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A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an
open nanowire with the Rashba spin–orbit coupling and the induced superconducting pairing potential. The
nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the
fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical
values  fall within the parameter range corresponding to the nontrivial values of the  topological invari-
ant of the corresponding 1D band Hamiltonian characteristic of the  symmetry class. It is demonstrated that
such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.
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1. INTRODUCTION
In recent years, the topological phases in supercon-

ducting systems have attracted considerable interest
owing to the possibility of revealing there Majorana
modes (MMs) [1, 2]. The promising objects for exhib-
iting MMs are semiconductor nanowires with the
induced superconductivity in the presence of strong
spin–orbit coupling and an applied uniform magnetic
field [3]. The materials with a nonuniform external or
exchange magnetic field belong to another class of
such systems [4–6]. The Majorana modes can also
manifest themselves in superfluid quantum liquids
[7, 8] and in two-dimensional frustrated spin systems
[9, 10].

The detection of MMs in open fermion systems is
related to the finding of topologically nontrivial phases
in the case of periodic boundary conditions. The most
comprehensive classification of topological phases for
noninteracting fermions was reported in [11, 12]. Later
on, the methods for the classification of topological
phases in 1D fermion systems with interactions were
suggested in [13, 14]. The effect of onsite Coulomb
correlations on the possible existence of a topological
phase in the semiconductor nanowires with the spin–
orbit coupling was also studied [15]. Moreover, the
possibilities of finding a topological phase in the
observed characteristics of nanowires were recently
demonstrated [16, 17].

Tunnel spectroscopy and microscopy were
employed to find in experiment the manifestations of
MMs in the transport characteristics of semiconduc-
tor nanowires [18, 19] and in spin chains [20]. How-

ever, the MM identification based on the zero-bias
conductance anomaly is still problematic, in particu-
lar, because of the existence of several mechanisms of
anomalous conductivity [21, 22]. The interpretation of
the tunnel conductivity data becomes more compli-
cated also because the nanowires under study have the
length L ~ 100 nm, which corresponds to the incoher-
ent transport regime. It is usually accepted that the
ballistic transport in such structures takes place at L ~
20 nm, but the connection of such short nanowires to
conducting leads currently encounters difficult tech-
nical problems.

It is important to note that the bulk–boundary cor-
respondence in the conditions for existence of topo-
logically nontrivial phases in the systems with periodic
boundary conditions and for the existence of topolog-
ically protected MMs in the open systems comes into
play only when the systems have sufficiently large spa-
tial dimensions. Size effects in quantum nanowires,
where MMs could manifest themselves, were studied
in [23–28]. In particular, the oscillatory behavior of
the energy splitting between the ground and first
excited states as a function of the chain length and its
parameter was reported in [26, 27]. Later on, for the
model of a finite Kitaev chain [1], it was shown in [28]
that the oscillations of the minimum excitation energy
correspond to a sequence of quantum transitions
(QTs) accompanied by a change in the fermionic par-
ity of the ground state. Since the latter model describes
a 1D ensemble of spinless fermions, the problems con-
cerning the manifestations of QTs in the thermal and
magnetic characteristics of the system have not been
discussed.
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In this work, we demonstrate that changes in the
parameters of an open nanowire with a length L ~
10 nm, the Rashba spin–orbit coupling, and the
induced superconducting pairing potential also give
rise to a cascade of QTs, which correspond to the
changes both in the fermion parity and in the spin
structure of the nanowire ground state. This results in
the anomalous behavior of the magnetocaloric effect
near quantum critical points. In this situation, the
temperature variation rate near the QT point at the
adiabatic variation of the magnetic field tends to infin-
ity and has different signs on the left and on the right
of the QT. This cascade of QTs takes place for a finite
nanowire within a parameter range of the phase dia-
gram where the state for an infinite nanowire is topo-
logically nontrivial. We also demonstrate that rela-
tively weak Coulomb interactions do not qualitatively
change the aforementioned features.

2. FERMION PARITY OF THE GROUND STATE 
IN THE OPEN NANOWIRE

We consider a semiconductor nanowire located at
the surface of the s-wave superconductor. In the
applied magnetic field, the electron system of such
nanowire can be described by the following Hamilto-
nian including the Rashba spin–orbit coupling:

(1)

Here,  is the standard Nambu

notation, where  ( ) is the annihilation (creation)
operator for an electron at the nth site having the spin
projection  on the quantization axis;  is the chemi-
cal potential;  is the amplitude of electron hoppings
between the nearest-neighbor sites;  is the amplitude
of the s-wave superconducting pairing; and  is the
Rashba spin–orbit coupling constant. The Pauli
matrices  and  act in the spin and electron–hole
spaces, respectively, and .

It is convenient to rewrite Hamiltonian (1) in the
Bogoliubov–de Gennes form
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The matrices , and  have the following non-

zero components ( , ):

(4)

The eigenvectors  of the

Bogoliubov–de Gennes Hamiltonian (3) describe the
electron- and hole-like wavefunctions for the states
with the excitation energy .

Hamiltonian (2) has the electron–hole symmetry,
is characterized by the broken time-reversal invari-
ance, and belongs to the D symmetry class. Its topo-
logical characteristics are classified according to the

 invariant [12], which is expressed in terms of the
fermion parity  of the ground state for sufficiently
long closed chains [1].

To calculate the fermion parity, we write matrix (3)
in the representation of Majorana operators

which are self-conjugated, .
In the Majorana representation, the Bogoliubov–

de Gennes Hamiltonian matrix  is real and antisym-
metric:

(5)

where  is the  identity matrix. Then, the fer-
mion parity of the ground state of the chain can be cal-
culated as the sign of the Pfaffian

(6)

Here,  is the real orthogonal matrix transforming 
to a block-diagonal form with nonzero diagonal blocks
(2 × 2):

At , the ground state of the chain is described by
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states in the open chains1), the fermion parity is usu-
ally referred to as the Majorana number , and it is
the  topological invariant [12].

3. OSCILLATIONS OF THE FERMION PARITY 
IN THE OPEN NANOWIRE

For the open nanowire, the calculated fermion
parity allows us to construct the phase diagram shown
in Fig. 1. The shaded areas correspond to . The
boundaries of these areas are the curves corresponding
to parameters for which the ground state is doubly
degenerate and, hence, the minimum excitation
energy vanishes.

Note that, for the closed infinitely long chain, the
topologically nontrivial region (with ) is
described by the inequalities

In Fig. 1, the boundaries of this region are denoted by
the dashed lines. The correspondence to an open
chain with the finite number of sites  manifests itself
in the location of all shaded areas within the topologi-
cally nontrivial parameter range. With the increase in

, the number of parity change lines grows, and in the
limit , they form a quasicontinuum in the
range of parameters with .

Zero modes occurring at the lines of change of the
fermion parity  are described by the wavefunctions
localized near the chain edges. We can analyze the
characteristics of these functions considering the
behavior of the quasiparticle mode with the minimum
nonnegative energy , described by the operator :

(7)

In the upper panel of Fig. 2, we illustrate the modifi-
cation of  as a function of the site num-

ber with the variation of the applied magnetic field 
for the open chain consisting of 30 sites. The parame-
ters of model (2) are the same as in Fig. 1, but the
chemical potential is fixed, . From Fig. 2, it
follows that the amplitude of the wavefunctions for the
edge modes appearing on the lines where the parity P
changes has maximum values near the chain edges and
is exponentially small in the middle of the chain. At
the same time, there exists a weak hybridization of the
wavefunctions to two bounded Majorana states, 

1 We are grateful to the referee for these important remarks.
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and , localized near different edges of the chain.
The wavefunctions of these states are described by
coefficients  and , respectively (see the lower
panel in Fig. 2). With an increase in , the degree of
hybridization for the wavefunctions of bounded Majo-
rana states decreases; this is well known from the avail-
able publications (see, e.g., [26, 27]).

Let us emphasize that, for a short open chain, we
have  only near the fermion parity change lines.
Hence, the zeroth modes appearing on these lines are
unstable with respect to random fluctuations of the
parameters.2 This is a fundamental difference between
the short and long chains: for the latter, the minimum
excitation energy can be infinitesimally close to zero
(owing to exponentially small ) within a
broad range of parameters corresponding to nontrivial
values of the  invariant: . However, it is
important that the parametric lines on which we have
zeroth modes for short open chains correspond to the
region with . Therefore, the identification of
the fermion parity change lines using the thermal
characteristics of a short open nanowire can indicate
the parameter range where the topologically protected
MMs can exist for the infinitely long open nanowire.

2 We are grateful to the referee for these important remarks.
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Fig. 1. (Color online) Phase diagram of the open nanowire
(N = 30) with the induced superconducting pairing poten-
tial ( ) and the Rashba spin–orbit coupling
( ). The shaded areas correspond to such values of
the model parameters for which the ground state includes
the partial contributions corresponding to an odd number
of fermions. The boundaries of these areas are the lines at
points of which the Majorana mode appears. The dashed
lines depict the boundaries of the range of existence for the
topologically nontrivial phase in the long closed nanowire.
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4. MAGNETOCALORIC ANOMALIES 
AS SIGNATURES OF THE FERMION PARITY 

CHANGE LINES

At zero temperature, changes in the parameters
characterizing a nanowire (both open and closed) lead
to a sequence of quantum phase transitions accompa-
nied by the changes in the fermion parity. At nonzero
temperatures, QTs in magnetic systems can be identi-
fied by the analysis of the magnetocaloric effect
(MCE) [11, 29], which manifests itself in the tempera-

ture change at the adiabatic variation of the applied
magnetic field

(8)

(9)

(10)

where

The analysis of Eqs. (8)–(10) demonstrates that, at
low temperatures near zero-mode lines (where

), the magnitude of the MCE is of the order of
 and diverges on the zero-mode lines. Moreover,

this characteristic changes its sign upon passing the
QT lines. The magnetic field dependence of the MCE
for the chain consisting of 30 sites for the parameters
corresponding to Fig. 2 is plotted in Fig. 3. The dashed
lines depict the behavior of the MCE for the closed
chain in the case , where two QTs occur with
a change in the fermion parity. For the chain with the
open boundaries, the aforementioned cascade of
quantum transitions occurs with the change in P, near
which the MCE anomalies manifest themselves (solid
lines in Fig. 3). Thus, the MCE anomalies can serve as
a tool for revealing the parameters at which in the case
of short open nanowires QTs occur with a change in
the fermion parity of the ground state, whereas topo-
logical transitions occur in long closed nanowires.

5. STABILITY OF THE FERMION PARITY 
CHANGE LINES WITH RESPECT TO WEAK 

COULOMB INTERACTIONS

We solve the problem concerning the structure of
the nanowire ground state taking into account the
onsite ( ) and intersite ( ) Coulomb interactions
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using two methods.

Within the first approach, we employ the exact
diagonalization of the Hamiltonian describing the
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chain containing a small number of sites. Then, on the
basis of the Lehmann representation [31]

(12)

we find the Fermi excitation energies and determine
their minimum values. These exact results are used to
test the accuracy of the approximate approach allow-
ing us to calculate the characteristics of the nanowire
having a large number of sites.

The second approach corresponds to the general-
ized mean-field approximation. Its technical aspects
are related to the application of the Bogoliubov trans-
formation to the four-fermion operators with the con-
sequent renormalization of the operator terms [32,
33]. In such an approach, the equations for the trans-
formation coefficients become nonlinear since the
effective quadratic form of the Hamiltonian becomes
dependent on the transformation parameters.

In our case, the renormalization of the matrices
introduced above can be represented in the form
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The averages in these expressions are nonlinearly
related to the sought parameters of the Bogoliubov
transformation
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where  is the Fermi–Dirac function. This
approach provides an algorithm where the transfor-
mation coefficients are determined from the solution
to the self-consistent set of nonlinear equations.

For short chains ( ), the comparison of the
results obtained by the two described calculation tech-
niques demonstrates that, at U, V ≲ |t|, the low-energy
branches of the excitation spectrum  and the one-
particle wavefunctions corresponding to them coin-
cide within an accuracy of several percent. Accord-
ingly, the parametric lines exhibiting the change in the
fermion parity of the ground state are also well repro-
duced in the mean-field approach. All these state-
ments are illustrated in Fig. 4 for the case of 
and .

The spectral characteristics and features of the
ground state for nanowires with a large number of sites
taking into account the Coulomb interactions were
calculated in the generalized mean-field approxima-
tion. It turns out that the aforementioned features of
the systems remain unchanged even in the presence of
electron−electron interactions: for infinite closed
chains, there exists a parameter range where the topo-
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Fig. 3. (Color online) Magnetic field dependence of the
magnetocaloric effect for the chain consisting of 30 sites.

Here,  and the other parameters are the same as
in Fig. 2. The comparison to Fig. 1 shows that the MCE
magnitude is characterized by an anomalous behavior near
quantum transitions with the change in the fermion parity
of the nanowire ground state.
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ters are varied within this range, a cascade of QTs
occurs in an open short chain with the change in the
fermion parity of the ground state, which is accompa-
nied by the magnetocaloric anomalies.

Figure 5 shows the fermion parity map for the open
short chain and topological transition lines for the
closed long chain in the case of , ,
and the other parameters corresponding to Fig. 1. We
can see that QTs are retained even in the presence of
electron correlations, whereas the lines of quantum
critical points change their location in the phase dia-
gram.

= .0 5| |U t = .0 3| |V t

6. CONCLUSIONS

The main result of this work is the prediction of the
anomalous behavior of the magnetocaloric effect in
open short (L ~ 10−100 nm) semiconductor nanow-
ires with the strong Rashba spin–orbit coupling and
the induced superconducting pairing potential. Such
behavior arises within the magnetic field range where
the topological index for the closed infinite nanowire
(the Majorana number) is negative and the state of this
nanowire corresponds to the topologically nontrivial
phase.

The anomalous behavior occurs because, for an
open nanowire with a finite number of sites, the
parameter range where the state of the infinite nanow-
ire is topologically nontrivial becomes separated into a
finite number of subranges; within each of them, the
fermion parity of the ground state is negative. The
boundaries of such subranges are the lines consisting
of points corresponding to the doubly degenerate
ground state and having excitations including the
zeroth mode. The crossing of each boundary is
accompanied by the quantum transition with the
change in the fermion parity of the ground state.

It is important that the aforementioned quantum
transition is accompanied by the change in the sign of
the magnetocaloric effect, whereas the magnitude of
the magnetocaloric effect at the quantum critical
point tends to infinity. Such a scenario is repeated at
each crossing of the quantum critical point. This

Fig. 4. (Color online) (а) Minimum excitation energy for
the open nanowire with the Coulomb interactions at

, , , and  versus the chemi-
cal potential (upper panel). The solid curve corresponds to
the energy calculated in the generalized mean-field
approximation. The dashed line corresponds to the energy
calculated by the exact diagonalization and the Lehmann
representation. (b) Boundaries of the phases (at the same
values of parameters) with the negative fermion parity for
the nanowire obtained with allowance for Coulomb inter-
actions. Solid lines correspond to the generalized mean-
field approximation and the dashed curves show the results
of exact calculations. The other parameters not mentioned
here are the same as in Fig. 1.

= 6N = | |h t = .0 5| |U t = .0 3| |V t

Fig. 5. (Color online) Map of the fermion parity for the
open chain consisting of 30 sites and the boundaries of the
topological phases (dashed lines) for the closed infinitely
long chain obtained with allowance for electron correla-
tions: , . The other parameters are the
same as in Fig. 1. At the parameters corresponding to the
shaded areas, the ground state of the open chain includes
the partial contributions corresponding to odd numbers of
fermions.

= .0 5| |U t = .0 3| |V t
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explains the origin of the cascade of quantum transi-
tions occurring in a finite nanowire with the change in
the applied magnetic field.

It is shown that the cascade of quantum transitions
takes place even in the presence of the electron−elec-
tron interactions in the nanowire. The positions of the
corresponding quantum critical points on the phase
diagram can also be found by analyzing the magneto-
caloric anomalies.

An important practical aspect of the predicted cas-
cade of quantum transitions is that the parameter
range corresponding to the topologically nontrivial
phase for the closed infinite nanowire with the strong
Rashba spin–orbit coupling and the induced super-
conducting pairing potential can be identified by
analyzing the specific features characterizing the
behavior of the magnetocaloric effect in an open short
nanowire.
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