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Abstract—The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems
with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation
functions and the wings of a magnetic resonance line, are studied. Using the self-consistent f luctuating local
field approximation, nonlinear equations are derived for autocorrelation functions averaged over the inde-
pendent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concen-
trations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial
symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin
components are described by different equations. Second, the long-range type of the dipole–dipole interac-
tion is taken into account by separating contributions into the local field from distant and near spins. The
recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in
time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation func-
tion is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It
is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the
singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but
contribution to the modulation frequency is large. As an example a silicon crystal with different 29Si concen-
trations in magnetic fields directed along three crystallographic axes is considered.
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1. INTRODUCTION
The shape of a magnetic resonance line is an exam-

ple of a complex dynamical problem of a many-body
system without an explicit small parameter. The Fou-
rier transform of the line shape – the free induction
decay (FID), is expressed in terms of the time correla-
tion function of a total spin component perpendicular
to an external static strong magnetic field [1]. In mag-
netically diluted systems, additional difficulties appear
related to the necessity of taking into account the ran-
dom inhomogeneous distribution of spins in a lattice
and averaging correlation functions over this distribu-
tion [1–5]. Nevertheless, such systems are often used
for studying the problems of nonequilibrium statistical
physics such as the ergodicity, thermalization, spin
transport, and many-body localization, which have
attracted recent interest [5–8].

As an example of magnetically diluted systems, the
systems of electron spins are usually considered
because of the high EPR sensitivity [9]. The objects of
studies in NMR are often the systems of rare isotopes
13C and 29Si. As an interesting example, we present

paper [10] in which the NMR spectra of 29Si in silicon
crystals doped with this isotope at different concentra-
tions were measured. Although nuclear spins produce
a weaker signal, the spin dynamics is determined only
by the dipole–dipole interaction (DDI). In electron
spin systems, where along with the DDI the exchange
interaction and inhomogeneous broadening play, as a
rule, a noticeable role, the problem is more compli-
cated.

For strongly diluted spin systems, Anderson [1, 2]
proposed the line shape theory based on the summa-
tion of the spectra of spin pairs. His theory clearly
explained the transformation of a broad Gaussian line
of a regular spin system to a narrow Lorentzian line.
This approach was widely used in applications [5, 11,
12]. However, a homogeneous spin system in the
Anderson approximation is replaced by the inhomo-
geneous system of spin pairs. The authors of papers [3,
5, 13] took into account the f lip-flop interaction
between spins of different pairs which causes the mod-
ulation of the local field on spins in pairs, on the one
hand, and the establishment of the equilibrium in the
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system, on the other hand. In [13, 14], the memory
function method was applied in which the memory
function was physically substantiated with parameters
determined from the first terms of the concentration
FID expansion. The FID and NMR spectra were cal-
culated for different spin concentrations and good
agreement was obtained between the central part of
the spectra and experiments [10, 15].

In regular (magnetically concentrated) lattices, for
example, formed by 19F nuclei in CaF2 [1], the shape
of the NMR spectrum is not described by a Gaussian
but is close to the convolution of a Gaussian with a
rectangle. In this case, the FID is described by the
expression [1]

in which parameters can be expressed in terms of the
second and fourth moments of the spectrum as

The FID oscillations are caused by the contribution
from cross correlation functions of spins at two differ-
ent lattice sites, whereas autocorrelation functions
(ACFs) of a spin in one site decay without oscillations.
The simplified calculation [13] of cross correlation
functions by changing the coefficient at the memory
function does not provide an accurate description of
FID oscillations. These oscillations are better
described by integral equations [16] based on the pre-
dominant consideration of the interaction between
spin components parallel to a strong magnetic field
(the z axis). The FID theory was further developed in
papers [17, 18] in which kinetic equations were derived
for the densities of dipoles with the certain projection
of the local field on the z axis. These and other papers
on the line shape are analyzed in our paper [19].

The authors of these papers [13–18] calculated the
FID and the central part of the NMR spectrum. To
calculate the wings of spectra in regular lattices, a
method of accounting for the modulation of local
fields was developed, which leads to self-consistent
equations for autocorrelation functions [20–24]. The
wings of the spectrum have the exponential frequency
dependence with the exponent determined through
the coordinate of the nearest singularity of autocor-
relation functions on the imaginary time axis. In turn,
this coordinate can be calculated through the radius of
convergence of a power series in time for autocorrela-
tion functions. After the inclusion of corrections tak-
ing into account the properties of real lattices, good
agreement was obtained with experiments both for
homonuclear [19, 25] and heteronuclear [26–28] sys-
tems with the DDI. The wings of spectra of correlation
functions play an important role in the determination
of the rate of slow equilibrium-establishment pro-
cesses in spin systems. Their role increases in inhomo-
geneous systems. We estimated [29] the concentration
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dependence of the coordinates mentioned above for a
magnetically diluted system with the isotropic spin–
spin interaction. However, to make comparison with
experiments, it is also important to solve a more com-
plicated problem about the change in the coordinate
of the singularity of autocorrelation functions in DDI
systems during their magnetic dilution, which was not
considered so far.

In this paper, we obtained equations for autocor-
relation functions in the self-consistent f luctuating
field approximation taking into account the axial DDI
symmetry and calculated the change in the coordinate
of the ACF singularity on the imaginary time axis
during magnetic dilution. The equations were derived
by performing averaging over the independent occu-
pation of lattice sites taking into account the separa-
tion of contributions from nearest neighbors and other
spins in the initial regular lattice. This separation is
necessary due to different manifestations of contribu-
tions from near spins in calculations of different spec-
tral regions. At the line center, their contribution is
averaged to zero with increasing the real time due to
fast oscillations, whereas for the high-frequency
asymptotics of ACFs, their contribution monotoni-
cally increases with increasing the imaginary time.

2. EQUATIONS FOR TIME 
AUTOCORRELATION FUNCTIONS

Consider the initial regular lattice by replacing
magnetic atoms by diamagnetic ones at randomly cho-
sen lattice sites. We assume that the occupation of dif-
ferent sites is independent and the probability of a
magnetic atom retaining at its site is equal to the mean
concentration c = NM/N, where NM  is the number of
magnetic atoms or spins and N is the total number of
lattice sites. We will use the occupation number repre-
sentation nj for the site j: nj = 1 if the site j is occupied
by a spin, and nj = 0 if the site is occupied by a non-
magnetic atom [3–5, 13]. After averaging, we obtain
〈nj〉 = c.

The main reason for broadening of the NMR
absorption spectrum in nonmetal diamagnetic solids
is known to be the secular part of the internuclear DDI
[1], which completely determines the dynamics of the
nuclear spin system:

(1)

Here, bij = γ2  (1 – 3cos2θij/2  is the DDI constant,
rij is a vector connecting spins i and j, θij is the angle
formed by the vector rij with a static external magnetic

field,  is the α component (α = x, y, z) of the vector
spin operator in the site i, I = 1/2, ξ is a parameter
introduced for the convenience of a theoretical analy-
sis: ξ = 1/2 in the DDI case under study and ξ = –1 in
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systems with the isotropic spin–spin interaction [29].
Hereafter, energy is expressed in frequency units.

We define the time-dependent ACFs of a spin
located at the lattice site i at high temperature by the
expression

(2)

The ACFs can be expanded in a power series in time

(3)

It is known [1] that the coefficient M2nα is the 2n-order
moment of the spectral density of the corresponding
ACF. In particular,

(4)

Exact expressions are obtained only for a few first-
order moments. Because of this, ACFs are calculated by
various approximate methods. In the axially symmetric
Hamiltonian (1), the zz interaction (the interaction of
spin components parallel to a magnetic field) plays the
main role. By neglecting the second term in Eq. (1) (the
interaction of transverse spin components or flip–flop
interaction), assuming ξ = 0, we find

(5)

After averaging over the independent site occupation
[3–5, 13], we obtain

(6)

In regular lattices (c = 1) with a great number of
neighbors, we obtain from (5) a Gaussian

(7)
For a strong dilution (c ≪ 1), we can obtain from (6)
[3, 13] the exponential decay

(8)
to which the Lorentzian line shape corresponds. Here,
B = (2/3)DA, DA = 2π2γ2 c/3 Ω is the Anderson
width of a NMR line [1, 2], and Ω is a volume per
crystal lattice site.

Anderson used the isolated spin pair approxima-
tion. For the correlation function of the total moment
of the pair  + , we find

(9)
whereas the ACF of one of the spins of the pair has the
form
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The difference of these two functions is caused by the
cross correlation function of operators  and :

(11)
The Anderson linewidth DA is obtained for ξ = 1/2.

The Anderson theory [1, 2] well describes the nar-
rowed center of the spectrum. However, the wing of
the Lorentzian line in relation (8) should be cut off
because function (6) has finite moments. The cutoff
frequency for one pair of spins is (1 + ξ)b, where b is
the constant of the DDI spins at the minimal distance
in the lattice. The study of regular systems showed that
the wing extends well above the resonance frequency of
the interaction pair of neighboring spins in the lattice.
The high frequency at the wing is obtained due to sum-
mation of spin precession frequencies in local fields.
The summation occurs through the modulation of
these fields due to flip–flop processes. This mechanism
is also preserved after magnetic dilution. We will
describe a change in the orientation of spins producing
a local filed by the ACF Γzj(t) (2) and, by introducing
the flip–flop interaction, we will replace the cosine in
product (5) by the function (t) specified by the
equation

(12)

where Γzj/i(t) is the ACF (2) z component of the spin j
in which the interaction with the spin i, on which the
field is considered, in excluded.

We neglect in (12) the fact that the interaction
between transverse spin components will increase the
second ACF moment (4). This effect can be taken into
account by renormalizing the DDI constants [19], i.e.,
by replacing  with (1 + ξ2)  in Eq. (12). At the same
time, the ACF shape in an isolated pair will change so
that the product of cosines (10) will appear instead of
cosine. The reason is in the transition of polarization
on the adjacent spin and its return. This process plays
an important role in an isolated pair, but in the pres-
ence of a large number of neighbors, the polarization
return can be neglected. On the other hand, the inter-
action between transverse spin components will lead
to correlation between contributions from different
spins in product (5). For lattices with a large coordina-
tion number, such a correlation effect is insignificant
and can be taken into account by renormalizing con-
stants bij, as shown in [19]. This is explained by the fact
that in the case of many neighbors, the decay time of
ACFs is determined by their combined action. The
correlation from interaction of two spins has no time to
reveal itself at such times. This reason is also preserved
in the calculation of the coordinate of the nearest sin-
gularity on the imaginary time axis because its value is
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also a collective effect. We will renormalize parame-
ters and take into account corrections later on during
comparison with experiments. In this paper, we con-
sider only the simplest equations because focus our
attention on the qualitative aspect of the problem.

The DDI constant in (1) decreases with distance by
a power law, and therefore each spin interacts, for-
mally speaking, with all others. However, the interac-
tion with Z nearest neighbors is much stronger than
that with the far environment. We will consider the
contribution from a great number of far neighbors in
the form of contribution from the Gaussian local field

(13)

The action of the nearest neighbors is taken into
account in the approximation used in [19] assuming
that contributions are independent of each of Z nearest
neighbors:

(14)

where (t) is contribution (12) to the change in the
correlation function of a spin in the site j from the
direction in the lattice leading to the spin f.

For Γzj(t) and Γzj/i(t), we will take equations derived
in [19] and transform them, taking magnetic dilution
into account, to the form

(15)

The system of equations (12)–(15) develops con-
cepts of papers [3, 13] considering the local field mod-
ulation in magnetically diluted systems. The self-con-
sistent consideration of ACFs that we introduced
allows us to analyze the nonlinear properties of the
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system on the imaginary time axis in addition to the
analysis of the ACF relaxation on the real time axis
performed in [13]. On passing to the averaging of
Eqs. (12)–(15) over the random spin arrangement, we
note that the separation boundary between near and
far spins depends on the problem being solved. The
center of the spectrum is calculated by studying the
correlation function decay on the real time axis. Here,
the scale is the width DA of the spectrum linear in con-
centration and equal by the order of magnitude to the
interaction of spins on the mean distance [1–5, 10,
13]. Contributions to the correlation function from
terms containing pairs at smaller distances (“near”
pairs) will decay due to fast oscillations in time. There-
fore, the number of such sites in the initial regular lat-
tice (the number of “near” spins) will increase during
magnetic dilution and will exceed many times the
coordination number of this lattice. On the contrary,
we calculated spectral wings by studying the growth of
the correlation function on the imaginary time axis. In
this case, the contribution from near pairs monotoni-
cally increases and therefore the nearest neighbors of
the initial lattice should be taken as near spins.

Based on the above discussion, consider a simple
model spin system in which each spin has a small
number Z of nearest neighbors with equal interaction
constants b and a great number of weakly interacting
far neighbors with the total contribution δ2 to the lat-
tice sum S1 (4): δ2 = S1 – Zb2. We will use below the
notation

for the concentration-dependent second moment of
the ACF. Model parameters used for calculating the
ACF for the 29Si system in a silicon crystal [10, 15] for
magnetic fields directed along three crystallographic
axes [111], [110], and [100] are presented in the table.
Calculations were performed using lattice sums from
[31]. By comparing contributions to the second
moment from the DDI spins at different distances, we
set Z = 1 for the [111] orientation and Z = 4 for the
[110] and [100] orientations.

By averaging Eqs. (12)–(15) over the random spin
arrangement in the independent site occupation
approximation for the model system considered
above, we obtain equations for averaged functions

(16)
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Table

Orientation Z b2/M2(1) δ2/M2(1)

[111] 1 0.653 0.365
[110] 4 0.204 0.187
[100] 4 0.067 0.732



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 124  No. 1  2017

CONCENTRATION DEPENDENCE OF THE WINGS 155

satisfies the equation

(19)

The two other functions satisfy equations

(20)

Our previous studies [22–28] of nonlinear equa-
tions for ACFs in regular lattices (c = 1) showed the
presence of singularities on the imaginary time axis. In
the vicinity of singularities nearest to the origin the
ACF has the form

(21)

In particular, for the system of equations (17) and (20)
for b = 0, the singularity coordinate was found to be

= 6.81/M2(1). If M2(1) is replaced formally by
M2(c) = cδ2, this solution can describe a change in the
singularity coordinate upon weak dilution.

In the general case for b ≠ 0 and magnetic dilution,
the form of functions (16)–(20) changes. However,
they still will have a singularity at the common point on
the imaginary axis, because all these functions are cou-
pled by the system of equations. We will express the sin-
gularity coordinate τ0 in terms of the radius of conver-
gence of power series in time (3) for these functions. To
do this, we substitute these series into Eqs. (16)–(20) to
obtain the recurrent equations for coefficients
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where Yn and Dn are the 2n-order coefficients in series
(3) of similar functions, Gn is the corresponding coef-

ficient for Γz(t), Kn – for (t), and  is the coeffi-
cient for the product Ym(t)D2(t).

3. CALCULATION AND DISCUSSION

By solving numerically Eqs. (22), we will calculate
the coordinate of the nearest singularity using the
d’Alembert formula as the limit of the ratio of adjacent
terms in series (3) for Γz(t). The calculation results are
presented in Figs. 1 and 2.

Figure 1 shows the dependences of the singularity
coordinate in the imaginary time axis for the solution
of the system of equations (16)–(20) τ0  =

τ0  on δ2/M2(1) for different concentra-
tions. For δ2/M2(1) → 1, the curves converge to the
limit τ0 =  (21). In this limit analyzed
above, the concentration dependence is determined
by the corresponding dependence of the second
moment and has the form τ0 ∝ 1/ . In this case, the
dependence on Z vanishes because b → 0. The depen-
dence τ0 ∝ 1/  is observed in Fig. 2 for the [100] ori-
entation at sufficiently high concentrations.
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Fig. 1. Dependences of the coordinate of the ACF singu-

larity (in (c) units) on δ2/M2(1) for Z = 1 (solid
curves) and Z = 4 (dashed curves) at three concentrations
(from top to bottom, c = 1, 0.1, 0.01).
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For δ2/M2(1) → 0, the limit of the value

τ0 = τ0b  depends on the number of
neighbors. In this limit for Z = 1, we obtain a spin
system consisting of isolated pairs (10). The corre-
sponding oscillating functions have no singularities
on the imaginary time axis and therefore τ0 → ∞ for
δ2/M2(1) → 0. For Z = 4 in this limit, τ0 tends to a
finite value because nonlinear self-consistent equa-
tions are preserved for the ACF. Similar equations
obtained in the Bethe lattice approximation were
earlier studied for isotropic spin–spin interaction in
our paper [29].

Figure 1 shows that the concentration depen-
dence of τ0 is not reduced to the concentration
dependence of the second moment if we deviate from
the limiting value δ2/M2(1) = 1. Let us find the form
of this dependence for the relation Zb2 ≫ δ2 at which
near spin pairs play an important role. Their contri-

bution 〈  (t)〉 ~ cos(bτ) ~ cos(bt) rapidly oscillating
on the imaginary time axis t = iτ transforms to the

rapidly growing contribution 〈 (t)〉 ∝ cosh(bτ) ∝
ebτ/2. However, one isolated pair will not produce a
singularity. A singularity of the solution of nonlinear
equations (17)–(20) appears when signals from many
pairs are combined. As long as Γz(t) ~ 1 and (t) ~ 1,
Eqs. (17) and (19) remain linear. The nonlinear char-
acter of the equations and the rapid growth of func-
tions is manifested for Γz(t) > 1. According to
Eq. (20), this growth begins for

2( )M c cZ

(1)
jfF

(1)
jfF

Γ '
z

(23)

To make the estimate, we write the integrand in
(23) in the form (c/2)mexp(2mbτ + cδ2τ2), where m =
Z – 1 in the first integral and m = Z in the second inte-
gral. By calculating approximately the integrals, we
obtain the equation

(24)

where

(25)

By solving Eq. (24), we find the required estimate of
the singularity coordinate on the imaginary time axis:

(26)

This gives the logarithmic concentration dependence of
the singularity coordinate of the ACF in the form

(27)

In semilogarithmic coordinates in Fig. 2, this depen-
dence corresponds to the segments of straight lines
which we observe in the strong dilution region c ≪ 1.
Coefficients v and R, determined according to (26),
give correct qualitative dependences of τ0 on parame-
ters b, δ2, and Z observed in Figs. 1 and 2. First, τ0
decreases with increasing δ2 and Z and, second, the
dependence of τ0 on δ2 weakens with increasing Z.
Unfortunately, our rough estimate does not provide a
quantitative agreement with the results of numerical
solution of complex nonlinear equations.

Thus, upon magnetic dilution, the shape of the
central part of the ACF spectrum is transformed from
a Gaussian with exponential wings to a Lorentzian
with exponential wings. It is known that the width of
the spectrum linearly depends on the concentration
[1–5, 10, 13] and is determined by spins located at dis-
tances close to the average distance. Such spins—
“mass” spins—represent the majority and they play an
important role in the establishment of equilibrium
between the parts of the system. We obtained above
that the exponent of the wing (ω > 0) has the logarith-
mic concentration dependence:
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Fig. 2. Dependences of the coordinate of the ACF singu-

larity (in (1) units) on the 29Si concentration in a
silicon crystal with parameters presented in table for a
magnetic field directed along the [111], [110], and [100]
crystallographic axes.
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(28)

Physically, this means that the high frequency appears
in the system due to the combination of frequencies of
many close spin pairs (the number of pairs is k ~ ω/b)
caused by the local field modulation. The probability
of formation of one pair is c and that of k pairs is ck.
Although this probability is small, the contribution to
the modulation frequency is large and therefore the far
wing of the spectrum is determined by the rare clusters
of near spins. Note for comparison that, as the modu-
lation frequency is successively increased in the regu-
lar lattice, k ~ ω/ωloc of mean local frequencies ωloc ~

 are added.
Based on the theory presented above, we will ana-

lyze the transformation of the NMR spectra of a sili-
con crystal observed in experiments during magnetic
dilution [10, 15]. In the magnetically concentrated
case, the shape of the spectrum strongly depends on
the crystal orientation in a magnetic field. Note that
because the silicon lattice is isomorphic to the dia-
mond lattice, the NMR spectra of 13C in diamond
enriched with this isotope have the same dependence
[32, 33]. The NMR spectrum of 29Si in the [111] ori-
entation has the form of a Pake doublet with the 1250-
Hz splitting. In the [100] and [110] orientations, spec-
tra with widths 800 and 2000 Hz are observed, respec-
tively, which are close in shape to the well-known
NMR spectra of 19F in fluorite [1] in the [111] and [110]
orientations, respectively [34]. Our earlier analysis [25]
of experimental spectra in fluorite showed that expo-
nential asymptotics (28) begins approximately with fre-
quencies 2.2  measured from the line center.

The NMR line narrows down upon magnetic dilu-
tion. In samples with the natural 29Si content (c =
0.047), the linewidth in all orientations decreases
down to 100 Hz, of which a significant part (70 Hz) in
the opinion of the authors of papers [10, 15] is caused
by the magnetic field inhomogeneity. According to the
Anderson theory [2], the shape of this line should be
Lorentzian. The wing of the Lorentzian ends at fre-
quencies equal to the interaction of two spins at the
minimal distance for the lattice. These frequencies are
550 Hz for the [111] orientation and 225 Hz for the
[110] orientation. At these frequencies, weak peaks are
observed in spectra [10, 15] with ratios of their area to
that of the central line equal to 0.06 for the [111] ori-
entation and 0.22 for the [110] orientation. The corre-
sponding theoretical values 0.047 and 0.047 × 4 are
equal to the probabilities of formation of close spin
pairs for the random 29Si distribution in the lattice
[15]. Frequencies in the spectrum exceeding these
limiting values will be formed due to the interaction of
many spins and can be described by the theory pre-
sented above. Unfortunately, the 29Si signal at low
concentrations in this spectral region is weak and is
masked by noise in experiments [10, 15]. To make

( ) ωωω −τ ω − = /
0

1( ) ~ exp( ) ~ exp ln .bg c
b c

vv

2M

2M

quantitative calculations of the reliably observed part
of the spectrum, it is necessary to add equations for
cross correlation functions to the system of equations
for the ACF, to pay great attention to the value of coef-
ficients in equations and to perform numerical calcu-
lations similar to these in [13, 14, 19, 27].

The shape of the far wing can be estimated from the
rate of slow saturation processes by the resonance field
and relaxation similar to these observed in [9]. The
presence of the modulation wing for mass spins pre-
dicted by the theory presented above can explain the
observed exponential shape of spin packets [9]. This
theory allows us to treat the saturation mechanism at
the wing of the spectrum in a somewhat different way.
It was assumed earlier [5, 11] that the resonance field
applied at the wing of the spectrum acts on the reso-
nance pair of close spins. After the change of the reso-
nance frequency of the field to the opposite performed
in experiments [9], this field acts on the same or simi-
lar pair. The rate of this process is limited by the energy
exchange between pairs and mass. In the new mecha-
nism, the resonance field applied to the wing of the
spectrum acts on the wing of the mass spin line. Its
modulation frequency corresponds to some close pair
(or pairs) related to the given mass spin. The probabil-
ity of rotation is small because the number of pairs is
small. After the change of the resonance frequency of
the field to the opposite, this field acts on another
mass spin coupled to the same pair (or close) and turns
to the initial state. This process is accompanied by the
energy exchange between mass spins and does not
require energy exchange between pairs and mass. To
compare quantitatively our theory with experiments, it
is necessary to take into account the inhomogeneous
broadening playing an important role in EPR spec-
troscopy.
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