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It is shown that the combined effect of the nonanalyticity of the channel for the motion of charge carriers and
the Rashba spin−orbit coupling induces resonant anomalies in the transport characteristics of nanosystems
related to the size quantization. When the characteristic length determined by the ratio of the hopping integral
and the spin−orbit coupling constant coincides with the distance between the points of nonanalyticity, the
size effect arises in the channel. It manifests itself in the complete reflection from the device, which can be
treated as the Fano antiresonance. The current−voltage characteristics of the nanosystem with the nonana-
lytical channel undergo significant changes at slight variations of the spin−orbit coupling constant near its
critical value.
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1. INTRODUCTION

The low-dimensional systems with spin−orbit cou-
pling are of special current interest related to the stud-
ies of the characteristics of topological insulators [1–
4]. The edge states in such systems are characterized by
the tight correlation between the direction of motion
of an electron and its spin direction. As a result, the
motion of a fermion can occur without its scattering by
nonmagnetic impurities.

In the studies of effects of the Rashba field on the
properties of low-dimensional systems [5], the possi-
ble existence of points corresponding to the nonana-
lyticity of the paths and thus to the stepwise changes in
the Rashba field is usually ignored. In addition, the
characteristics of the edge states are studied using the
models infinite in one direction [6, 7]. The problem of
the possibility of applying the results of such analysis
to finite systems having the points of nonanalyticity in
the charge carrier paths is rather topical. In this con-
nection, the authors of [8] pointed to the importance
of study of a square system. However, a detailed
analysis of the effect of corners has not been under-
taken yet.

Earlier, the authors of [9] reported that the Rashba
spin−orbit coupling could break symmetry in topo-
logical insulators. In such a case, the quasiparticle
states cannot be classified according to the spin pro-
jection and the effect of broken symmetry manifests
itself in the change in quasiparticle spin direction in

the course of its motion. However, the existence of
corners was disregarded in [9] and the spin oscillation
was assumed to depend on the crystal momentum.

The importance of the inhomogeneity of the
Rashba spin−orbit coupling for low-dimensional sys-
tems was demonstrated in [10], where the effect of the
inhomogeneity of the spin−orbit coupling constant on
the spin transport in two-dimensional systems was
shown. However, the problem concerning the direc-
tional inhomogeneity of the Rashba field was not con-
sidered.

Neglecting the existence of corners in the system
can be a good approximation if the electron mean free
path is much smaller than the length of the side in the
system under study. However, in low-dimensional sys-
tems, such approach could be rather inadequate. For
this reason, this work is aimed at the analysis of the
effect of nonanalyticity in the charge carrier paths on
the quantum transport.

2. DEVICE ON A SUBSTRATE EXHIBITING 
THE POINTS OF NONANALYTICITY 

IN THE CHARGE-TRANSFER CHANNEL
To study the combined effect of the Rashba

spin−orbit coupling and the nonanalyticity of the fer-
mion paths in a one-dimensional channel, we discuss
the transport characteristics of the one-dimensional
chain of sites located on the sides of a square (Fig. 1).
The sites of such a system, which we for brevity refer to
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below as the nonanalytical chain (NC), are denoted as
open circles. Each rectilinear segment contains 
sites and the total number of sites in the NC equals

.

To simplify the inclusion of the Rashba spin−orbit
coupling in the NC, we represent the Hamiltonian in
the form

(1)

Here, the first two terms describe the hoppings
between the nearest neighbors characterized by the
parameter , whereas the next two terms corre-
spond to the Rashba spin−orbit coupling related to the
gradient of the electrical potential in the direction per-
pendicular to plane of the square. The subscript

 enumerates the sides of the square in the
clockwise direction,  enumerates the
sites on each side,  is the Rashba spin−orbit cou-
pling constant,  denotes the electron spin pro-
jection on the quantization axis ,  is the unit vector
along the direction of the Rashba field (see Fig. 1),
and  are the Pauli matrices. It is important that the
direction of the Rashba field is individual for each side
of the square: it lies in the plane of the square and is
perpendicular to the corresponding side.
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The one-electron eigenstates of Hamiltonian (1)
can be represented in the form

(2)

where  is the vacuum state. Taking into account the
symmetry axis  passing through the center of the
square perpendicular to the plane of the NC allows us
to write the one-electron states as [11]

(3)

where  is inverse to the characteristic spin−orbit
coupling length  (the distance at which the electron
spin rotates about the Rashba field direction by an
angle of ). In the tight-binding approximation,  is
determined by the expression

(4)

The length scale  gives rise to the parameter  of
NC, which is determined by the ratio of the length of
the side of the square  (in units of inter-
atomic distance) and the length :

(5)

3. LANDAUER–BÜTTIKER FORMALISM
FOR THE NONANALYTICAL CHAIN

WITH CONTACTS
In the study of the electric current f lowing through

the nonanalytical chain, we assume that the chain is
connected to contacts, which can be treated as macro-
scopic conductors. The electrons involved in the res-
ervoir are thermalized and have the temperature and
chemical potential of a contact before their returning
to the device. Thus, an electron incident on the con-
tact should be completely absorbed by it and thermal-
ized before its return to the device.
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Fig. 1. Layout of the system and the numeration of the sites
for the nonanalytical chain with the point contacts sym-
metrically connected to it.
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To find the coefficient of transmission through the
device, we should solve the Schrödinger equation with
the Hamiltonian [12]

(6)

Here,  are the Hamiltonians describing electrons
in the left (L) and right (R) contacts, operators 
take into account the existence of the tunnel coupling
between the contacts and device,  is the annihila-
tion operator for an electron at a site in the device
directly connected to the corresponding contact, and

 is the annihilation operator for a one-electron
excitation (3) in the device. We assume that the one-
site energy in the device is shifted with respect to that
in the contacts by  and the energy  of the incident
electron is measured from the one-site energy in the
device.

The transport characteristics of the NC are deter-
mined from the calculation of the wavefunction of the
system in the electron scattering problem. We write the
wavefunction as an expansion in the complete basis of
the system

(7)

The coefficients of the expansion for the left contact
correspond to the superposition of the incident and
reflected waves

whereas only the transmitted component is taken into
account for the right contact:
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The parameter  determines the polarization of an
incident electron, and the wave vectors  are mea-
sured in units of the inverse interatomic distance.

The parameters of the expansion satisfy the follow-
ing set of inhomogeneous differential equations:

(8)

The coefficients of reflection and transmission are
determined in terms of the ratio of the reflected and
transmitted probability f low, respectively, and the
incident f low

(9)

4. FANO ANTIRESONANCES
IN THE TRANSPORT CHARACTERISTIC

OF A NONANALYTICAL CHAIN
A typical form of the transmission coefficients for

the NC with the contacts connected symmetrically
with respect to the square center (see Fig. 1) is illus-
trated in Fig. 2. This figure demonstrates that the
Rashba spin−orbit coupling leads to the destructive
interference of the wavefunctions corresponding to the
charge carrier motion along the two channels, giving
rise to the Fano antiresonances. The number of such
antiresonances is determined by the number of energy
eigenvalues of the chain, which are fourfold degener-
ate in the absence of the spin−orbit coupling, and is
equal to .

To understand the mechanism underlying the
Fano antiresonances, we consider the behavior of the
excitations corresponding to the eigenstates in the
device as a function of the parameter 
given by Eq. (5). For symmetrically connected con-
tacts, it is important to know the relation between the
coefficients in the expansion for wavefunctions of
one-electron states in the chain (3) at the sites con-
nected to the contacts

(10)
which is determined by the parity of orbital quantum
number  and is independent of  and .
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the top and bottom of the band, which are doubly
degenerate with respect to . Each fourfold
degenerate energy corresponds to the following sets of
the quantum numbers:

(11)

It is implied that, for  coming outside the enumera-
tion limits mentioned in (3), it is necessary to make
the replacements  and . Such
replacement does not affect the parity of the orbital
quantum number.

At , the fourfold degeneracy is lifted and all
energies become doubly degenerate. Note that, for any

 state, there exists such  state for
which  and the parity of the orbital
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. Let us write Eqs. (8) for such pairs of

states:

(12)

Here, the sums with prime denote the summation over
the aforementioned pairs of states. In such case, it is
easy to show that  and  at ,
which gives rise to the Fano antiresonance.

The degeneracy is lifted by the spin−orbit coupling
in such a way that the energies of the states with the
same quantum number  and the parity of the orbital
quantum number  are shifted in the opposite direc-
tions (Fig. 3). Then, at small  values, one should
expect an antiresonance within the range between
each pair of doubly degenerate energies because the
main contribution to series expansion (7) comes just
from these pairs of states and all above reasons are still
valid. The numerical calculations show that this
antiresonance appears at any  value (see Fig. 2).

5. COMPLETE REFLECTION EFFECT 
INDUCED BY THE RASHBA SPIN−ORBIT 

COUPLING
In the case of χ ~ π/2, corresponding to the situa-

tion where the characteristic length of the Rashba
spin−orbit coupling is close to the length of the side of
the square, the transmission coefficient vanishes for
the whole energy range except for the vicinities of the
energies corresponding to the one-electron excited
eigenstates  in the NC (Fig. 4). Such an effect
means the existence of a nearly isolated device with
weak coupling to the contacts.

For the interpretation of this effect, we analyze the
eigenstates of the device at . In the case under
study, all one-electron eigenenergies of the NC turn
out to be fourfold degenerate. It is important that the
states with  and , , 
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Fig. 2. Transmission coefficient for the nonanalytical
chain with the parameters , ,

, , and  and with the
spin−orbit coupling constant  = (a) 0 and (b) 0.1.
Closed circles denote the eigenenergies of one-particle
states in the nonanalytical chain.
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tations at αD ≪ tD and at  close to the critical value.
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(see Fig. 3), for which the orbital quantum numbers
have different parities, have the same energy. For such
pairs of coefficients, Eqs. (8) can be rewritten using
Eq. (10) in the form

The analysis of these equations shows that the trans-
mission coefficient T vanishes at any .

At , at energies far from the eigenenergies
, the above argumentation is still valid. Hence, we

should expect that the transmission coefficient  will
be nonzero only within a certain range near the exci-
tation eigenenergies of the chain. This conclusion is
indeed supported by the numerical calculations (see
Fig. 4).

6. CURRENT−VOLTAGE CHARACTERISTICS 
FOR THE NONANALYTICAL CHAIN

In the Landauer–Büttiker representation, the elec-
tric current f lowing across the device connected to
one-dimensional contacts is given by the expression

(13)

Here,  is the Fermi distribution
function for electrons and  and are the trans-
mission coefficients for an electron moving from the
left contact to the right one and vice versa, respec-
tively, which are calculated with the following addi-
tional term in Hamiltonian (6):

(14)

describing the voltage applied across the contacts. The
device itself is assumed to be grounded. Passing in
Eq. (13) from summation over crystal momentum to
integration with respect to energy, we find the final
expression for the current f lowing across the device
(see, e.g., [13]):

(15)

Here, we take into account that the transmission coef-
ficient for the system under study turns out to be inde-
pendent of the spin direction of an incident electron.
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A typical form of the current−voltage characteris-
tics for the NC is illustrated in Fig. 5. The size of the
steps is determined by the Rashba spin−orbit coupling
up to the complete locking of the electric current by
the system. In turn, the Rashba spin−orbit coupling
can be controlled by the applied electric field (as was

Fig. 4. Coefficients of (solid line) transmission and
(dashed line) reflection for the case of . tL =

, , , , ,
and . Closed circles denote the eigenenergies of
one-particle states in the nonanalytical chain.

χ ≈ π/2
= −R 1t = .D 0 5t α = .D 0 2 ε = 0d = = −LD RD 0.5t t

= 5N

Fig. 5. (a) Current−voltage characteristic for the case of
. , , , 

, , , and . (1) αD =
; (2) ; (3) . (b) Energy diagram of

the device and contacts.
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shown in [14]). This allows using the suggested system
as a basic circuit in microelectronic devices.

All results presented in Figs. 2–5 were obtained for
a square with a small ( ) side length and with an
admittedly large value of the spin−orbit coupling con-
stant  only for a better visualization of the effects
under study. For the actual systems, the characteristic
length of the Rashba spin−orbit coupling is about 90–
300 nm [15, 16]. Thus, to satisfy the  condi-
tion, we should use a square including hundreds of
sites. However, all results obtained above are still valid
while the electron transport across the system remains
ballistic. If the number of sites in the system is large,
the numerical technique developed in [17] turns out to
be quite efficient, whereas for the analytical treatment,
it is more convenient to use Eqs. (8).

7. CONCLUSIONS
The essential result of our study is the prediction of

the size-effect Fano antiresonance resulting from the
combined effect of the Rashba spin−orbit coupling
and the nonanalyticity of the charge carrier paths in
the one-dimensional fermion chain at a substrate. The
Fano antiresonance appears each time when the char-
acteristic length determined by the ratio of the hop-
ping parameter and the Rashba spin−orbit coupling
constant multiplied by some odd number becomes
equal to the distance between the given points of
nonanalyticity.

The study of this effect has been performed using
the calculations of the transport characteristics for the
one-dimensional fermion chain with the sequence of
sites corresponding to their location on the sides of a
square. In the tight-binding approximation, we have
calculated the transmission coefficient and the cur-
rent−voltage characteristic of such system using the
Landauer–Büttiker method. It has been shown that,
at the symmetric connection to the contacts, the inter-
ference of the wavefunctions for electrons propagating
along two channels gives rise to the aforementioned
Fano antiresonances. It is important that, at the value
of the spin−orbit coupling parameter close to the crit-
ical one when the characteristic length corresponding
to the Rashba spin−orbit coupling approaches the
length of the side of the square, the complete reflec-
tion of an electron from the system occurs at all ener-
gies except for those corresponding to the one-elec-
tron excitations in the nonanalytical chain. Near this
critical point, the variation of the spin−orbit coupling

= 5N

αD

χ ≈ π/2

by the applied electric field strongly affects the cur-
rent−voltage characteristic, which makes it possible to
use the nonanalytical chain in the circuitry of micro-
electronic devices.
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