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The phase diagram of the ground state is obtained for the one-dimensional easy-axis model of classical spins
coupled by ferromagnetic and antiferromagnetic exchanges between nearest and next-nearest neighbors,
respectively. The parameters of the incommensurate magnetic structure with a variable step (soliton lattice)
are calculated in the mean field approximation from the condition of the collinearity of spins to the effective
exchange fields in the continuous approximation. The ground state of the soliton lattice and interfaces
between soliton and collinear (ferromagnetic and “up–up–down–down”) phases are determined by the
numerical minimization of the average energy over the initial angular velocity of spins.

DOI: 10.1134/S0021364017130124

In recent decades, frustrated magnets have caused
ever-growing interest owing to the vast variety of
unusual states and their magnetic properties [1]. A
large number of works were devoted to the one-
dimensional frustrated Heisenberg model, where the
combination of the frustration of exchange interac-
tions and strong quantum fluctuations leads to differ-
ent states without any long-range magnetic order even
at zero temperature and to quantum phase transitions
between them [2–9]. In real quasi-low-dimensional
magnetic crystals, the long-range magnetic order is
established owing to weaker three-dimensional inter-
actions [10]. The application of quantum approaches
in the calculation of three-dimensional models is
accompanied by the considerable increase in compli-
cations of calculations. As a starting point of calcula-
tions, one often uses the results of the consideration of
corresponding classical models, which makes it possi-
ble to considerably narrow the region of search for
solutions. Solutions of simple models with classical
spins describe magnetically ordered phases in the
mean field approximation qualitatively correctly and
can easily be generalized to cases of an arbitrary
dimension.

The ground state of the one-dimensional frustrated
anisotropic Heisenberg model

(1)

where  is the antiferromagnetic exchange with
next-nearest magnetic neighbors, is determined by the
sign of the exchange with the nearest neighbors , the
ratio of exchanges , and their anisotropy 
and .

For the case of the ferromagnetic exchange ,
frustration leads to the appearance of different states
with and without the long-range magnetic order [7–9,
11–13]. Interest in such magnetic materials is due to
the increased number of synthesized chain copper
compounds [14, 15] and to actively studied multifer-
roic properties of the latter [16, 17]. In the model given
by Eq. (1) with classical vector spins, the easy plane
exchange anisotropy ( ) at  leads to a
helix with the polarization plane coinciding with the
easy plane and a constant step (the angle between the
nearest spins ). The latter maximally simplifies the
calculation of its value, since all spins are in the equiv-
alent relative surrounding. The minimization of the
energy over the helix step leads to the standard result

. In the case of the easy-axis anisot-
ropy, the classical solution of the model (1) becomes
fundamentally more complicated. The helicoid with
the polarization plane containing the easy axis has the
minimum energy [18]. The exchange fields acting on a
spin depend on the angle between its direction and the
anisotropy axis . As a result, the helicoid step
becomes variable; i.e., a soliton lattice is formed. For
its description, it is necessary to use the continuous
approximation where the change in the orientation
angle of spins is represented in the form of an analytic
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function of the coordinate . In such an approach,
the determination of the equilibrium orientation of
spins (of the form of the function ) is reduced to
the minimization of the integral of the magnetic
energy density [18] or the expansion of the Ginzburg–
Landau thermodynamic potential at a finite tempera-
ture [19]. This leads to the nonlinear Euler–Lagrange
differential equation of at least the fourth order, the
only way to solve which remains the substitution of
trial harmonic functions (harmonics of the solution
for the uniform helix). An essential restriction of the
minimization procedure is also the accompanying
replacement of trigonometric functions of the deriva-
tives of the orientation angle of spins for the argu-
ments.

We proposed an alternative method of the calcula-
tion of soliton lattice parameters in the model (1) in
[20]. It is based on the principle of the collinearity of
the average values of spins to the total effective fields at
each lattice site. The principle was used earlier for the
calculation of plane and conic incommensurate mag-
netic structures in a two-subsystem magnetic material
on a discrete lattice [21–23] and was substantiated by
Kaplan and Menyuk within the Lagrangian formalism
in [24]. It allows avoiding nonphysical states and
determining the ground and excited states of the sys-
tem of spins. In the general case, with the continuous
approach, the initial equation of vanishing of the field
component transverse to the direction of the spin at
the site is an equation for the series of even and odd
derivatives of the orientation angle of the spin. Series
of even derivatives ( ) determining the nonlinearity
of solutions are proportional to the anisotropy. At the
small nonlinearity ( ), this equation becomes an
autonomous first-order differential equation with
respect to the square of the angular velocity  and
allows the solution in quadratures. The explicit form of
the dependence  on the angle  and the initial con-

dition  makes it possible to numerically minimize
the average energy per spin in the soliton lattice over
the initial condition, thus determining the ground
state. This work is aimed at the determination of the
phase diagram of the ground state of the classical frus-
trated ferromagnet (1) at  within this
approach.

In the mean field approximation, all spins at 
have the same length  and their orientation in the
plane containing the easy axis of the anisotropy is
determined by the total exchange field from neigh-
boring spins. Field components along the anisotropy
axis  and the orthogonal axis  in units of the ferro-
magnetic exchange  have the form

θ( )ir

θ( )ir

θ(2 )n

θ'' 1!

θ'

θ' θ

θ0'

δ = δ = δ >1 2 0

= 0T
= 1S

z x
1J

= + δ ,0(1 )z zh h

( + −= θ + θ0
1 1

1 cos cos
2z i ih

(2)

where  is the  component of the exchange field
without anisotropy and  are the angles of the ori-
entation of neighboring spins with respect to the
anisotropy axis.

The transition to the continuous description is car-
ried out by expanding the angles of neighboring spins
in a Taylor series near the angle of the th spin

(3)

where  are sums over odd and even derivatives of
the variable ,

Here and below, the lattice constant is taken as unity.
After the substitution of expansions (3), the field com-
ponents given by Eqs. (2) are represented in the form

The longitudinal field on each spin gives the energy
density per unit interval of the coordinate space equal
to the lattice constant

(4)

where  is the anisotropy field and  is the energy
of the frustrated exchange field in the isotropic case

.
The orientation of each spin is unambiguously

determined by the condition of its collinearity to the
total local field from neighboring spins. It is expressed
mathematically in the requirement of vanishing of the
field components orthogonal to the direction of the
spin (in our case, the transverse component in the
polarization plane of the helicoid)

(5)

With allowance for this limitation, the magnetic
energy density (4) takes the multiplicative form; i.e.,
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the anisotropic and frustration components enter in
the form of the product

(6)

The condition (5) takes the form of the nonlinear
equation on series of derivatives

the solution of which can be obtained in the approxi-
mation of small anharmonicity ( ), where deriv-
atives higher than the second order can be ignored,

The change of the variable  makes it possi-
ble to integrate this autonomous differential equation
in quadratures

(7)

where  and
 The variable  changes

from the initial value  at  to  at .
Expanding the integral (7) in a Taylor series in

powers of the deviation of the variable  from 

retaining only the first two terms (  [20]), we
obtain the explicit form of the dependence of the vari-
able  on the orientation angle of the spin

(8)

The number of spins in the unit interval of the angle 
(the spin density ) is determined by the angular
velocity and depends on the initial condition and the
angle :

(9)
Substituting the expression for the angular velocity
into the energy density (6) and integrating over the
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periodicity interval of the function , we obtain
the average energy per spin

(10)

The ground state of solutions obtained is determined
by the extremum of the energy (10) (in our case, the
maximum, since the fields and the energy density are
given in units of ferromagnetic exchange ). The
value  corresponding to this extremum spec-
ifies the ground state of the soliton lattice for each set
of the parameters  and . After the substitution of
this value into Eq. (9), we obtain the dependence of
the angular velocity on the angle in the ground state.
We note that the explicit dependence of the angle on
the spatial coordinate is not required for the calcula-
tion of the energy of the soliton lattice because the ini-
tial problem is translationally invariant.

The average energy of the ground state of the soli-
ton lattice (10) depends nonlinearly on the anisotropy
parameter  (Fig. 1). The first-order phase transition
in this parameter to the ferromagnetic state (F) (at

) or to the state with the alternation of pairs of
spins directed along and opposite to the z axis (up–
up–down–down (UUDD) phase) (at ) [11–
13] occurs at the coincidence of the energy of the soli-
ton lattice with the energy of the collinear phase:

The difference between the minimum ( ) and
maximum ( ) values of the variable  increases
monotonically with  and reaches the maximum at the
triple point ( , ). Figure 2 shows the
changes in the energy density ε, the spin density , and
the parameter  as functions of the orientation angle of
spins at the triple point.

The limits of the variation of the variable  at other
points of interfaces (solid lines), as well as its value for
the helicoid with the constant step ( ) at the same

 values (dotted line) for comparison, are shown in
the phase diagram of the ground state of the model (1)
(Fig. 3). Such helicoid with the polarization plane
orthogonal to the anisotropy axis also satisfies the col-
linearity condition. However, its normalized energy
equal to the energy in the absence of the anisotropy,

(11)

is always less than the monotonically increasing
energy of the soliton lattice (see Fig. 1). Thus, at any
easy-axis anisotropy, the soliton lattice with the polar-
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ization plane containing the anisotropy axis is energet-
ically more favorable than that of a uniform planar
helix. The condition of the collinearity of spins to local
fields limits also the formation of the uniform conical
helicoid: either the external magnetic field or the
exchange field from spins of the second magnetic sub-
system is additionally necessary for its existence.

The phase diagram of the ground state of the quan-
tum model (1) with the easy-axis anisotropy

 contains three phases: ferromagnetic
(F), antiferromagnetic with pairs of spins oriented
along and opposite to the axis  (UUDD phase), and
the intermediate phase with the magnetization, which
is a continuous function of the parameters of the
model [11–13]. The model (1) with classical spins is
considered in [18] for the case  near the
Lifshitz point  and the integral of the mag-
netic energy density was minimized at . In our
approach in the absence of the anisotropy of the
exchange with next-nearest neighbors, the collinearity
equation is no longer autonomous and its solution can
be found in the form of the correction over the argu-
ment of the function  to the solution of the
autonomous equation.

For comparison, Fig. 4 shows interfaces between
soliton and ferromagnetic phases for the cases (1)

 and (2)  in the corresponding
region of the phase space. The quadratic dependence
of the interface  coinciding with the result
[18] (curve 3) remains only in the nearest neighbor-
hood of the Lifshitz point. With an increase in , this
dependence becomes linear, which can be easily
explained. With an increase in the frustration, the
angle between the nearest spins tends to ; i.e., the
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incommensurate structure with the local spin orienta-
tion of the “cross” type is formed. At this energy, such
structure (11) has the asymptotic behavior

, which gives the asymptotic interface
 in the comparison with the energy of the

ferromagnetic phase. At the same time, for the case
with the anisotropy in both exchanges, such asymp-

totic behavior is . At the anisotropy
 and , the maximum velocity
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Fig. 1. Average energy of the soliton lattice , the limiting
values of the variable  (the square of the angular velocity),
and the interval of its variation with the anisotropy at

. The change in the energy of collinear phases at
this frustration parameter is also shown.
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variable step  (6), the number of spins per unit angle
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versus the angle  at the triple point of the phase diagram.
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(the angle between neighboring spins at )
exceeds , and that for next-nearest neighbors
exceeds . At large frustration parameters, the
replacement of trigonometric functions of the velocity
in the energy density and the variational Euler equa-
tion will give a considerable systematic error. In the
equation on the collinearity of spins and fields, we
substituted the argument of trigonometric functions of
the second derivative of the angle , which even at the
maximum value at the triple point of the phase dia-
gram (see Fig. 3) does not exceed 0.45.

The comparison of two different cases of the
exchange anisotropy of the model (1) shows that the
statement about the insignificant effect of the anisot-
ropy of the exchange with next-nearest neighbors we
made in [11] (and in a series of works of other authors)
is wrong. The absence of such anisotropy qualitatively
changes the phase diagram, since the energy of the
UUDD phase always becomes higher than the energy
of the soliton lattice. The absence of the UUDD phase
on the phase diagram of the classical model (1) at

 indicates the possible changes also on the
quantum phase diagram, where this phase is present at

 [11–13].
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