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GENERALIZED KONDO LATTICE MODEL AND ITS SPIN-POLARON

REALIZATION BY THE PROJECTION METHOD FOR CUPRATES

V. V. Valkov,∗ D. M. Dzebisashvili,∗† and A. F. Barabanov‡

The spin–fermion model, which is an effective low-energy realization of the three-band Emery model after

passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces

to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated

hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-

electron excitations highlight the important role of the long-range spin-correlated hoppings.
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1. Introduction

The structure of quasiparticles of the normal phase of cuprate high-temperature superconductors
(HTSC) and the nature of low-energy interactions play a key role in explaining the mechanism of Cooper
instability, the anomalous temperature behavior of the kinetic coefficients, and many other anomalous prop-
erties [1], [2]. The far-from-perfect theory of a two-dimensional doped antiferromagnet (AFM) is primarily
developed in terms of the Hubbard two-dimensional models, generalized t–J models, the three-band Emery
model [3]–[7], and the spin–fermion model. We do not discuss the first two models and only mention that
they differ substantially from the three-band Emery model and spin–fermion models because their charge
and spin subsystems are formed by the same carriers. We therefore start with the more realistic models
from our standpoint (the spin–fermion model and the three-band Emery model) where the spin-subsystem
and the charge-subsystem carriers are respectively determined by d and p ions.

It is known that in the regime of strong electron correlations (SEC), the Hamiltonian of the three-band
Emery model can be reduced to the spin–fermion model [8]–[11]. An attractive property of the spin–fermion
model is that already in the simplest consideration, it allows obtaining the primary motif of the cuprate
hole spectrum [8], [9]. In this case, the bottom of the carrier spectrum E(k) is located in the vicinity of
the boundary of the magnetic Brillouin zone, and the spectrum itself has the quasimomentum dependence
E(k) ∼ (cos kx + cos ky)2.

Here, we reduce the Hamiltonians of the three-band Emery model and the spin–fermion model to a
generalized Kondo lattice model that takes the long-range spin-correlated hoppings into account. Based on
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a comparison of the spectral dependences of spin-polaron quasiparticles for the Kondo lattice model and
for its truncated version (where only interactions between the nearest ions remain), we conclude that the
long-range spin-correlated hoppings are important.

2. The Hamiltonian of the three-band Emery model

The Hamiltonian of the three-band Emery model for the CuO2 plane [3]–[6] can be written as

Ĥ = Ĥpd + ĤI , (1)

where

Ĥpd =
∑

f

(εdn̂
d
f + Udn̂

d
f↑n̂

d
f↓) +

∑

l

(εpn̂
p
l + Upn̂

p
l↑n̂

p
l↓) +

+ Vpd

∑

f,δ

n̂d
f n̂p

f+δ + tpd

∑

f,δ,σ

(ϑ(δ)d+
fσpf+δ,σ + H.c.) + T̂ , (2)

T̂ =
∑

l,Δ,σ

t�(Δ)p+
l,σpl+Δ,σ, ĤI =

I1

2

∑

f,g

�Sf
�Sf+g +

I2

2

∑

f,d

�Sf
�Sf+d. (3)

Here, εp and εd denote the energy of a hole on the respective oxygen and copper ions, Up and Ud denote
the energy of repulsion of two holes on oxygen and copper ions, Vpd is the energy of repulsion of two holes
on nearest oxygen and copper sites, tpd is the parameter of hybridization of nearest oxygen p and copper d

orbitals. The vectors l show the positions of sites of oxygen ions. The vector δ in (2) takes the four values
±δx and ±δy (δx = (a/2, 0), δy = (0, a/2), and a is the lattice parameter of copper ions) and connects the
nearest oxygen sites at positions f + δ with the copper ion at the site f . The function ϑ(δ) takes the effect
of correlations between the phases of copper and oxygen orbitals on hybridization processes into account.
For commonly used orbitals, the function ϑ(δ) takes the values ϑ(δ) = ∓1 for δ = ±δx or δ = ±δy.

In the expression for Ĥpd, the operators plσ or p+
lσ respectively annihilate or create a hole on the oxygen

ion with the site index l and spin projection σ, which takes the values ↑ or ↓. The operators dfσ or d+
fσ

annihilate or create a hole on the copper ion with the index f and spin projection σ. The operators of
the number of holes on the oxygen or copper ion at the site l or f with the spin σ are described by the
expression n̂p

lσ =
∑

σ p+
lσplσ or n̂d

fσ =
∑

σ d+
fσdfσ. Moreover, n̂p

l =
∑

σ n̂p
lσ and n̂d

f =
∑

σ n̂d
fσ.

The term T̂ corresponds to the direct hoppings of the holes between nearest oxygen ions with the
tunneling integral t�(Δ). Its sign is defined by a function �(Δ) that depends on the orientation of the line
where the oxygen ions involved in the hoppings are located. The vector Δ takes the four values (±a/2,±a/2)
and connects the oxygen ion at the site l with the nearest oxygen ion with the number l+Δ. For the selected
oxygen orbital phases, we have �(Δ) = 1 if Δ = ±(a/2, a/2). If Δ = ±(a/2,−a/2), then �(Δ) = −1.

The second term ĤI in expression (1) corresponds to the superexchange interaction between the spin
moments on the nearest and next-nearest sites (d = ±gx ± gy). The vectors of the nearest neighbors of
the copper lattice are gx = (a, 0), gy = (0, a). In what follows, it is convenient to use the frustration
parameter p and the effective exchange I: I1 = (1 − p)I and I2 = pI, 0 ≤ p ≤ 1, I > 0. According to
this approach, it is assumed that considering the properties of the spin subsystem of copper ions, we can
use the two-dimensional frustrated AFM Heisenberg model with S = 1/2. The AFM interaction between
the nearest spins of Cu2+ ions in the CuO2 plane is high (it has the order of 0.13 eV ∼= 1500K) and
is much higher than the interplane exchange. The interplane exchange is primarily responsible for the
long-range order observed in the dielectric phase of the CuO2 planes. For La2CuO4 (LSCO), the Neel
temperature TN ∼ 300K. But with a comparatively weak doping of the system with holes, the long-range
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AFM order disappears over the entire temperature interval. This behavior is adequately simulated by
the introduction of frustration [12]. The cluster calculations indicate the existence of a sufficiently high
frustration parameter I2/I1 ∼ 0.1 even for the undoped LSCO [13]. The spin subsystem is considered
quantitatively in the framework of a spherically symmetric self-consistent theory [14]–[16]. According to
this theory, the subsystem of the spin moments localized on copper ions is considered in the state of an
SU(2)-invariant quantum spin liquid, which has spherical symmetry in the spin space. This observation
implies that the spin correlation functions Cj = 〈�Sf

�Sf+rj 〉 (where rj is the radius of jth coordination
sphere) satisfy the relations Cj = 3〈Sx

f Sx
f+rj

〉 = 3〈Sy
fSy

f+rj
〉 = 3〈Sz

fSz
f+rj

〉 and 〈Sα
f 〉 = 0, where Sα

f is the
spin operator along the direction α = x, y, z on the copper ion at the site f .

3. Generalized Kondo lattice model

For simplicity, we consider the case Up = Vpd = t = 0. Under these conditions, the Hamiltonian of
three-band Emery model (1) is substantially simplified:

Ĥpd =
∑

f

(εdn̂
d
f + Udn̂

d
f↑n̂

d
f↓) + εp

∑

l

n̂p
l + tpd

∑

f,δ,σ

(ϑ(δ)d+
fσpf+δ,σ + H.c.). (4)

As is known [8], [9], in the SEC regime where Ud > εpd = εp − εd 	 tpd, operator (4) is reducible to
the Hamiltonian of the spin–fermion model, and the corresponding Hilbert space is characterized by the
homeopolar states of copper ions:

Ĥsp-f = N(εd − 4τ) + εp

∑

f

(n̂p
f+δx

+ n̂p
f+δy

) + 2τ(1 − η)
∑

f,δ,δ1,σ

uδδ1p
+
f+δ,σpf+δ1,σ +

+ 4τ(1 + η)
∑

f,δ,δ1,σ,σ′,α

uδδ1p
+
f+δ,σ(Sα

f σ̂α
σσ′ )pf+δ1,σ′ , (5)

where we introduce the notation τ = t2pd/εpd, η = εpd/(Ud − εpd), and uδδ1 = ϑ(δ)ϑ(δ1)/4. In (5), N is the
number of unit cells in the CuO2 plane, and σ̂x(y,z) are the Pauli matrices.

For the operators pf+δx(y),σ, we pass to the quasimomentum representation,

pk,δx,σ =
1√
N

∑

f

e−ikfpf+δx,σ, pk,δy ,σ =
1√
N

∑

f

e−ikfpf+δy,σ, (6)

and define new operators φ and ψ as [17]–[20]

φkσ =
skxpk,δx,σ + skypk,δy ,σ

sk
, ψkσ =

skypk,δx,σ − skxpk,δy ,σ

sk
, (7)

where
skx = sin

kx

2
, sky = sin

ky

2
, sk =

√
s2

kx + s2
ky . (8)

Using the inverse Fourier transform, we introduce the operators φfσ and ψfσ in the Weiner represen-
tation:

φkσ =
1√
N

∑

f

e−ikfφfσ, ψkσ =
1√
N

∑

f

e−ikfψfσ. (9)

The effective Hamiltonian of the cuprate HTSC in the second order of the perturbation theory in tpd in the
Wannier representation is then written as

Ĥ φ
eff = N(εd − 4τ) + ε̃φ

∑

f,σ

φ+
fσφfσ + εp

∑

f,σ

ψ+
fσψfσ − tg

∑

f,g,σ

φ+
fσφf+g,σ +

+ 4τ(1 + η)
∑

f,n,m,σ,σ1,α

(sns∗m)φ+
f−m,σ(Sα

f σ̂α
σσ1

)φf−n,σ1 , (10)
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where ε̃φ = εp + 2τ(1 − η), tg = τ(1 − η)/2, and sf = (
∑

k eikfsk)/N .
An important feature of Hamiltonian (10) is the absence of interaction of ψ fermions and holes on

the d orbitals of copper ions. The interaction between the states of φ fermions and d orbitals of copper
ions is described by the last term and describes the processes of scattering of the φ current carriers on the
localized spin moments with a spin flip or, in other words, the Kondo scattering processes. We note that
these processes of the spin-correlated hoppings of φ fermions occur between arbitrarily distant cells.

For the parameters tpd = 1.3 eV, εpd = 3.6 eV, and Ud = 10.5 eV of the three-band Emery model
characteristic for cuprates [21], [22], we obtain τ = 0.47 eV, η = 0.52, and tg = 0.11 eV. The overlapping
parameters (snsm) are controlled only by the lattice geometry and decrease rapidly as the numbers n and
m of coordination spheres of the lattice of copper ions increase:

(s0s0) = 0.920, (s1s0) = (sgs0) = −0.136, (s2s0) = (sds0) = −0.022,

(s3s0) = (s2gs0) = −0.010, (s1s1) = (sgsg) = 0.020, (s2s1) = 0.003.
(11)

We show that the Kondo scattering processes lead to the formation of spin-polaron states whose energy
is much lower that the energy εp. This implies that the low-energy dynamics of fermions in the CuO2 plane
is described only by the spin polarons and the ψ-fermion subsystem can be neglected.

Omitting an insignificant constant, we represent the Hamiltonian as the sum of on-site terms and terms
describing hoppings of the φ hole:

Ĥ φ
eff = ε̃φ

∑

f,σ

φ+
fσφfσ + Ĵφ−d + εp

∑

f,σ

ψ+
fσψfσ + t̂φg + t̂SC, (12)

Ĵφ−d =
Jφ−d

2

∑

f,σ,σ1,α

φ+
fσ(Sα

f σ̂α
σσ1

)φfσ1 = Jφ−d

∑

f

�Sf�sφ
f ,

Jφ−d = 8τ(1 + η)(s0s0), t̂φg = −tg
∑

f,g,σ

φ+
fσφf+g,σ,

t̂SC = 4τ(1 + η)
∑

f,n,m,σ,σ1,α

(1 − δm0δn0)(snsm)φ+
f−m,σ(Sα

f σ̂α
σσ1

)φf−n,σ1 .

In the expression for t̂SC, the factor 1− δm0δn0 (where δmn is the Kronecker symbol) indicates the absence
of the term in the summation with all three sites coinciding. Therefore, the operator t̂SC describes only
spin-correlated hoppings of the hole.

In effective Hamiltonian (12), the maximum term is the on-site (φ–d)-exchange interaction: Ĵφ−d with
the parameter Jφ−d. This interaction leads to the formation of two levels at each site. The lower level
corresponds to the (φ–d)-singlet state with the energy ε̃−ϕ = ε̃φ−3Jφ−d/4 and wave function |ϕf 〉 = ϕ+

f |O〉,
where ϕ+

f = (φ+
f↑Z

↓0
f + Z↑0

f φ+
f↓)/

√
2. Here, the localized-spin operator is written using the representation

in terms of the Hubbard operators, Zλ1λ2
f = |λ1〉〈λ2|, and the ket vector |O〉 corresponds to the vacuum of

the on-site cluster. The upper triply degenerate level with the energy ε̃+
χ = ε̃φ +Jφ−d/4 corresponds to the

three (φ–d)-triplet states with the wave functions

|χfm〉 = χ+
fm|O〉, m = −1, 0, 1, (13)

where
χ+

f0 =
1√
2
(φ+

f↑Z
↓0
f − Z↑0

f φ+
f↓), χ+

f,+1 = φ+
f↑Z

↑0
f , χ+

f,−1 = φ+
f↓Z

↓0
f .
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This level splitting is qualitatively similar to what arises when considering the Zhang–Rice cluster and
polaron [23].

To justify the concept of a spin polaron, we define the distance

Δεp=εψ ;ε̃−
ϕ

= εp − ε̃−ϕ

between the level εψ = εp corresponding to the states of the ψ fermions and the singlet level ε̃−ϕ :

Δεp=εψ ;ε̃−
ϕ

= εp − ε̃φ +
3
4
Jφ−d ≈ 2τ [5 + 7η]. (14)

The low-frequency part of the hole spectrum is formed in the vicinity of the lower single-site level ε̃−ϕ and
is primarily controlled by the motion of the polaron state |ϕf 〉 → |ϕf+g〉. If the half-width W of the band
of this motion given by the terms t̂φg and t̂SC in Eq. (12) is smaller than Δεp=εψ;ε̃−

ϕ
, then the ψ carriers can

be neglected.
The width 2W of the band provided by the motion of polarons should show the polaron narrowing

and in any case should be proportional to the spin–spin correlation function Cg = 〈�Sf
�Sf+g〉  −0.2 to

−0.3 (characteristic values for the two-dimensional AFM in the spin-liquid state). This conclusion follows
because the motion |ϕf 〉 → |ϕf+g〉 is always associated with the combination of ϕ+

f+gϕf , which contains
the spin operators on the nearest sites.

The half-width Wg of the band provided by the term t̂φg in Eq. (12) can be estimated as Wg = 2tg|Cg| =
τ(1 − η)|Cg|. Comparing this expression with formula (14), we see that Wg � Δεp=εψ;ε̃−

ϕ
.

The half-width WSC of the band provided by t̂SC in (12) is defined by the term

t̂SC
g = tSC

g

∑

f,g,σ,σ1,α

[φ+
f+g,σ(Sα

f σ̂α
σσ1

)φfσ1 + H.c.], tSC
g = 4τ(1 + η)(s0sg), (15)

which contains the maximum overlapping (s0sg) = −0.136 in the operator t̂SC (see Eqs. (11)). The param-
eter tSC

g is less than the constant of the (φ–d)-exchange coupling Jφ−d by a factor of 13. With the factor
Cg taken into account, this leads to the inequality WSC � Δεp=εψ ;ε̃−

ϕ
.

The inequalities Wg � Δεp=εψ;ε̃−
ϕ

and WSC � Δεp=εψ ;ε̃−
ϕ

follow from the inequalities Jφ−d 	 tSC
g 	 tg

and indicate that the term εp

∑
f,σ ψ+

fσψfσ in model (12) can be omitted and the concept of the spin polaron
can be introduced.

As a result, Hamiltonian (12) takes the form of the Kondo lattice Hamiltonian

Ĥ K
eff = ε̃φ

∑

f,σ

φ+
fσφfσ + Jφ−d

∑

f

�Sf�sφ
f − tg

∑

f,g,σ

φ+
fσφf+g,σ +

+ 4τ(1 + η)
∑

f,m,n,σ,σ1,α

(1 − δm0δn0)(snsm)φ+
f−m,σ(Sα

f σ̂α
σσ1

)φf−n,σ1 . (16)

If we assume that the distant spin-correlated hoppings can be neglected in Eq. (16) in the leading approxi-
mation (keeping only terms with (s0sg)), then we consequently obtain a Hamiltonian corresponding to the
reduced Kondo lattice model:

Ĥ Kr
eff = ε̃φ

∑

f,σ

φ+
fσφfσ + Jφ−d

∑

f

�Sf�sφ
f − tg

∑

f,g,σ

φ+
fσφf+g,σ +

+ tSC
g

∑

f,g,σ,σ1,α

[φ+
f+g,σ(Sα

f σ̂α
σσ1

)φfσ1 + H.c.]. (17)

In the last summation in this expression, the index f ranges all lattice sites of copper ions, and the index
g ranges only the sites that are nearest the site f . The spectral characteristics of the Fermi quasiparticles
in the cuprate HTSC were studied based on model (17) in [24], [25].
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4. Basis operators and projection method

In the framework of the Zwanzig–Mori projection method [26], [27], we introduce a set of basis operators
corresponding to the charge excitations. In our case, it is convenient to choose

A1fσ = φfσ, A2fσ =
∑

σ1,α

(Sα
f σ̂α

σσ1
)φfσ1 , A3fσ =

∑

σ1,α

(Sα
f σ̂α

σσ1
)φf+g,σ1 (18)

as the basis operators. Basis (18) is constructed standardly. In the first step, we choose the “bare” hole
operator φfσ as A1f . The choice of the subsequent operators is dictated by the equation of motion for A1f .
The new operators of the type A2f and A3f arise from Eq. (18) as a result of the commutation [φfσ, Ĥ Kr

eff ].
These operators are included in the basis, and the equations of motion are also written for them. If there is
no need for a further increase in the basis, then the equations of motion for Ajf (j = 1, 2, 3) are projected
on the same basis.

It is convenient to realize the projection using the formalism of the equations of motion for the retarded
Green’s functions (i, j = 1, 2, 3): Gij(k, ω) = 〈〈Aki|A+

kj〉〉ω , where Ajkσ =
∑

f e−ikfAjfσ/
√

N are the Fourier
transforms of operators (18).

For the closure of the equations of motion of the form

ω〈〈Aki|A+
kj〉〉ω = Kij + 〈〈[Aki, Ĥ

Kr
eff ]|A+

kj〉〉ω , (19)

we must calculate the energy matrix Dij = 〈{[Aik, Ĥ Kr
eff ], A+

jk}〉 and the matrix Kij = 〈{Aik, A+
jk}〉. The

Fermi Green’s function is derived from a system of equations with the matrix form Ĝ = (ω − D̂K̂−1)−1K̂,
and the spectrum of Fermi excitations is defined by the poles of this Green’s function:

Gij(k, ω) =
3∑

n=1

zn
(i,j)(k)

ω − En(k)
, i, j = 1, 2, 3.

A more detailed description of this method can be found, for example, in [28].
Therefore, the problem of finding the spectrum En(k) and the residues of the Green’s functions zn

(i,j)(k)
reduces to calculating the matrix elements Kij and Dij . These matrix elements calculated in the basis of the
three operators (18) with the truncated Hamiltonian of Kondo lattice (17) are presented in the appendix.

A similar procedure for calculating the matrices K̂(k) and D̂(k) in the basis of the three operators (18)
can also be performed for the complete Hamiltonian (16). But the matrix elements are cumbersome in this
case, and we do not give their explicit form.

The method used for closing the equations of motion for the Green’s functions is applicable over a
broad temperature region. From the practical standpoint, the properties of cuprate HTSC at temperatures
T ≤ 100K are most interesting. Taking into account that the characteristic energy parameters controlling
the energy structure of the spin-polaron states are of the order of 0.1 to 0.5 eV, we find that in the considered
temperature region, the spectrum of Fermi excitations can be studied in the low-temperature approximation.

The problem of the dependence of the energy of Fermi quasiparticles on the concentration of oxygen
holes seems more challenging. But the situation is significantly simplified in solving the problem of the
spin-polaron states in the normal phase for low temperatures. Indeed, in the narrow concentration region
where antiferromagnetism is destroyed but there is still no superconductivity, the concentration of holes
can be regarded as unchanged. In this case, the doping parameter is small: x  5 · 10−2.

In the general case, the matrix elements K̂ and D̂ depend on not only the spin–spin correlators and
charge correlators but also the spin–charge correlators. Their concentration dependence was previously
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studied in [29]. Not going into the details, we only note that in the considered case with weak doping, the
contribution from the charge and spin–charge correlators turns out to be insignificant and negligible. This
observation implies that in the considered narrow doping region, the problem of finding the spin-polaron
states and the spectrum of Fermi excitations can be solved in the single-hole approximation.

Because we consider the energy structure of the spin-polaron excitations in the case where the localized-
spin subsystem exists in the state of a quantum spin liquid, it seems natural that the spin–spin correlators
significantly affect the final result. In this case, this theory involves the coupled spin–spin correlators Cj

with j = 1, 2, 3, 4 and j = 6 and the three-site correlators. But the three-site correlators are equal to zero
in a spin liquid. Spin correlators with a large number of sites do not arise in the considered approximation.

5. The role of distant spin-correlated hoppings

In this section, we discuss the problem related to the presence of spin-correlated hoppings between
the Wanier lattice sites from the distant coordination spheres in the complete effective Hamiltonian. The
importance of the spin-correlated hoppings of oxygen holes between sites located at large distances is
demonstrated by the example of calculating the spectrum of Fermi excitations. At first sight, it can
naturally be expected that because the effective hopping integrals decay relatively rapidly as a result of
the multiplicative factors sn and sm, hoppings between the sites from distant coordination spheres give a
small contribution to the energy spectrum. In fact, as follows from further considerations, this is far from
true, primarily because the number of the sites to which a hole can hop also increases as the radius of the
coordination sphere increases. These conclusions serve as the basis for the study, and we present the results
of this study below.

First, we present the results of calculating the spectrum of Fermi excitations according to generalized
Kondo lattice model (16). In Fig. 1, the bold solid line corresponds to the branch of the spin-polaron
excitations Esp(k), which is obtained from the solution of the dispersion equation |ω − D̂(k)K̂−1(k)| = 0.
This solution corresponds to the lower of the three branches of the energy spectrum (see the inset in Fig. 1).

The thin solid line is constructed for Hamiltonian (17) of the reduced Kondo lattice model; only
hoppings between nearest neighbors are taken into account in the Hamiltonian. In each of these two cases,
the same basis of the three operators (18) with the corresponding matrix elements Kij and Dij is used.
It can be seen that in the direction Γ–M , the thin solid curve has a minimum in the vicinity of the point
(π/2, π/2) of the Brillouin zone, and the width of the band of the spin polarons does not exceed 0.2 eV.

It follows from a comparison of the two mentioned curves that despite the presence of the majorant
factors sn and sm, taking distant hoppings into account substantially changes the characteristics of the
spin-polaron band, leading to five-fold increase (nearly an order of magnitude) in its width. This implies
that neglecting distant hoppings leads to a large error in the effective mass of the Fermi carriers, which has
a primary importance for the kinetics and low-temperature dynamics of cuprate HTSC.

We note that the spin-polaron spectrum for the complete Kondo lattice model (16) was previously
calculated in [28], [30]. In this case, the Hamiltonian is written in form (5), and to calculate the dispersion
curves, we used a set of basis operators different from (18):

Ā1fσ = pf+δx,σ, Ā2fσ = pf+δy,σ, Ā3fσ =
1
2

∑

δ,σ1,α

(Sα
f σ̂α

σσ1
)pf+δ,σ1 . (20)

The spin-polaron spectrum obtained in [28], [30] is shown in Fig. 1 by the dashed line.
It can be seen that the bold solid curve and the dashed curve, calculated for the same Hamiltonian (16)

but using different basis operators (18) and (20), exhibit a good coincidence. The bold solid curve has a
minor energy gain because basis (18) takes more spin–charge degrees of freedom into account than basis (20)
does. Indeed, the spin–charge correlations are included in two sets, A2f and A3f , of basis operators in
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Fig. 1. Dispersion curves of the lower band of spin-polaron excitations for the three effective Hamil-

tonians of the three-band Emery model: the bold solid curve is calculated for the complete Kondo

lattice Hamiltonian (16), the thin solid curve corresponds to Kondo lattice model (17) with distant

hoppings omitted, and the dashed curve corresponds to spin–fermion model (5). The calculations

were performed with the model parameters τ = 0.47 eV and η = 0.52. For simplicity, I = 0. The

values of the pair spin correlation functions were chosen as C1 = −0.255, C2 = 0.075, and C3 = 0.064;

all Cj for j > 3 are zero. The symmetry points of the Brillouin zone have the coordinates Γ = (0, 0),

M = (π, π), X = (π, 0), and X ′ = (0, π). The inset shows the dispersion curves describing all three

solutions of the cubic dispersion equation |ω − D̂K̂−1| = 0 for Hamiltonian (16) of the Kondo lattice

model in basis (18). The lower curve coincides with the bold solid curves in the main plot. The

horizontal dashed line in the inset shows the position of the energy level of the inactive ψ orbital.

basis (18) and in the single set Ā3f in basis (20). In this case, in contrast, purely charge degrees of freedom
are included in the two sets Ā1f and Ā2f of operators in basis (20) and in the single set A1f in basis (18).
But in the absence of direct p–p hoppings and with the condition εpd 	 tpd taken into account, the last
fact does not provide any benefits in favor of basis (20).

In the inset in Fig. 1, the solid lines shows all three dispersion curves corresponding to the complete
Kondo lattice model (16) and calculated with three basis operators (18). The horizontal dashed line
corresponds to the energy of the inactive ψ orbital. It can be seen that the lower spin-polaron band is
separated from the bare energy εp of the oxygen p orbitals (here, assumed to be zero) downward by a value
of about 3 eV.

6. The role of direct oxygen–oxygen hoppings

An important feature of the hole spectrum for cuprate HTSC is the existence of the absolute minimum
in the vicinity of the point (π/2, π/2) of the Brillouin zone. The dispersion curves in Fig. 1 show the
minimum only in the direction Γ—M , but not in the direction M–M ′. This “incorrect” behavior is related
to our neglect of the direct p–p hoppings in constructing effective Hamiltonian (16). Taking these hoppings
into account is likely to lead to renormalizing the tunneling integral tg between nearest neighbors and also
to initiating new hoppings between distant cells with a rate rapidly decaying with distance.

As an example, we consider the hopping between the next-nearest cells with the tunneling integral td,
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a b

Fig. 2. (a) Spectrum and (b) spectral intensity of the lower band of the spin-polaron states calculated

with hopping of quasiparticles between the next-nearest cells taken into account (see (21)): solid lines

correspond to complete Kondo lattice model (16), and dashed lines correspond to reduced Kondo

lattice model (17). In both cases, three basis operators (18) are used. The tunneling integral is

td = 0.05 eV. The other model parameters have the same values as in Fig. 1.

which is the largest of the initiated hoppings. The corresponding kinetic-energy operator

t̂d = −td
∑

f,d,σ

φ+
fσφf+d,σ (21)

should be added to Hamiltonians (16) and (17). In this case, each matrix element Dij of the energy matrix
is additionally renormalized by

tdij = 〈{[Aikσ , t̂d], A+
jkσ}〉, i, j = 1, 2, 3.

Calculating the matrix elements tdij = tdji gives the relations

td11 = −4tdγ2k, td12 = td13 = 0, td22 = −4tdC2γ2k, td23 = −8td(C1γ1k + C4γ4k),

td33 = −8td

(
3
4

+ 3C2γ2k + 2C3γ3k + C5γ5k + C7γ7k

)
,

(22)

where γ5k = cos 2kx cos 2ky and γ7k = (cos kx cos 3ky + cos 3kx cos ky)/2.
In Fig. 2a, the solid line depicts the spectrum of spin polarons calculated with three basis operators (18)

based on complete Hamiltonian (16) of the Kondo lattice extended by adding the operator t̂d, which takes
hoppings to the next-nearest cells into account. The dashed line shows the spin-polaron spectrum of reduced
Kondo model (17) obtained with the same basis (18) with the hopping operator t̂d taken into account.

Comparing these curves with the similar dependences in Fig. 1 shows that taking the p–p hoppings into
account leads to a minimum in the spectrum of Fermi spin-polaron excitations developing in the vicinity
of the points (±π/2,±π/2) of the Brillouin zone in the directions Γ–M and X–X ′. This is important
and is responsible for the existence of small hole pockets at these points that are observed in the angle-
resolved photoemission (ARPES) experiments with weakly hole-doped copper-based HTSC. This evolution
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of the Fermi surface with doping of the compound La2−xSrxCuO4 in terms of the projection method was
studied in [30]. The resulting Fermi surfaces and the dependences of the Fermi momentum on x show a
fair agreement with the results of ARPES measurements [31].

Figure 2b shows the dependence of the residues z
(1)
(1,1)(k) of the Green’s function G11(k, ω) on the wave

vector k . These residues determine the contribution of “bare” hole states to the lower spin-polaron state
for each k. It can be seen that in the case of complete Kondo lattice Hamiltonian (16), the contribution
of “bare” holes to the spin-polaron state becomes zero at the Γ point of the Brillouin zone. This behavior
fully agrees with the results of calculating z

(1)
(1,1)(k) using spin–fermion model (5) with basis operators (20)

in [32], [33]. But this behavior is not reproduced for reduced Hamiltonian (17). In this case, as follows from
Fig. 2b, the residue of the Green’s function z

(1)
(1,1)(k) does not vanish at the Γ point of the Brillouin zone.

This also demonstrates the importance of taking the distant spin-correlated hoppings into account.

7. Conclusion

We have demonstrated a regular way to obtain an effective low-energy Hamiltonian for the three-band
Emery model. The main conclusion form the presented consideration is related to the statement that the
effective low-energy model of the electron structure of the CuO2 plane is a generalized model of the regular
Kondo lattice. Its most important feature is the presence of effective spin-correlated hoppings of fermions
between sites of the Wanier lattice from distant coordination spheres.

For the obtained generalized Kondo lattice model, we analyzed the role of distant spin-correlated hop-
pings. Based on a comparison of the dispersion curves of the spin-polaron spectrum and the spectral density
of “bare” holes calculated for complete generalized Kondo lattice model (16) and its reduced version (17),
we clearly demonstrated the essential role of distant spin-correlated hoppings. In particular, we showed
that taking these interactions into account leads to a significant (five-fold) increase in the width of the
spin-polaron band and also an additional decrease in the minimum energy of the spin-polaron quasiparticle.

We analyzed the role of the direct oxygen p–p hoppings and showed that these hoppings must be taken
into account to reproduce the experimentally observed minimum of the dispersion law for spin-polaron
excitations at the points (±π/2,±π/2) of the Brillouin zone.

We note that in the framework of the ordinary Kondo lattice model for doped two-dimensional AFM,
the pseudo-gap behavior of the spectral function of current carriers and the anomalous temperature behavior
of the kinetic coefficients was previously considered in [34], [35]. But those studies contained an essential
deficiency related to ignoring the processes of the motion of holes with a spin flip. As a result, to achieve
a satisfactory agreement of the theory and experiment, it was necessary to artificially introduce additional
hoppings on the first three nearest neighbors for the bottom of the bare band (i.e., without spin interactions)
to be located near the boundary of the magnetic Brillouin zone. This problem does not arise if Kondo lattice
model (16) obtained here is used to describe the spectral characteristics of the cuprate HTSC.

Appendix

The matrix elements D̂(k) and K̂(k) calculated using reduced Hamiltonian (17) of the Kondo lattice
with three basis operators (18) have the forms (Dij = Dji, Kij = Kji)

K11 = 1, K12 = K13 = 0, K22 =
3
4
, K23 = 4C1γ1k,

K33 = 3 + 8C2γ2k + 4C3γ3k;

D11 = εp + 4tg(1 − γ1k), D12 =
3
8
Jφ−d + tSC

g (3 + 4C1)γ1k,

761



D13 = 2Jφ−dC1γ1k + 4tSC
g

(
3
4

+ 4C1γ
2
1k + 2C2γ2k + C3γ3k

)
,

D22 =
3
4
(εp + 4tg) − 4tgC1γ1k − 3

8
Jφ−d − 8tSC

g C1γ1k,

(A.1)

D23 = (εp + 4tg)4C1γ1k − tg(3 + 8C2γ2k + 4C3γ3k) −

− 2Jφ−dC1γ1k − 4tSC
g

(
3
4
− C1 + 2C2γ2k + C3γ3k

)
,

D33 = (εp + 4tg)(3 + 8C2γ2k + 4C3γ3k) − 4tg(9C1γ1k + 6C4γ4k + C6γ6k) +

+ 2Jφ−dC1 − 32tSC
g C1γ1k,

where the functions γjk (j = 1, 2, 3, 4, 6) are the invariants of the square lattice,

γ1k =
cos kx + cos ky

2
, γ2k = cos kx cos ky, γ3k =

cos 2kx + cos 2ky

2
,

γ4k =
cos 2kx cos ky + cos 2ky cos kx

2
, γ6k =

cos 3kx + cos 3ky

2
.

To derive expressions (A.1), we use the relations (S̃m =
∑

α Sα
mσ̂α)

〈S̃mS̃n〉 = Cm−n, 〈S̃f S̃mS̃n〉 = −δf,mCf−n − δm,nCf−m + δf,nCf−m,

which hold in the SU(2)-invariant spin-liquid phase, and also the identity

∑

f

sf−nsf−m = δm,n − 1
4

∑

g

δ(m − n − g), (A.2)

where the vectors f , n, and m range all the sites of the sublattice of copper ions and the vector g takes the
four values (±a, 0) and (0,±a).
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