autocorrelation functions,
which are approximated by the Gaussian

(15)

where the average value of the second moment 
5B2/16 + 3W2/4 is obtained according to the rules
from [20]. The Laplace image of the series G(t) has the
form

(16)

where  is the average interaction per vertex
and  is the Laplace image of the Gaussian (15).
The behavior of the function  at large times is
determined by the minimum zero of the denominator
in Eq. (16):
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To calculate this zero, we use the equation

(18)

where erfc  is the is the complementary error func-
tion and
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At , we found 
, where /16. The parameters

 and  will decrease with an increase in the rms
inhomogeneity of the field , as is shown in the fig-
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ure, and vanish at , which corresponds to the
value

(20)

Thus, an increase in the inhomogeneous field will
result in a decrease in the exponent  of the expo-
nential increase in the second moment of the multi-
ple-quantum spectrum (14), which determines the
average size of a cluster of dynamically correlated
spins. The exponential growth will cease at the critical
value (20). With a further increase in , an increase
changes to a decrease. This means that the included
contribution from chains to  is no longer leading
and another approximation should be used.

Indeed, in the preceding example with the dipole–
dipole interaction in the presence of a large inhomo-
geneous field, a transition occurs to a power-law
increase specified by Eq. (11) or (13), which is caused
by the  interaction. A particular role of such interac-
tions in the state of many-body localization was spe-
cially emphasized in [10–17]. In the general case, the
authors of the cited works proposed to change to new
variables, effective spins , which diagonalize the
Hamiltonian. However, the cost of this transition is
the appearance of multispin interactions. The 
interaction is absent in the initial two-spin/two-quan-
tum Hamiltonian (3), but it appears after the change
to new variables. Such a transition can be performed
by, e.g., approximate canonical transformations [14,
16]. As a result, one can obtain the effective three-spin
interaction

,

δ = 1
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where the constants are small, . This

interaction leads to a power-law increase in  in
the form of Eq. (11) with a small coefficient of about

. It is noteworthy that this coefficient at
another choice of the axes  and  increases
by a factor of . The reason is that the time
dependence in Eq. (6) at  is determined by the
correction term after the canonical transformation .

To summarize, according to the reported calcula-
tions, the analysis of the second moment of the multi-
ple-quantum NMR spectrum allows studying the
effect of the inhomogeneous magnetic field on the
growth rate and size of the average cluster of dynami-
cally correlated spins. Thus, the characteristics of the
transition to the many-body localized state can be
studied. The average correlation length was previously
proposed in [9] as a measure of localization, but to
theoretically calculate it, it is necessary to calculate the
entire multiple-quantum NMR spectrum, which is
hardly possible. The fundamental advantage of the
second moment of multiple-quantum NMR is that, to
determine it, it is sufficient to calculate the time cor-
relation function given by Eq. (5) or (6).
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