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Abstract—Our previously proposed approximation involving both the first and second terms of the expansion
of the vertex function is generalized to the system of two interacting wavefields of different physical nature.
A system of self-consistent equations for the matrix Green’s function and matrix vertex function is derived.
On the basis of this matrix generalization of the new self-consistent approximation, a theory of magnetoelas-
tic resonance is developed for a ferromagnetic model, where the magnetoelastic coupling parameter ε(x) is
inhomogeneous. Equations for magnetoelastic resonance are analyzed for one-dimensional inhomogeneities
of the coupling parameter. The diagonal and off-diagonal elements of the matrix Green’s function of the sys-
tem of coupled spin and elastic waves are calculated with the change in the ratio between the average value ε
and rms fluctuation Δε of the coupling parameter between waves from the homogeneous case (ε ≠ 0, Δε = 0)
to the extremely randomized case (ε = 0, Δε ≠ 0) at various correlation wavenumbers of inhomogeneities kc.
For the limiting case of infinite correlation radius (kc = 0), in addition to approximate expressions, exact ana-
lytical expressions corresponding to the summation of all diagrams of elements of the matrix Green’s function
are obtained. The results calculated for an arbitrary kc value in the new self-consistent approximation are
compared to the results obtained in the standard self-consistent approximation, where only the first term of
the expansion of the vertex function is taken into account. It is shown that the new approximation corrects
disadvantages of the Green’s functions calculated in the standard approximation such as the dome shape of
resonances and bends on the sides of resonance peaks. The appearance of a fine structure of the spectrum in
the form of a narrow resonance on the Green’s function of spin waves and a narrow antiresonance on the
Green’s function of elastic waves, which was previously predicted in the standard self-consistent approxima-
tion, is confirmed. With an increase in the parameter kc, the Green’s functions calculated in the standard and
new approximations approach each other and almost coincide with each other at kc/k ≥ 0.5. At the same time,
the results of this work indicate that the new self-consistent approximation has a certain advantage for study-
ing the problems of stochastic radiophysics in media with long-wavelength inhomogeneities (small kc values),
because it describes both the shape and width of peaks much better than the standard approximation.

DOI: 10.1134/S1063776117060115

1. INTRODUCTION
The self-consistent approximation (SCA), which is

widely used in various fields of physics to approxi-
mately calculate Green’s functions, was introduced by
Migdal to study the electron–phonon interaction [1].
A similar variant of the SCA was independently pro-
posed by Kraichnan [2] to study the effect of inhomo-
geneities on the dynamic susceptibility of waves in dis-
ordered media. A similar variant as a generalization of
the well-known Born approximation was proposed to
study the scattering of electrons in disordered media
and was called the self-consistent Born approximation
(see, e.g., [3]). We refer to all these variants as the stan-
dard SCA. The standard SCA involves only the first
term of the expansion of the vertex function and does

not involve diagrams with crossing correlation lines
(most of the diagrams have these lines). This implies
restrictions both on the region of applicability of the
standard approximation and on the accuracy of the
results. For this reason, corrections to the self-energy
caused by the next term in the expansion of the vertex
function (vertex corrections) were actively studied [4–
13]. A significant progress in studying vertex correc-
tions has been already achieved. However, discrepancy
between the results obtained in different approaches is
still significant. In [14], we derived a self-consistent
approximation of a higher level than that in the stan-
dard SCA including both the first and second terms of
the series for the vertex function and compared the
new and standard SCAs. In [15], we applied the new
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SCA to the problem of waves in inhomogeneous media.
It is shown that the new self-consistent approximation
has a certain advantage for studying the problems of sto-
chastic radiophysics in media with long-wavelength
inhomogeneities, because it describes both the shape,
width, and height of resonance lines much better than
the standard SCA. Consequently, the application of
the new SCA to the problem of magnetoelastic reso-
nance in an inhomogeneous medium is of current
interest.

The theory of magnetoelastic resonance in the
homogeneous medium was developed in fundamental
works [16–19], which further stimulated numerous
theoretical and experimental studies of this phenome-
non. Magnetoelastic resonance is responsible for the
appearance of the band gap in the spectrum of spin
and elastic waves at the point of intersection of their
dispersion curves and, correspondingly, of two reso-
nance peaks on the frequency dependences of the
Green’s function of the spin and elastic waves. The
theory of magnetoelastic resonance in an inhomoge-
neous medium was developed in [20–23] within the
standard SCA. The matrix Green’s function of the
system of coupled spin and elastic waves was studied at
different relations between the average value ε and rms
fluctuation Δε of the coupling parameter between
waves from the homogeneous case (ε ≠ 0, Δε = 0) to
the extremely randomized case (ε = 0, Δε ≠ 0).
A number of effects have been revealed when reso-
nance peaks approach each other and are joined into
one peak with an increase in Δε and a decrease in ε: a
fine structure at the vertices of the Green’s functions
in the form of a narrow resonance on the Green’s
function of spin waves and a narrow antiresonance on
the Green’s function of elastic waves, bends on the
sides of peaks, etc. It is of interest to consider how the
description of these effects is modified in a more accu-
rate theory of magnetoelastic resonance developed
within the new SCA.

The aims of this work are to generalize the new
SCA proposed in [14] to the system of two interacting
wavefields and to develop a more accurate theory of
magnetoelastic resonance in an inhomogeneous
medium based on this generalization.

2. SYSTEM OF EQUATIONS FOR MATRIX 
GREEN’S FUNCTIONS

We consider the model of a ferromagnet where only
the dimensionless magnetoelastic coupling parameter
ε(x), x = {x, y, z}, is inhomogeneous. Equations of
motion for this medium is the Landau–Lifshitz equa-
tion for the magnetization vector M and the equation
of motion of elasticity theory for the elastic displace-
ment vector u:

(1)

(2)

= − ×� [ ],egM M H

= ∂σ ∂ +�� / ,i ij j ipu x f

where g is the gyromagnetic ratio; p is the density of
the medium; σij is the stress tensor, where i, j = x, y, z;
and f = f(x, t) is the external mass force. The effective
magnetic field He and stress tensor σij have the form

(3)

(4)

where uij = (∂ui/∂xj + ∂uj/∂xi)/2 is the elastic strain
tensor. The energy density * is represented in the form

(5)

where α is the exchange parameter, λ and μ are the
elastic force constants, H = H0z + h, H0 is the external
d.c. magnetic field along the z axis, and h is the exter-
nal a.c. magnetic field perpendicular to the z axis. We
represent the magnetoelastic parameter ε(x) in the
form

(6)
where ε is the average value of this parameter, Δε is its
rms fluctuation, and ρ(x) is a centered (〈ρ(x)〉 = 0)
and normalized (〈ρ2(x)〉 = 1) random function of
coordinates. Angle brackets mean the average over the
ensemble of realizations of this random function.

The stochastic properties of ρ(x) are characterized
by a correlation function depending on the difference
of coordinates r = x – x',

(7)
or by its Fourier transform, i.e., the spectral density of
inhomogeneities

(8)

Substituting the energy density (5) into equations
of motion (1) and (2), we obtain a coupled system of
equations for the magnetization M and displacement u
vectors:

(9)
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where vl = [(λ + 2μ)/p]1/2 and vt = [μ/p]1/2 are the
longitudinal and transverse velocities of elastic waves,
respectively.

The Landau–Lifshitz equation (9) is linearized by
a usual method (Mz ≈ M; Mx, My ≪ M). For elastic
waves, we consider only a model problem: in addition
to the condition vl = vt = vu, we impose the condition
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uz = 0. Assuming that Mx, My ∝ exp(iωt) and introduc-
ing the circular projections

(11)

we obtain the following system of two coupled scalar
equations for the resonance projections m+ and u+

(here and below, the + superscript is omitted):

(12)

(13)

Here,

(14)

where ω0 is the frequency of the homogeneous ferro-
magnetic resonance, which depends on the magnetic
field and demagnetizing factors of the sample and
vu =  is the velocity of an elastic wave.

The system of Eqs. (12) and (13) can be represented
in the matrix form

(15)
where

(16)

(17)

(18)

According to this representation, αm and μu are the
normalized variables for the coupled system of equa-
tions. We also use this normalization to introduce the
matrix Green’s function and to write the equation for
it in the form
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Here,

(20)
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the elastic and magnetic point excitations, respec-
tively; and

(21)

is the identity matrix.

We represent the Green’s function  in the form

(22)

where  is the initial Green’s function and  is the
correction caused by the inhomogeneous part of the
coupling parameter.

The substitution of Eq. (22) into Eq. (19) gives the

following equation for  and :

(23)

(24)

Equation (23) for the initial Green’s function (x, x0),
which describes coupled magnetoelastic waves in a
homogeneous medium, can be solved exactly. We now

analyze Eq. (24) for the correction (x, x0). Accord-
ing to the general rules, a formal solution of Eq. (24)
can be represented in the form of an integral of the
product of the unperturbed Green’s function and the
right-hand side of this equation. Substituting this solu-
tion into Eq. (22), we obtain the following generating

integral equation for the matrix Green’s function 

(25)

Here, we transpose the functions  and  in the
integrand; the necessity of such transposition was jus-
tified in [14]. The elements of the matrix  include
derivatives of the random function ρ(x), which is
inconvenient for the subsequent use. For this reason,
we transform the integral in Eq. (25) by integration by
parts for each element of the matrix, as was made in
[21]. Extracting γ and ρ from the matrix , we obtain
a generating integral equation for the matrix Green’s

function  in the form
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(28)

(29)

(30)

Rewriting Eqs. (27) and (28) in the form

(31)

(32)
where

(33)

we arrive at the generating integral equation for the

matrix Green’s function  in the final form

(34)

For convenience of below algebra, we change the
variable of integration x' in Eq. (34) to x''. Using the
usual procedure of successive iterations of Eq. (34), we

obtain a series for the matrix Green’s function :

(35)

Averaging this series over the ensemble of realiza-
tions of the random function ρ(x) and decoupling the
correlation functions by the Gauss formula, we arrive
at the series for the averaged matrix Green’s function:
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We represent this series in the form of the matrix
Dyson equation
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where the self-energy  has the form
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Here, the matrix vertex function is a series in powers of
γ2. Retaining the first two terms of this series, we
obtain

(39)

where

(40)

Subscripts of arguments in all vertex functions cor-
respond to similar subscripts in Eq. (21) in [14]
because the same generating integral equation (25)

corresponding to the transposed functions  and  is
used in both cases. Consequently, the further deriva-
tion of the self-consistent approximation for the
matrix vertex function (39) is similar to the derivation
of the same approximation for the scalar vertex func-
tion in [14].

3. SELF-CONSISTENT APPROXIMATION
FOR THE MATRIX VERTEX FUNCTION
We take the Fourier transforms of all matrix quan-

tities

(41)

(42)

where d is the dimension of the space. Then, substitut-
ing the Fourier transform of Eq. (39) into the Fourier
transform of Eq. (38), we find an approximate expres-
sion for the self-energy  in the k space. Equating the
exact and approximate expressions for the self-energy

, we arrive at a matrix analog of the new self-consis-
tent approximation derived for scalar functions in [14]:
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(47)

We represent the matrix Green’s function  simi-
lar to the initial matrix Green’s function  in the form

(48)

The components of the initial matrix Green’s func-
tion  have the form

(49)

where

(50)

Each term in the expansion of the vertex function (44)
in series in γ2 includes the repeated products of the
matrices . The same repetition of matrix products
is obtained for the desired Green’s function (43) by
multiple substitution of the resulting branched contin-
ued fraction into Eqs. (43) and (44) and expanding in
a series in γ2. For example, we present one term of the
series with crossing correlation lines, which is propor-
tional to γ4:
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Ĵ

(54)

Alternation of matrices  and  is characteristic
of all terms of the series because the interaction is
transferred from a spin wave to an elastic wave, from
the elastic wave to the spin wave, etc.

The matrix analog of the new self-consistent
approximation given by Eqs. (43) and (44) contains all
matrix analogs of lower-level approximations.
Neglecting the term of the order γ2 in the denominator
of Eq. (44), we obtain  = . The substitution of
this expression into Eq. (43) gives a matrix analog of
the standard SCA:

(55)

The first iteration of Eq. (55),  = , provides a
matrix analog of the non-self-consistent Bourret
(Born) approximation [3, 24, 25]:

(56)

4. ANALYSIS OF ELEMENTS
OF THE MATRIX GREEN’S FUNCTION

Below, we consider only one-dimensional inho-
mogeneities of the coupling parameter ε(x) = ε(z).
Then, in all equations (43)–(54), d = 1 and the vector
k has the single component kz = k. The correlation
properties of the random function ρ(x) are simulated
by an exponential correlation function

(57)

where r = |x – x'| and kc is the correlation wavenumber

(rc =  is the correlation radius of inhomogeneities).
For the numerical analysis, we write the system of

equations (43) and (44) in the form of recurrence for-
mulas:

(58)
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Ĝk 1

ĝk
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where the superscripts n and m correspond to the iter-
ation processes for the Green’s function and vertex
function, respectively.

With the growth of inhomogeneities, ε decreases
from its initial value ε0 to zero, whereas Δε increases
from zero to a certain maximum value ε' close to ε0.
For simplicity, we set ε' = ε0 and analyze change in the
elements of the Green’s functions at the crossing res-
onance point k = kr with an increase in Δε and with a
decrease in ε at the conservation of the sum of squares
of these quantities, as was proposed in [22]:

(60)
Experimental samples, where intermediate states

between two limiting cases—homogenous (ε = ε0,
Δε = 0) and completely randomized (ε = 0, Δε = ε0)—
are created by varying their composition or the pro-
cessing method, do not necessarily satisfy Eq. (60).
This relation is introduced only for the convenient
step-by-step consideration of all intermediate states
with different relations between (ε/ε0)2 and (Δε/ε0)2.
The gap in the spectrum of magnetoelastic waves
appears at the point of intersection of unperturbed
dispersion laws (k = kr, ω = ωr) with the width Λ pro-
portional to the coupling parameter in a homogeneous
medium ε0

(61)

where ωm = gM. The quantity Λ determines also the
distance between two maxima on the frequency
dependence of the imaginary part of the Green’s func-
tion of both spin and elastic waves in the magnetoelas-
tic resonance region in the homogeneous medium.
The dimensionless frequency on all plots presented
below is given in units of Λ.

We first consider the limiting case of infinite radius
of correlations (kc = 0). In this case, the spectral density
is represented in terms of a delta function: S(k – k1) =
2πδ(k – k1) and the integral terms of continued frac-
tions (58) and (59) become algebraic. This circum-
stance strongly simplifies the calculations of Green’s
functions in both new and standard SCAs. Further-
more, in this situation, it is possible to find the exact
Green’s function (an analog of the Keldysh model [26]
for the matrix Green’s function). In this case, random
functions ρ(x) are transformed to random values
whose stochastic properties are described by a certain
distribution function f(ρ). The exact Green’s function
for this situation is calculated by the method that we
used to determine the exact scalar Green’s function of
waves in the inhomogeneous medium [22]. To this
end, we return to the initial system of two scalar equa-
tions (12) and (13) for resonance projections m+ and
u+. These equations at kc = 0 become equations with
constant coefficients and their analytical solutions are
easily obtained after the Fourier transform. Exact ana-

ε + Δε = ε2 2 2
0( ) .

εΛ = ω ω
μ

0 2 ,M r
M

lytical solutions of the matrix equation (19) for the
unaveraged Green’s function of the system are also
easily found in the k space:

(62)

where

(63)

These expressions differ from Eqs. (49) for the ini-
tial matrix Green’s function  only in the presence of
random values ρ and at γ = 0 coincide with Eqs. (49).

The averaged matrix Green’s function is given by
the expression

(64)

where f(ρ) is the distribution function of random val-
ues ρ, which can generally have an arbitrary form. For
the situation considered here, when the decoupling of
correlation functions in Eq. (35) is performed by the
Gaussian function, f(ρ) is the Gaussian function

(65)

Figure 1 shows the imaginary parts (ω) of the
Green’s function of spin waves in the region of magne-
toelastic resonance for the case kc = 0 obtained (red
dashed curves) in the standard SCA, (black solid lines)
in the new SCA, and (blue dotted curves) by the exact
summation of all diagrams. The width of peaks that is
due to the random distribution of frequencies increases
with an increase in the rms fluctuation Δε and with a
decrease in the average value ε of the coupling param-
eter between spin and elastic waves. Peaks gradually
approach each other and, finally, are joined into one
wide peak. It is seen that the standard SCA (Eq. (55))
reveals a number of unusual effects: dome shape of
resonances, curves with three maxima (Fig. 1b), bends
on sides of the peak (Fig. 1c). Similar effects were
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observed in [20–23], where the theory of magneto-
elastic resonance was developed in the standard SCA.
In those works, these effects were attributed to disad-
vantages of the standard SCA and, to justify this
assumption, a simplified model of overlapping of two
noninteracting dome-shaped resonances was consid-
ered. In the more accurate theory of magnetoelastic
resonance developed in this work, all these strange
effects are absent on plots of exact Green’s functions
(Eq. (64)) and on plots of the new SCA corresponding
to the system of Eqs. (58) and (59). The new SCA
describes both the shape and widths of peaks much
better than the standard SCA and gives plots close to
the exact curves. Beginning with the ordered case (ε ≠ 0,
Δε = 0) and ending with the case of the complete ran-
domization of the coupling parameter (ε = 0, Δε ≠ 0),
two narrow peaks are smoothly transformed to a single
wide peak. The imaginary parts (ω) of the Green’s
functions of elastic waves are not presented in Fig. 1
because they differ from the imaginary parts (ω)
of the Green’s function of spin waves only in a larger
height of resonance peaks. This follows from the rela-
tion obtained for the case kc = 0 in [22],

(66)

where vm < vu, vm = 2αgMkr is the velocity of spin
waves in the region of magnetoelastic resonance.

We now consider the general case corresponding to
an arbitrary correlation wavenumber of inhomogene-
ities kc. Figure 2 shows the imaginary parts (ω)
and (ω) of the diagonal elements of the matrix
Green’s function of spin and elastic waves, respec-
tively, for the case κc = kc/kr = 0.01. It is seen that even
such a small κc value significantly changes the shape of
resonance peaks. First, the shape of resonance peaks
of the Green’s function of elastic waves (ω) now
does not coincide with the shape of peaks of the
Green’s function of spin waves (ω). Second, with
an increase in Δε, a fine structure of the spectrum
appears near ω = ωr: a narrow peak (resonance) on the
Green’s function of spin waves (ω) (Fig. 2) and a
dip (antiresonance) on the Green’s function of elastic
waves (ω). This fine structure of the spectrum was
predicted and studied in our works [20–23], where the
theory of magnetoelastic resonance in an inhomoge-
neous medium was developed in the standard SCA
(red dashed curves in Fig. 2). In spite of significant
differences in the shape of resonance peaks calculated
in the standard and new SCAs, the main properties of
the fine structure of the spectrum are revealed in both
the new and standard SCAs. In particular, if the plots
in the right panels of Fig. 2 (taking into account their
scale) are imposed on the respective plots in the left
panels, the maximum of the narrow peak on the
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Green’s function (ω) of spin waves will touch the
minimum of the dip on the Green’s function of elastic
waves (ω) at any relations between (ε/ε0)2 and
(Δε/ε0)2 in both the standard and new SCAs. In [21],
we suggested that this property is due to the uniform
distribution of the energy between spin and elastic
waves, which is satisfied only at the center of the gap at
the point k = kr, ω = ωr:

(67)
This suggestion is confirmed by the universality of

law (67): it is valid both at any relations between (ε/ε0)2

and (Δε/ε0)2and at any correlation wavenumbers of
inhomogeneities kc. Beyond the region of existence of
resonance peaks in the fine structure of the spectrum,
Eq. (66), which is obtained for the case kc = 0, is
approximately satisfied at nonzero kc values.

We now consider the case of the correlation radius
an order of magnitude smaller than that in Fig. 2. Fig-
ure 3 shows the imaginary parts (ω) and (ω) of
the diagonal elements of the matrix Green’s functions of
spin and elastic waves, respectively, for the case κc = 0.1.
It is seen that discrepancies between the results obtained
in the standard and new SCAs decrease sharply with an
increase in kc. Dashed curves are now close to solid
curves. Only signatures of the fine structure on the max-
ima of peaks hold (left panels of Figs. 3d and 3e). In this
case, Eq. (67) remains valid. The results obtained in
the standard and new SCAs coincide with each other
at kc * 0.5. This corresponds to [14], where the
Green’s functions of waves in the inhomogeneous
medium calculated in the standard and new SCAs
coincided with each other at the same κc values.

We consider another situation that can appear at an
increase in kc. With an increase in Δε and with a
decrease in ε at small kc values, two narrow resonance
peaks can be joined into one wide peak even at nonzero
ε values (Fig. 4, red solid curve). We analyze the shape
of the imaginary parts of diagonal elements of the
matrix Green’s function at fixed ratios (ε/ε0)2 = 0.25
and (Δε/ε0)2 = 0.75 and at various κc values (Fig. 4).
At small κc values, two peaks are already joined into
one wide peak (red solid curve). The maximum of this
peak in the spectrum exhibits a fine structure includ-
ing a narrow peak (resonance) on the Green’s func-
tion (ω) of spin waves and a dip (antiresonance)
on the Green’s function (ω) of elastic waves. With
an increase in kc at a fixed relation between (ε/ε0)2 and
(Δε/ε0)2, the fine structure at maxima of peaks disap-
pears gradually and the single peak is again split into
two peaks (black dashed line and blue dash-dotted
curve). The width of each of these peaks decreases,
whereas the height increases with a further increase in
kc. Similar to the single resonance studied in [14, 15],
this effect is due to the partial averaging of inhomoge-
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neities in the intervals corresponding to half the wave-
length λ. Owing to this averaging, the shape of the
matrix Green’s function with an increase in kc
approaches the shape of magnetoelastic resonance in
the effective homogeneous medium with the magne-
toelastic parameter ε < ε0. With an increase in Δε and
a decrease in ε at a fixed kc value, the peaks are again
joined into one peak.

We now consider the off-diagonal elements Gmu
and Gum of the matrix Green’s function for the limiting
case kc = 0. To this end, it is sufficient to analyze one
function Gij related to Gmu and Gum as

(68)μ αω = ω = ω
α μ

( ) ( ) ( ).ij mu umG G G

The real, (ω), and imaginary, (ω), parts of
the off-diagonal element are shown in Fig. 5 as calcu-
lated (red dashed lines) in the standard SCA, (black
solid lines) in the new SCA, and (blued dotted lines)
by exactly summing all diagrams by Eq. (64). Since the
off-diagonal elements are proportional to ε, their
amplitude decreases with an increase in Δε and van-
ishes at (Δε/ε0)2 = 1 and (ε/ε0)2 = 0. This decrease in
the amplitude corresponds to an increase in the scale
of the ordinate axis in Fig. 5. It is seen that the shape
of the Green’s functions calculated in the standard
SCA is quite strongly distorted as compared to the
exact shape of these functions. At the same time, the
shape of the Green’s functions calculated in the new
SCA is very close to the shape of exact Green’s func-

'
ijG ''

ijG

Fig. 1. (Color online) Imaginary parts (ω) of the Green’s functions of spin waves obtained (red dashed curves) in the stan-
dard SCA, (solid curves) in the new SCA, and (blue dotted curve) by the exact summation of all diagrams at kc = 0, (ε/ε0)2 = (a)
0.95, (b) 0.7, (c) 0.25, and (d) 0, and (Δε/ε0)2 = (a) 0.05, (b) 0.3, (c) 0.75, and (d) 1.
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Fig. 2. (Color online) Imaginary parts (ω) and (ω) of the diagonal elements of the matrix Green’s function of (left panels)

spin and (right panels) elastic waves, respectively, in the (red dashed curves) standard SCA and (solid curves) new SCA at kc =

0.01, (ε/ε0)2 = (a) 0.95, (b) 0.75, (c) 0.5, (d) 0.25, and (e) 0 and (Δε/ε0)2 = (a) 0.05, (b) 0.25, (c) 0.5, (d) 0.75, and (e) 1.
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Fig. 3. (Color online) Imaginary parts (ω) and (ω) of the diagonal elements of the matrix Green’s function of (left panels)

spin and (right panels) elastic waves, respectively, in the (red dashed curves) standard SCA and (solid curves) new SCA at kc =

0.1, (ε/ε0)2 = (a) 0.95, (b) 0.75, (c) 0.5, (d) 0.25, and (e) 0 and (Δε/ε0)2 = (a) 0.05, (b) 0.25, (c) 0.5, (d) 0.75, and (e) 1.
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tions. With an increase in nonzero kc values, curves

calculated in the standard and new SCAs approach each
other and almost coincide with each other at kc ≳ 0.5.

It is noteworthy that the calculations in the new SCA
confirm the absence of any fine structure in the spec-
trum of off-diagonal elements of Green’s functions
that was previously revealed in the standard SCA [22].

5. CONCLUSIONS

The aims of this work were (i) to generalize the new
self-consistent approximation proposed in [14] to the
system of two interacting wavefields and (ii) to develop
a more accurate theory of magnetoelastic resonance in
a inhomogeneous medium based on this generaliza-
tion. The first aim is methodological. To achieve it, we
have derived a system of self-consistent equations for
the matrix Green’s function and matrix vertex func-
tion including both the first and second terms of the
expansion of the vertex function. The developed
mathematical method can be used to analyze coupled
oscillations of different physical nature in media with
a partially or completely randomized coupling param-
eter such as polaritons and magnetoelastic waves. The
method is applicable in a wide range of the correlation
wavenumber kc of inhomogeneities from kc = 0

(infinite radius of correlations) to kc values corre-

sponding to the classical limit. However, it is reason-
able to use this method in a much narrower range: the
Green’s functions calculated in the standard and new
approximations approach each other with an increase
in kc and almost coincide with each other at kc/k ≥ 0.5.

Therefore, for large kc values, it is reasonable to use the

simpler standard self-consistent approximation. It is

remarkable that the same range of the correlation
wavelength kc of inhomogeneities where the standard

and new approximations give different results was
obtained for the problem of a single wavefield in the
inhomogeneous medium [15]. In the limiting case of
infinite radius of correlations (kc = 0), in addition to

approximate results, exact analytical expressions have
been obtained by summing all diagrams of the ele-
ments of the matrix Green’s function. In this case, we
have compared the standard and new self-consistent
approximations to exact analytical expressions. It has
been shown that the new self-consistent approxima-
tion describes both the shape and width of resonance
peaks corresponding to the exact plots of the Green’s
function.

We have applied the developed method to coupled
magnetoelastic waves in a ferromagnet with an inho-
mogeneous magnetoelastic coupling parameter
because the theory of magnetoelastic resonance in the
inhomogeneous medium was developed in the stan-
dard self-consistent approximation in our previous
works [20–23]. It was of interest to determine how the
effects obtained within this theory change in the new
self-consistent approximation. The main result pro-
vided by new method is the much better description of
the shape of resonance peaks of the dynamic suscepti-
bility. All effects obtained in the previous theory—the
dome shape of peaks of magnetoelastic resonance,
resonance curves with three maxima (independent of
the fine structure resonance), and bends on the sides
of resonance curves—appear to be due to disadvantage
of the previous method. At the same time, the results
describing the broadening and approach of magneto-
elastic resonance peaks, as well as their joining into a

Fig. 4. (Color online) Imaginary parts (ω) and (ω) of the diagonal elements of the matrix Green’s function of (left panel)

spin and (right panel) elastic waves, respectively, in the new SCA at (ε/ε0)2 = 0.25, (Δε/ε0)2 = 0.75, and kc = (red solid curve)

0.01, (dashed curve) 0.1, (blue dash-dotted curve) 0.3, and (green dotted curve) 0.5.
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Fig. 5. (Color online) (Left panels) Real and (right panels) imaginary parts of the off-diagonal elements of the matrix Green’s
function obtained (red dashed curves) in the standard SCA, (solid curves) in the new SCA, and (blue dotted curve) by the exact
summation of all diagrams at kc = 0 and (ε/ε0)2 = (a) 0.95, (b) 0.8, (c) 0.5, and (d) 0.1, and (Δε/ε0)2 = (a) 0.05, (b) 0.2, (c) 0.5,
and (d) 0.9.

0

0

0

0

1

0

0

1

2

0

0

5

5

2

2

4

5

5

10

−5

−10

−5

−2

−2

−1

−4

−10

−5

−5

−2

−2

−1

−4

−10

(a)

(b)

(c)

(d)

0 2−2

(ω − ωr)/Λ
0 2−2

(ω − ωr)/Λ

krGĳ
2 ' krGĳ

2 ''

0 2−2

(ω − ωr)/Λ
0 2−2

(ω − ωr)/Λ

krGĳ
2 ' krGĳ

2 ''

0 2−2

(ω − ωr)/Λ
0 2−2

(ω − ωr)/Λ

krGĳ
2 ' krGĳ

2 ''

0 2−2

(ω − ωr)/Λ
0 2−2

(ω − ωr)/Λ

krGĳ
2 ' krGĳ

2 ''



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 125  No. 1  2017

DEVELOPMENT OF THE SELF-CONSISTENT APPROXIMATION 103

single wide peak with an increase in the rms f luctua-
tion Δε and with a decrease in the average value ε of
the coupling parameter, that were previously obtained
in the standard self-consistent approximation hold
qualitatively in the new theory, which only quantita-
tively corrects them. It is particularly important that
the new theory confirms the fine structure of the spec-
trum including a narrow resonance peak on the
Green’s function of spin waves and a narrow dip on the
Green’s function of elastic waves. This effect has not
yet been observed experimentally but should be mani-
fested at the interaction between any wavefields of dif-
ferent physical nature. The magnitude of this effect is
proportional to the ratio of the velocities of these fields
at the crossing-resonance point. This ratio for magne-
toelastic resonance is comparatively small and fine-
structure peaks are low. However, there are interacting
physical fields with a very large ratio of velocities
(polaritons, electron–phonon interaction, etc.), for
which fine-structure peaks can be high [27].
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