
Theoretical and Mathematical Physics, 193(3): 1853–1864 (2017)

DYNAMICAL MAGNETIC SUSCEPTIBILITY IN THE SPIN-FERMION

MODEL FOR CUPRATE SUPERCONDUCTORS

V. V. Val’kov∗ and D. M. Dzebisashvili∗†

Using the method of diagram techniques for the spin and Fermi operators in the framework of the SU(2)-

invariant spin-fermion model of the electron structure of the CuO2 plane of copper oxides, we obtain an

exact representation of the Matsubara Green’s function D⊥(k, iωm) of the subsystem of localized spins.

This representation includes the Larkin mass operator ΣL(k, iωm) and the strength and polarization

operators P (k, iωm) and Π(k, iωm). The calculation in the one-loop approximation of the mass and

strength operators for the Heisenberg spin system in the quantum spin-liquid state allows writing the

Green’s function D⊥(k, iωm) explicitly and establishing a relation to the result of Shimahara and Takada.

An essential point in the developed approach is taking the spin-polaron nature of the Fermi quasiparticles

in the spin-fermion model into account in finding the contribution of oxygen holes to the spin response in

terms of the polarization operator Π(k, iωm).
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1. Introduction

The relevance of calculating the magnetic susceptibility of doped cuprate high-temperature super-
conductors (HTS) is due to the necessity of correctly interpreting a large collection of experimental data
on the spin response in cuprates [1]. Parent compounds of HTS based on copper are antiferromagnetic
Mott–Hubbard dielectrics. Under doping, current carriers emerge in them, and the long-range magnetic
order is simultaneously disrupted. Because electrons are strongly correlated, the problem of calculating the
magnetic susceptibility in cuprate compounds is nontrivial.

In [2]–[9], the described problem was solved in the framework of the two-dimensional t–J model and
the Hubbard model. But in most cases [3]–[7], the magnetic susceptibility was calculated based on the
method of the memory function [10]–[12]. In [13], the problem of the cuprate magnetic susceptibility was
studied in the framework of the frustrated Heisenberg model, and a spherically symmetric approach was
used to evaluate the spin Green’s functions [14].

∗Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, RAS, Krasnoyarsk, Russia,

e-mail: vvv@iph.krasn.ru.
†Siberian State Aerospace University, Krasnoyarsk, Russia, e-mail: ddm@iph.krasn.ru.

This research was supported by the Russian Foundation for Basic Research (Grant No. 16-02-00073), the Admin-

istration of Krasnoyarsk Kray and the Krasnoyarsk Kray Foundation for Scientific and Technical Progress (Grant

No. 16-42-240435), and the complex program No. II.2P of the Siberian Branch of the Russian Academy of Sciences

(Grant No. 0356-2015-0405).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 193, No. 3, pp. 515–529, December, 2017.

Original article submitted May 21, 2015; revised October 31, 2016.

0040-5779/17/1933-1853 c© 2017 Pleiades Publishing, Ltd. 1853



It is assumed that the t–J model is a low-energy effective model obtained from a more general so-called
three-band p–d model [15]–[17], which contains all necessary couplings to allow describing the main features
of the electron structure of the CuO2 plane of cuprate HTS. Among all the couplings in the three-band p–d
model, the most crucial are (1) the hybridization between p states of the oxygen ions and d states of the
copper ions, whose strength is defined by the value tpd, (2) the presence of the energy gap Δpd = εp − εd

defining the difference of the energies εd and εp of the holes on the respective copper and oxygen ions, and
(3) the Coulomb coupling of two holes on the same copper ion Ud.

The smallness of the mixing parameter tpd compared with the energy difference Δpd and the Coulomb
coupling energy Ud allows obtaining the SU(2)-invariant spin-fermion model [18], [19]. Unlike the t–J

model, the spin-fermion model includes (1) the presence of two oxygen ions in the unit cell of the CuO2

plane and (2) the presence of two hole subsystems, the collective state of holes in the sublattices of the
oxygen ions and the holes localized on the copper ions. Obviously, the spin-fermion model is more suitable
than the t–J model for describing the low-temperature thermodynamics of cuprate HTS.

In [20] in studying the dynamical magnetic susceptibility of localized spin moments in the framework of
the spin-fermion model, a formula was proposed for expressing the spin Green’s function of the spin-fermion
model in terms of the spin Green’s function of the Heisenberg model and the polarization operator with the
contribution of the collective holes taken into account. In this case, the Green’s function of the Heisenberg
model was calculated using the spherically symmetric approach [14], and the polarization operator was
evaluated in [20] in the random phase approximation with the Fermi Green’s functions that form a fermion
loop in the random phase approximation being approximated by the bare Fermi propagators.

Here, in the framework of the spin-fermion model using the diagram method for both spin [21] and
Fermi operators [22], we obtain an exact representation of the dynamical magnetic susceptibility of localized
spins. We indicate the approximations for which the approximate formula proposed in [20] follows from the
obtained exact representation of the response. But in contrast to [20], the Green’s function of the Heisenberg
model for the spin-liquid phase in the approximate formula is calculated using the diagram method for the
spin operators [21]. The Fermi Green’s functions defining the fermion loop in the polarization operator
are calculated based on the spin-polaron approach [23], which takes the formation of the spin-polaron
quasiparticles into account. The latter fact is crucial for describing the cuprate superconductor properties.

2. Spin–fermion model Hamiltonian

In the regime of strongly correlated electrons where Ud > Δpd � tpd, the spin-fermion model Hamil-
tonian can be represented in the form [19], [24]

Ĥ = Ĥ0 + ĤJ + ĤI , (1)

where
Ĥ0 =

∑

k,α

[ξkxa+
kαakα + ξkyb+

kαbkα + tk(a+
kαbkα + b+

kαakα)],

ĤJ =
J

N

∑

k,q,f,α,β

eif(q−k)u+
kα(�Sf�σαβ)uqβ , ĤI =

∑

f,m

Ifm

2
�Sf

�Sm.

(2)

The Hamiltonian Ĥ0 describes the subsystem of oxygen holes in the momentum representation. The
operators a†

kα and akα create and annihilate holes with the spin projection α = ±1/2 in the oxygen
subsystem with px orbitals. The operators b†kα and bkα act similarly in the oxygen subsystem with py

orbitals. The functions defining the bare band structure of the oxygen holes are

ξkx(y) = εp − μ + 2τν2
kx(y), tk = (2τ − 4t)νkxνky, νkx = sin

kx

2
, νky = sin

ky

2
. (3)
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Here, εp denotes the auxiliary one-site hole energy, μ denotes the system chemical potential, and the rate of
the hops of the holes at the oxygen ions is given by the tunneling integrals τ and t. The first integral arises
as a result of taking hybridization processes into account in the second order of the perturbation theory
and is expressed in terms of the parameters of the initial Emery model:

τ =
t2pd

Δpd

(
1 − Δpd

Ud − Δpd − 2Vpd

)
. (4)

The tunneling integral t reflects the presence of direct hops of holes between the nearest-neighbor oxygen
ions.

The exchange between the oxygen subsystem and the localized spin subsystem is described by the
operator ĤJ , where �Sf is a vector operator of a spin localized at the f site, �σ = (σx, σy, σz) is a vector
composed of Pauli matrices, and the operator

ukα = νkxakα + νkybkα (5)

is defined as a linear combination of the operators akα and bkα.
The magnitude of the exchange between localized spins and the oxygen holes is defined by the formula

J =
4t2pd

Δpd

(
1 +

Δpd

Ud − Δpd − 2Vpd

)
. (6)

The third term in Hamiltonian (1) takes the superexchange interaction between the localized spins at
the sites f and m into account, whose value is determined by the parameter Ifm.

The appearance in formulas (3) and (5) of the trigonometric functions of νkx and νky is a consequence
of the explicit treatment of the signs of the hole tunneling integrals due to the phase factors of the p and
d orbitals.

It follows from expression (1) for the Hamiltonian of the spin-fermion model that if we consider the
tunneling integral t for the direct oxygen–oxygen hops small compared with the parameter τ , then the
operator structure of Hamiltonian (1) can be substantially simplified. For this, we introduce the unitary
transformation

φkα =
νkxakα + νkybkα

νk
, ψkα =

−νkyakα + νkxbkα

νk
, (7)

where ν2
k = ν2

kx+ν2
ky . The introduced operators satisfy the usual Fermi commutation relations {ϕkσ, ϕ+

pσ′} =
{ψkσ, ψ+

pσ′} = δkpδσσ′ .
In the representation of ϕkα and ψkα, the operators Ĥ0 and ĤJ become

Ĥ0 =
∑

k,α

[ξkϕ+
kαϕkα + (εp − μ)ψ+

kαψkα],

ĤJ =
1
N

∑

k,q,f,α,β

eif(q−k)Jkqϕ
+
kα(�Sf�σαβ)ϕqβ ,

(8)

where ξk = εp − μ + 2τν2
k and Jkq = Jνkνq.

In the obtained expressions, we see that only the quasiparticles described by the operators ϕk interact
with the localized spin subsystem on the copper ions. It turns out that the quasiparticles corresponding to
the operators ψk are not coupled to the localized subsystem and hence do not participate in forming the
spin-polaron state. Therefore, the second term in the operator Ĥ0 in (8) is hereafter not taken into account.
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Moreover, for convenience in constructing the spin diagram technique, we introduce the infinitesimal field
h → +0. As a result, we obtain the final version of the effective Hamiltonian [25]:

Ĥ = Ĥ0 + ĤJ + ĤI , (9)

where
Ĥ0 =

∑

k,α

ξkϕ+
kαϕkα − h

∑

f

Sz
f . (10)

3. Matsubara Green’s function for the subsystem of localized
spins

The dynamical magnetic susceptibility for the subsystem of localized spins, as is known, is related to
the Matsubara spin Green’s function [21]:

D⊥(fτ ; f ′τ ′) = −1
2
〈Tτ S̃+

f (τ)S̃−
f ′ (τ ′)〉 =

T

N

∑

k,ωn

eik(f−f ′)−iωn(τ−τ ′)D⊥(k, iωn). (11)

The dependence of D⊥(fτ ; f ′τ ′) on the Matsubara time arguments τ and τ ′ is due to the evolution of the
spin operators in the “Heisenberg” representation

S̃±
f (τ) = eτĤ S±

f e−τĤ , (12)

where 0 < τ < 1/β, β = 1/T , and T is the temperature. The circular components of the spin are standardly
related to the Cartesian components: S±

f = Sx
f ± iSy

f . The operator Tτ involved in formula (11) is the
operator of chronological ordering with respect to the Matsubara time arguments. The angle brackets
in (11) mean that the operator expression inside it is averaged over the density matrix corresponding to the
grand canonical ensemble. Taking the Fourier transform of the coordinate–time Green’s function, we take
into account that because of the quasibosonic commutation relations for the spin operators, the summation
over the Matsubara frequencies is only over the even ωm = 2πmT , m = 0,±, 1 ± 2, . . . (see [21]).

To calculate D⊥ using the perturbation theory, we pass to the interaction representation [21]. Then

D⊥(fτ ; f ′τ ′) = −1
2
〈TτS+

f (τ)S−
f ′ (τ ′)S(β)〉0c, (13)

where the temperature scattering matrix is defined by the expression

S(β) = Tτ exp
{
−

∫ β

0

dτ (ĤJ (τ) + ĤI(τ))
}

(14)

and the dependence on the time operators without the tilde shows that these operators are considered in
the interaction representation with a zero Hamiltonian. In particular,

S±
f (τ) = eτĤ0S±

f e−τĤ0. (15)

Similar expressions can be written for the operators ĤJ (τ) and ĤI(τ). The subscript 0 by the right
angle bracket in (13) means that the thermodynamic mean is defined by the statistical operator with
the Hamiltonian Ĥ0. Expanding S(β) in a power series and expanding each of the terms by the Wick
theorem for the spin operators, we only include contributions corresponding to connected diagrams [21].
This explains the presence of the additional subscript c in (13).
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4. The Dyson equation: The strength and polarization operators

A particular feature of the commutation relations for the spin operators is that the result of commuting
two different spin operators corresponding to the same site is again an operator, not a number as for bosonic
operators. In the diagram technique, we see this as a result of the appearance of the so-called terminal
multipliers [26], [27]. The contributions of the complete collection of the terminal multipliers to all orders
of the perturbation theory defines the strength operator P (k, iωn). The Green’s function D⊥(k, iωn) can
then be expressed in terms of the complete propagator G⊥(k, iωn) and the strength operator using the
relations [26], [27]

D⊥(k, iωn) = G⊥(k, iωn)P (k, iωn). (16)

For the propagator G⊥(k, iωn), the Dyson equation, which can be represented graphically as

(17)

holds, where the double dashed line denotes the function G⊥(k, iωm), the single dashed line corresponds to
the bare propagator g(iωm) = (iωm−h)−1, and the circle with ΣD corresponds to the Dyson mass operator,
which is the sum of all Dyson-irreducible self-energy parts. Dyson irreducibility means that it is impossible
to represent the self-energy part as two disconnected parts by cutting along one single line. Solving (17)
with respect to G⊥(k, iωm), we obtain the Dyson equation for the Green’s function D⊥(k, iωm):

D⊥(k, iωm) =
P (k, iωm)

iωm − h − ΣD(k, iωm)
. (18)

The form of the Heisenberg exchange coupling quadratic in the spin operators allows representing the
Dyson mass operator ΣD(k, iωm) as the sum of two terms:

ΣD(k, iωm) = ΣL(k, iωm) + P (k, iωm)[Ik + Π(k, iωm)], (19)

where ΣL(k, iωm) is the Larkin-irreducible self-energy part of the spin Green’s function, P (k, iωm) is the
strength operator (such a representation of the Heisenberg model was first considered in [28], [29]), Ik is
the Fourier transform of the exchange integral, and Π(k, iωm) is the polarization operator. Taking all these
facts into account, we obtain a convenient representation of the spin Green’s function of the spin-fermion
model:

D⊥(k, iωm) =
P (k, iωm)

iωm − h − ΣL(k, iωm) − IkP (k, iωm) − P (k, iωm)Π(k, iωm)
. (20)

Introducing the Green’s function

DL(k, iωm) = [iωm − h − ΣL(k, iωm) − P (k, iωm)Ik]−1P (k, iωm) (21)

allows rewriting Eq. (20) as

D⊥(k, iωm) = {DL(k, iωm)−1 − Π(k, iωm)}−1. (22)

In this formula, the role of the mass operator in D⊥(k, iωm) is played just by the polarization operator.
This is technically convenient in calculating (see the text below). The difference of the diagram series for
the Green’s function DL(k, iωm) from the series for D⊥(k, iωm) is that the first series does not contain
contributions to the mass operator that are reducible with respect to the polarization operator. This means
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that there are no diagrams in the series for DL(k, iωm) that can be cut along two Fermi propagation lines
into two disconnected parts.

We note that the random phase approximation used in [20] to analyze the magnetic susceptibility
in cuprates follows from formula (22) if we take one fermion loop with the bare Fermi Green’s functions
G(0)(k, iωn) = (iωn − εk)−1 (ωn = (2n + 1)πT , n = 0,±1, . . . ) for a polarization operator Π(k, iωm) and
neglect all the contributions due to the coupling ĤJ in the diagram expansion of the Green’s function
DL(k, iωm). In this case, DL(k, iωm) describes a purely spin system with the Heisenberg coupling.

It was proposed to use the expression obtained in [14] in the framework of the spherically symmetric
theory [30] for the Green’s function DL(k, iωm) for J = 0 in [20]. In what follows, we obtain the expression
for the spin Green’s function of the Heisenberg model in the quantum spin-liquid state using the diagram
technique for spin operators.

5. One-loop approximation of the localized spin Green’s function
in the quantum spin-liquid state

It is well known that under the doping of a cuprate HTS, destruction of the long-range antiferromagnetic
order is initiated by a relatively small number of oxygen holes. This allows using the concept according
to which the two-dimensional system of localized spins is in the quantum spin-liquid state at a finite
temperature. In this context, in the zeroth approximation with respect to the hole concentration, the
collective properties of this ensemble of localized spins are defined by the Heisenberg Hamiltonian

ĤΓ = Ĥ0Γ + ĤI

(
Ĥ0Γ = −h

∑

f

Sz
f

)
. (23)

We can then assume that after we pass to the limit h → +0, the localized spin ensemble of copper ions
is in the state of an SU(2)-invariant quantum spin liquid. This means that 〈Sx

f 〉 = 〈Sy
f 〉 = 〈Sz

f 〉 = 0, and
the spin correlation functions Cj = 〈�Sf

�Sf+rj 〉 are nonzero (rj is the radius vector of the jth coordinate
sphere). The correlators Cj satisfy the relations

Crj ≡ Cj = 3〈Sx
f Sx

f+rj
〉 = 3〈Sy

fSy
f+rj

〉 = 3〈Sz
fSz

f+rj
〉. (24)

The listed conditions lead to the fact that in calculating the Green’s function using the diagram technique,
we need not take the diagrams whose contribution is proportional to the thermodynamic average 〈Sz

f 〉0Γ
into account. The subscript 0Γ in the expression 〈Sz

f 〉0Γ means that we average with the density matrix
defined by the “zero” Hamiltonian Ĥ0Γ.

Both the Heisenberg-model spin Green’s function DL(k, iωm) and the Green’s function D⊥(k, iωm)
are given by Eq. (11), and the perturbation theory series is generated by the expansion of the temperature
scattering matrix in (13) with the only difference that the density matrix used for thermodynamic averaging
is now determined by the Hamiltonian ĤI .

With these facts taken into account, the one-loop contribution to the Dyson mass operator ΣD(k, iωm)
is defined by the sum of the six diagrams shown in Fig. 1. A single dashed line, as before, denotes the bare
propagator g(iωm) = (iωm−h)−1. A double dashed line denotes the Green’s function GΓ(k, iωm) satisfying
Dyson equation (17). Wavy lines denote the Fourier transform of the exchange coupling integral Ik. In this
context, wavy lines with circles denote the longitudinal coupling, and wavy lines with an arrowhead denote
the transverse coupling. Striped (or bold in the terminology in [21]) ovals with two circles denote the third
part of the Fourier transform of the spin correlator Ck =

∑
r e−ikrCr. The bold ovals are produced by

adding diagrams to the bare (open) oval that allow transmitting the quasimomentum but not the Matsubara
frequency through the oval. One possible way to produce a bold oval is shown by the diagram equation

, (25)
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Fig. 1. One-loop diagrams for the Dyson mass operator of the spin Green’s function in the Heisenberg

model.

a b

Fig. 2. One-loop diagrams for the strength operator of the spin Green’s function in the Heisenberg

model.

where the second-order cumulant arising in calculating the pair correlation function 〈Sz
fSz

g 〉0Γ [21] corre-
sponds to the open oval with two circles.

The sum of the analytic contributions of the diagrams in Figs. 1c–1f containing the bold oval can be
represented as

Σ(c–f)
L (k, iωm) =

1
N

∑

q

Cq

3
GL(k − q, iωm)(Iq − Ik)(Iq − Ik−q). (26)

For the sum of the contributions from the diagrams in Figs. 1a and 1b, we obtain the expression

Σ(ab)
L (k, iωm) =

T

N

∑

q,ωn

Iq[GL(q, iωn) − GL(k − q, iωn)]. (27)

We consider the approximation where the double dashed lines in the diagrams in Fig. 1 are replaced with
single dashed lines. This approximation, as is seen below, corresponds to the Shimahara–Takada results.
In the analytic form, this approximation corresponds to replacing the Green’s functions GΓ(k − q, iωm)
in (26) with the propagators g(iωm). It is easy to see that such a replacement leads to the self-energy part
Σ(ab)

Γ vanishing. As a result, the self-energy ΣΓ(k, iωm) in this approximation is influenced only by the
contributions of Σ(c–f)

Γ (k, iωm):

ΣΓ(k, iωm) = Σ(c–f)
Γ (k, iωm) = g(iωm)

1
N

∑

q

Cq

3
(Iq − Ik)(Iq − Ik−q). (28)

We present the considered one-loop diagrams for the strength operator PΓ(k, iωm) in Fig. 2.
In the spin-wave approximation, the analytic expression for the strength operator has the form

PΓ(k, iωm) = g(iωm)
1

3N

∑

q

Cq(Ik−q − Iq). (29)

Taking formulas (28) and (29) into account and passing to the limit h → 0, we obtain the final
expression for the spin Green’s function DΓ:

DΓ(k, iωm) =
1

3N

∑
q Cq(Ik−q − Iq)

(iωm)2 − Ω2
k

, (30)
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where Ωk is the spectrum of the paramagnon excitations given by the equation

Ω2
k =

1
N

∑

q

Cq

3
(Iq − Ik)(Iq − Ik−q). (31)

If the exchange integral Ifg is nonzero only for nearest neighbors, then the expression for spectrum (31)
in terms of spin correlators (24) has the form

Ω2
k =

4
3
I2
1 (1 − γ1k)

[
3
4

+ 2C2 + C3 − 4C1γ1k

]
, (32)

where I1 is an exchange integral for nearest neighbors. The structure of the obtained Green’s function
agrees with the results of Shimahara and Takada [14].

6. The polarization operator and the dynamical magnetic
susceptibility of the localized subsystem in the spin-fermion
model

The magnetic susceptibility of the localized subsystem in the spin-fermion model with the oxygen holes
taken into account is calculated according to formula (22),

D⊥(k, iωm) = {DL(k, iωm)−1 − Π(k, iωm)}−1,

using two types of approximation. The first approximation is based on using expression (30) for the
Green’s function DL. Such a substitution, as previously mentioned, means that we neglect all contributions
proportional to the parameter J in the diagram expansion of ΣL. In this case, the contribution of oxygen is
contained only in the polarization operator Π(k, iωm). The second approximation is based on taking only
one-loop diagrams into account for the polarization operator (the random phase approximation). In this
approximation for Π(k, iωm), we obtain the equality

Π(k, iωm) =
T

N

∑

q,ωn

J2
q,q+kG(q, iωn)G(q + k, iωm + iωn), (33)

where the Fermi Green’s functions G(q, iωn) generating the fermion loop are defined by the relation

G(q, iωn) =
∫ β

0

dτ eiωnτ (−)〈Tτ ϕ̃qσ(τ)ϕ̃+
qσ(0)〉. (34)

In (34), the operators ϕ are written in the Heisenberg representation, and ωn is an odd Matsubara frequency,
ωn = (2n + 1)πT .

As noted above, using the bare Fermi propagators G(0)(q, iωn) = (iωn − εq)−1 instead of the complete
Fermi Green’s functions G(q, iωn) to calculate Π(k, iωm) was proposed in [20]. In this case, the spin-polaron
nature of the Fermi quasiparticles is obviously not taken into account.

Here, we use the projection technique of Zwanzig–Mori [10]–[12] to calculate the Green’s function
G(q, iωn); this allows describing the formation of spin polarons using the spin-fermion model. In the
framework of this theory, we introduce a set of basis operators such that they provide an adequate description
of the system dynamics. We write the equations of motion for the basis operators, which are then projected
onto the chosen basis.

As a first basis operator, we choose ϕk. The equation of motion for ϕk has the form

i
dϕkσ

dt
= [ϕkσ , Ĥ ] = ξkϕkσ + JνkLkσ, (35)
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where
Lkσ =

1
N

∑

f,q,β

eif(q−k)νq(�Sf�σσβ)ϕqβ . (36)

The operator Lkσ takes the coupling between the spin and charge degrees of freedom into account and is
responsible for formation of the spin polaron in the system. As the second basis operator, we take Lkσ and
stop for now.

For convenience, we introduce the notation A1k = ϕk and A2k = Lk. The expansion of the equations
in terms of the operator basis {A1k; A2k} is then written in the form i dAjkσ/dt = [Ajkσ , Ĥ ] =

∑
l RjlAlkσ .

But for the matrix R̂, we can write the equality R̂ = F̂ K̂−1, where the matrix entries F̂ and K̂ are defined
by the relations

Fij = 〈{[Aikσ , Ĥ ], A+
jkσ}〉, Kij = 〈{Aikσ , A+

jkσ}〉.

Taking the introduced notation into account, the system of equations for the retarded Green’s functions
Gij(k, ω) = 〈〈Aik|A+

jk〉〉ω can be represented in the form

Ĝ = (ω − F̂ K̂−1)−1K̂. (37)

Calculating the matrix entries Kij and Fij , we obtain the formulas

K11 = 1, K12 = K21 = 0, K22 ≡ K =
3
4
− C1γ1k,

F11 = ξk, F12 = F21 = JνkK,

F22 ≡ ξLK = (εp − μ + 4τ)K + τ

(
−9

8
+ C2γ2k +

C3γ3k

2

)
−

− 3J

4
+ JC1

(
2γ1k +

1
4

)
− IC1(4 + γ1k),

(38)

where γ2k = cos kx cos ky and γ3k = (cos 2kx + cos 2ky)/2.
The expressions for the two branches ε±k of the polaron spectrum are determined from the condition

that the determinant det |ω − F̂ K̂−1| is zero. They have the form

ε±k =
ξk + ξL(k)

2
± 1

2

√
(ξk − ξL(k))2 + 4J2ν2

kK(k). (39)

We note that the lower branch ε−k of this spectrum coincides with the spin-polaron spectrum of Hamilto-
nian (1) calculated in the basis {cf+ax ; cf+ay ; 1/2

∑
δ(�Sf�σ)cf+δ} of three operators in [31].

Solving system of equations (37) for the Green’s function G11(k, ω), we obtain

G11(k, ω) =
ω − ξL(k)

(ω − ε+
k )(ω − ε−k )

. (40)

Replacing the frequency ω with the odd Matsubara frequency iωn transforms the retarded Green’s func-
tion G11(k, ω) into the Matsubara Green’s function Gϕ(k, iωn). Substituting the function Gϕ(k, iωn) thus
obtained in the expression for polarization operator (33), we obtain the expression

Π(k, iωm) =
T

N

∑

q,ωn

J2
q,q+k

iωn − ξL(q)
(iωn − ε−q )(iωn − ε+

q )
× iωn+m − ξL(q + k)

(iωn+m − ε−q+k)(iωn+m − ε+
q+k)

. (41)
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After the sum over the Matsubara frequency ωn is calculated, the polarization operator becomes

Π(k, iωm) =
T

N

∑

q

J2
q,q+k

{
f(ε−q )

ε−q − ξL(q)

(ε−q − ε+
q )

×
ε−q + iωm − ξL(q + k)

(ε−q − ε−q+k + iωm)(ε−q − ε+
q+k + iωm)

+

+ f(ε−q+k)
ε−q+k − ξL(q + k)

(ε−q+k − ε+
q+k)

×
ε−q+k − iωm − ξL(k)

(ε−q+k − ε−q − iωm)(ε−q+k − ε+
q − iωm)

}
, (42)

where f(ε) = (eε/T + 1)−1 is the Fermi–Dirac distribution function. In calculating this expression, we
neglected the summands containing the distribution functions of the quasiparticles in the upper band with
the dispersion ε+

q because in the region of low current-carrier density that interests us, the chemical potential
μ always belongs to the lower spin-polaron band.

Combining formulas (22) and (30) and continuing (iωm → ω + iδ) analytically, we obtain the final
expression for the dynamical magnetic susceptibility:

χ(k, ω) =
(1/3N)

∑
q Cq(Iq − Ik−q)

ω2 − Ω2
k + (1/3N)

∑
q Cq(Iq − Ik−q)Π(k, iωm → ω + iδ)

, (43)

where the paramagnon excitation spectrum Ωk is given by formula (31) and the polarization operator
Π(k, iωm) is given by formula (42).

It can be seen that the polarization operator is zero in the absence of doping, and expression (43)
describes the response of the localized spin subsystem. This response corresponds to the spherically sym-
metric Shimahara–Takada theory [14]. The addition of current carriers to the system leads to damping
controlled by the imaginary part of the polarization operator Π(k, ω). As the concentration of current
carriers increases, the damping should obviously increase, which finally completely destroys the short-range
magnetic order.

Expression (43) for the dynamical magnetic susceptibility in the spin-fermion model taking the collec-
tivized subsystem in the random phase approximation into account corresponds in structure to expressions
for the response obtained by other authors [2]–[9], [13]. Although the used models and the applied theoretic
approaches differ, the final formula for the dynamical magnetic susceptibility in all cited works can be
represented in the unified form χ(k, ω) = P (k, ω)/(ω2 −ω2

k −Σ(k, ω)). Formula (43) obtained here has the
same form, but the new feature is that the polarization operator is calculated with the spin-polaron nature
of the quasiparticles taken into account.

7. Conclusion

Applying the diagram technique to spin operators and the usual Feynman technique has turned out to
be effective for studying systems with a strong coupling between localized spins and collectivized fermions.
This has been demonstrated here for the spin-fermion model where the spacing between the Wannier centers
of the spin and Fermi subsystems and the presence of px- and py-orbital oxygen holes in the same unit cell
plays a crucial role in forming the nontrivial properties of the normal and superconducting phases of copper
oxides.

The obtained exact representation for the transverse spin Green’s function D⊥(k, iωm) in terms of
the Larkin mass operator ΣL(k, iωm) and the strength and polarization operators P (k, iωm) and Π(k, iωm)
allows convenient calculations using perturbation theory and its diagram form.

Using the obtained representation with the subsequent calculation of ΣL(k, iωm) and P (k, iωm) in the
one-loop approximation for the Heisenberg spin system in the quantum spin-liquid state allowed easily
obtaining the spin function DL(k, iωm) and establishing the correspondence with the known results. Be-
cause the long-range magnetic order is not present in the spin-liquid state and only the short-range order is
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preserved, the spin correlators must be defined self-consistently. In this regard, it is important that the ob-
tained expression for DL(k, iωm) is more general, allows developing the self-consistent Born approximation,
and takes the retardation effects into account.

The appearance of oxygen holes under doping opens an additional channel for influencing the spin-
liquid state via the spin-fermion coupling mechanism. It induces the appearance of new diagrams for the
Larkin mass operator ΣL(k, iωm) and the strength operator P (k, iωm). But the strongest effect is connected
with the appearance of the polarization operator Π(k, iωm). As is known, the simplest approximation for
it leads to an expression involving quantities that depend on the fermion energy spectrum.

Currently, it is established [32], [33] that the spin-polaron band of Fermi quasiparticles splits off in the
spin-fermion model because of the large value of the coupling constant between localized spins and oxygen
holes. The ensemble of these quasiparticles leads to unusual properties of the normal phase and also induces
peculiarities of the Cooper instability of the copper oxides [31], [34]. Therefore, a correct solution of the
problem of the influence of oxygen holes on the properties of the spin-liquid phase of the localized-spin
subsystem presupposes that the polarization operator must be expressed in terms of the characteristics of
the spin-polaron quasiparticles. The solution of this problem is one of our results here. Together with
the obtained expression for the spin Green’s function DL(k, iωm) of the Heisenberg system, it solves the
posed problem of finding the transverse spin Green’s function D⊥(k, iωm) and the dynamical magnetic
susceptibility of the localized subsystem in the one-loop approximation.
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