
323

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2017, Vol. 125, No. 2, pp. 323–332. © Pleiades Publishing, Inc., 2017.
Original Russian Text © S.V. Komogortsev, V.A. Fel’k, R.S. Iskhakov, G.V. Shadrina, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 2,
pp. 379–390.

Micromagnetism in a Planar System with a Random Magnetic 
Anisotropy and Two-Dimensional Magnetic Correlations

S. V. Komogortseva, V. A. Fel’kb*, R. S. Iskhakova, and G. V. Shadrinac

a Kirenskii Institute of Physics, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, 
Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia

b Reshetnev Siberian State Aerospace University, Krasnoyarsk, 660014 Russia
c Siberian Federal University, Krasnoyarsk, 660074 Russia

*e-mail: vlaf@sibsau.ru
Received January 27, 2017

Abstract—The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a ran-
domly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied
using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are
determined by the competition between the anisotropy and exchange energies and by the dipole–dipole
interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic
domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topo-
logical magnetization defects. The topological defects in the magnetic microstructure can cause a sharper
change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy
model.
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1. INTRODUCTION

Many functional elements of nanoelectronics, such
as magnetic field sensors, spin waveguides, and spin
rectifiers, contain magnetic layers of a nanometer
thickness [1–3]. To optimize the magnetic properties
of these layers, it is necessary to understand the rela-
tion between their properties and magnetic micro-
structure. The problem of a comprehensive theoretical
description of thin films consists in the extremely high
sensitivity of magnetic properties to structural defects
in films. These defects include surface roughness,
polycrystalline structure, crystallite boundaries, inter-
nal phase boundaries, dislocations, pores, and so on.
The intense work of many scientific groups of technol-
ogists and material scientists that has been performed
over the last decades led to the appearance of methods
for controlling each of the well-known defects [1–6].
The influence of the polycrystalline structure of nano-
materials and, in particular, nanolayers on their prop-
erties has recently received the most study. It was
found that the hysteretic properties of a material can
be changed over very wide limits by changing the crys-
talline grain size [7–9].

The exchange and dipole–dipole interactions
between nanocrystallites lead to magnetization correla-
tions on the scales that can significantly exceed the
grain size [10–15]. Along with random easy magnetiza-
tion axis orientations, these magnetic correlations are

the main attributes of the random magnetic anisotropy
(RMA) model, which is now used to explain the mag-
netic properties of nanostructured materials [16, 17].

In the strong magnetic anisotropy limit (where
magnetic anisotropy energy Ean is well above exchange
energy Eex), the approximation of independent crys-
tallites holds true. This approximation was used to
obtain a number of classic results concerning a mag-
netic hysteresis loop [18], the motion of magnetization
to saturation [19], and ferromagnetic resonance [20,
21]. In terms of spatial scale, the condition of strong
magnetic anisotropy can be expressed as Rc/δ ≫ 1,
where Rc is the correlation radius of a local easy mag-
netization axis (i.e., a structural correlation radius
proportional to the crystallite size) and δ = 
(where A is the exchange parameter and K is the anisot-
ropy constant of a crystallite). Indeed, the ratio of spa-
tial scales can be replaced by the ratio of the corre-

sponding energies, Rc/δ =  = ;
therefore, from Rc/δ ≫ 1 we have Ean/Eex ≫ 1.

In the weak magnetic anisotropy limit (where the
magnetic anisotropy energy is well below the exchange
energy, or Rc/δ ≪ 1), magnetization correlations
extend to the scales that are significantly larger than Rc
(crystalline grain size) [11, 15, 22–27]. This limit was
applied to analytically solve the problems of a magne-
tization curve and the specific features of a micromag-
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netic structure in high fields [11, 22–24, 26–28]. For
the fields that are comparable with the coercive field,
the development of an analytical theory of a magneti-
zation curve encounters a number of difficulties
related to the fact that the perturbation theory cannot
be applied in this region and an irreversible change in
micromagnetic states. However, the behavior of a
material in low fields, which are comparable with the
coercive field, is important for practical applications.
Simple estimation formulas derived in terms of the
RMA model are now used in the range of low fields
[10, 11, 16, 17, 29, 30]. These formulas predict a power
increase in the coercive force with Rc (or the crystallite
size) and a decrease in the magnetic correlation radius
with increasing Rc,

(1)

where d is the dimension of the system.
It is obvious that a transition between the limiting

cases of weak and strong anisotropy should occur at
Rc/δ ~ 1. The structural heterogeneity and the mag-
netic constants of the variety of real nanocrystalline
alloys are such that the ratio Rc/δ ~ 1 is valid for them
(e.g., using constants A and K for bcc-Fe and Rc =
21 nm, we obtain Rc/δ = 1). To calculate the magneti-
zation curves and the micromagnetic structures of
such materials, neither the analytical results nor the
scaling formulas of the RMA model can be used. Nev-
ertheless, numerical results can be obtained by micro-
magnetic simulation in this case [31–40].

In this work, we performed micromagnetic calcu-
lations of the magnetic microstructure and the mag-
netization curves of a nanocrystalline layer with a ran-
dom magnetic anisotropy and two-dimensional (2D)
magnetization correlations.

The glass carbon films fabricated by widely used
magnetron, plasma, and thermal sputtering and
chemical and electrochemical deposition are poly-
crystalline; that is, they consist of a large number of
crystalline grains. The magnetocrystalline anisotropy
axes of grains are randomly oriented in the absence of
an epitaxial coupling between a film and the substrate.

We now discuss the field of application of a model
of a randomly oriented easy magnetization axis.
Depending on the process of production, the follow-
ing types of grain boundaries in nanocrystalline mate-
rials: coherent, semicoherent, and incoherent bound-
aries. In the case of coherent boundaries, the orienta-
tions of neighboring crystallites are not random. Here,
the structural correlation length can exceed the crys-
tallite size. However, orientation correlations become
broken in large ensembles of crystallites on the scales
that are significantly larger than the grain size, which
can be detected by, e.g., X-ray diffraction. In the
nanocrystalline alloys formed upon crystallization
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from an amorphous state, 1-nm-thick grain boundar-
ies have an amorphous structure; as a result, the crys-
tallographic orientations of neighboring crystallites
are fully independent [41–43].

As a rule, one crystallite is present in a layer several
nanometers thick along its normal [30, 44–46]. In this
case, the correlations are two-dimensional since they
propagate in the plane of a magnetic nanolayer. For
magnets with 2D magnetization correlations, the
RMA model predicts a quadratic increase in the coer-
cive force with the crystallite size and a decrease in the
magnetic correlation length in inverse proportion to
the crystallite size (see Eq. (1) for d = 2).

Thin magnetic films are characterized by a signifi-
cant contribution of dipole–dipole interaction to the
total energy of the system. Unfortunately, to the best of
our knowledge, there are no works that analytically
take into account this contribution for films in the
fields that are comparable with the coercive field for
the case of a weak magnetic anisotropy.

The purpose of this work is to perform a micromag-
netic simulation of a thin nanocrystalline layer in the
magnetic fields that are comparable with the coercive
field at various ratios of the exchange energy to the
magnetic anisotropy of a crystallite. In addition, we
studied the influence of dipole–dipole interaction on
the magnetic properties and the magnetic microstruc-
ture of a nanolayer.

The films in which the anisotropy constant of a
crystallite (K) significantly exceeds the maximum
energy density of dipole–dipole interaction (2π )
can be considered as a practical example of the situa-
tion where dipole–dipole interaction may be
neglected. These films include the films made of
materials with a giant anisotropy constant, such as
CoFe2O4 (2π  = 3 × 105 J/m3, K = 1.4 × 106 J/m3)

[49, 50] and an ordered CoPt solid solution (2π  =
7 × 105 J/m3, K = 4.7 × 106 J/m3) [51, 52], and films
with a low magnetization, such as Ni(P) nanolayers
[47, 48, 53, 54]. As will be shown below, taking into
account dipole–dipole interaction in a planar system
effectively changes the number of magnetization com-
ponents and, thus, causes new features due to a change
in the topology of a system.

The structure of this article is as follows. In
Section 2, we present the theoretical considerations
and the parameters of the micromagnetic problem. In
Section 3, we discuss the behavior of a hysteresis loop
as a function of Rc/δ. The relation between the correla-
tion properties of the system with its microstructure is
described in Section 4. The problem of the influence
of topological defects on this relation is discussed in
Section 5.
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2. MICROMAGNETIC SIMULATION
We define magnetization vector M as the sum N of

magnetic moments μj (j = 1, …, N) in small volume dV
determined by the position of a ferromagnetic particle
r, namely,

(2)

In micromagnetism, direction M can change continu-
ously as a function of position [55]. Thus, a micro-
magnetic model implies a phenomenological descrip-
tion of a magnetic system as a continual medium.
Here, magnetization is a continuous function of coor-
dinates.

Each point in a continual medium is in an effective
magnetic field, which can be expressed in terms of the
total energy of the system Etot as follows:

(3)

where μ0 is a magnetic constant. Then, the condition
that determines the equilibrium magnetization vector
orientation has the form

(4)
The total energy of a magnetic system is a function of
magnetization. The total energy of a system in ferro-
magnetic materials can be represented as the sum of
the following terms:

(5)

These four terms are the exchange energy, the anisot-
ropy energy, the magnetostatic or dipole–dipole
energy, and the Zeeman energy (related to an external
magnetic field). In an equilibrium stat, total energy (5)
is minimal. Thus, each equilibrium state of the mag-
netic system corresponds to a local minimum of func-
tional (5). In this work, we perform a micromagnetic
simulation of a nanocrystalline layer with 2D magne-
tization correlations using the OOMMF software
package [56]. The layer thickness was taken to be Lz =
10 nm. A correlation magnetization function was cal-
culated on rectangular samples with lateral sizes of
1000 × 500 nm. Hysteresis loops were calculated for
square samples with lateral sizes of 4000 × 4000 nm.
The cell size was taken to be equal to the layer thick-
ness (10 nm). Thus, the cell size in the plane is much
smaller than the sample size (nanocrystallinity condi-
tion), and the thickness is equal to the cell size, which
allows magnetization correlations to move only in the
plate plane (2D magnetization correlations). The local
uniaxial anisotropy constant in each cell was assumed
to be K = 105 J/m3 and the saturation magnetization of
each cell was Ms = 8.6 × 105 A/m. The easy magneti-
zation axis of a cell was randomly oriented. The sam-
ple sizes are sufficient to neglect the influence of
boundaries. For example, using additional tests, we
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found that taking into account closed boundary con-
ditions does not change the results obtained without
them. Positive exchange interaction constant A was
chosen so that the required relations between the com-
petitive energies of exchange and anisotropy were
ensured. Note that the ratio of these energies reduced
to a dimensionless form can be expressed in terms of
the ratio of the characteristic scales Rc/δ as K /A =
(Rc/δ)2. From here on, we present our results as func-
tions of Rc/δ and assume that Rc is equal to the cell size
(10 nm). The dipole–dipole energy was calculated on
the assumption that magnetization is constant in each
cell [57, 58].

3. MAGNETIC HYSTERESIS
The hysteresis loops calculated for a magnetic field

applied along axis x are substantially different for dif-
ferent values of Rc/δ for films with and without
dipole–dipole interaction (Fig. 1). We now discuss the
behavior of coercive force Hc and remanent magneti-
zation Mr, which are important applied characteristics
of a hysteresis loop. In Fig. 1, they are shown as the
sections of a descending hysteresis loop branch,
Mr/Ms = f(H = 0, Rc/δ, M/Ms) and Hc = f(H, Rc/δ,
M/Ms = 0).

To estimate the average values and the dispersion
of the coercive force and the remanent magnetization,
we calculated several hysteresis loops at the same
micromagnetic problem parameters for different ran-
dom easy magnetization axes. Since a certain sample
of easy magnetization axes is finite, the hysteresis
loops calculated at the same micromagnetic problem
parameters are different for different samples. These
fluctuations in calculating noninteracting systems are
on the order of 1/ , where N is the number of inde-
pendent elements. In the exchange-uncoupled limit
(N = 1.6 × 105 in our case), the average magnetization
fluctuation is 0.025%. When the exchange correlations
are enhanced (or Rc/δ is decreased), the number of
independent elements N decreases and fluctuations
grow (Figs. 2, 3).

The coercive force calculated without regard for
dipole–dipole interaction increases with Rc/δ (Fig. 2),
and the following three segments can be distinguished
in the dependence of Hc on Rc/δ. For a layer with Rc/δ
higher than three, the shape of hysteresis loops
approaches that in the Stoner–Wohlfarth model [18].
The coercive field tends toward Hc = 0.96K/Ms (where
Ms is the spontaneous magnetization) and the remanent
magnetization tends toward Mr/Ms = 0.5 (Fig. 3). These
values were calculated by Stoner and Wohlfarth for
noninteracting particles, i.e., in the limit Rc/δ → ∞.

For a layer with Rc/δ from 0.5 to 1, the dependence
of Hc on Rc/δ agrees with that predicted by the PMA
model for 2D systems, Hc ∝ (Rc/δ)2 [29, 30, 59].

2
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Indeed, according to the RMA model we have Hc ∝
Ha/ . For the 2D case, this gives N ∝ (Rm/Rc)2 and
Hc ∝ Ha(Rc/Rm) ∝ Ha(Rc/δ)2. When Rc/δ changes from
1 to 2, Hc increases with Rc/δ more strongly than qua-
dratically. As will be discussed below, this behavior can
be related to the formation of topological magnetic
defects in the magnetic microstructure.

Remanent magnetization Mr/Ms increases with
decreasing Rc/δ and becomes constant (Mr/Ms ≈ 0.72)
in the range Rc/δ < 2 (Fig. 3). The absence of a depen-
dence of the remanent magnetization on the ratio of
the exchange and anisotropy energies (at Rc/δ < 2)
means the invariance of the static properties of the
magnetic microstructure on this ratio. The increase in
the remanent magnetization with decreasing Rc/δ can
be explained as follows. In a zero field, the magnetic
microstructure consists of stochastic magnetic
domains. These domains are statistically independent
and can be considered as a system of exchange-uncou-
pled particles. According to the Stoner–Wohlfarth
model, if the easy magnetization axes of stochastic
domains were be randomly oriented and the domains
were be ideally magnetized (if the average magnetiza-
tion of a domain was Mr/Ms = 1), the remanent mag-

N

netization would be Mr/Ms ≈ 0.5. In real practice, the
average magnetization of a stochastic domain is lower
than unity; therefore, we would expect Mr/Ms < 0.5.
The increase in the remanent magnetization to
Mr/Ms ≈ 0.72 can be explained by the appearance of
texture in an ensemble of stochastic magnetic
domains. Indeed, a system can decrease the anisot-
ropy energy if stochastic domains are located at the
sites where their averaged easy magnetization axes
approach the direction of an external magnetic field.
As a result, the remanent magnetization would
increase. The limiting remanent magnetization is
bounded by the average magnetization of a stochastic
magnetic domain. The detected limiting value

Fig. 1. (Color online) Hysteresis loops (a) without and (b)
with allowance for dipole–dipole interaction. 
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Fig. 2. (Color online) Coercive force in films with various
Rc/δ ratios. (round symbols) Calculation without regard
for dipole–dipole interaction and (square symbols) calcu-
lation with allowance for dipole–dipole interaction. The
horizontal line is the limiting coercive force in the Stoner–
Wohlfarth model. The slant lines illustrate power functions
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Fig. 3. (Color online) Remanent magnetization in films
with various Rc/δ ratios. (round symbols) Calculation
without regard for dipole–dipole interaction and (square
symbols) calculation with allowance for dipole–dipole
interaction. The horizontal lines illustrate the limiting
remanent magnetizations at Rc/δ @ 3 and Rc/δ ! 3.
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(Mr/Ms ≈ 0.72) is assumed to be the estimated average
magnetization of a stochastic magnetic domain.

The dipole–dipole interaction leads to lower limit-
ing coercive fields for high values of Rc/δ (Rc/δ > 3)
that those predicted by the Stoner–Wohlfarth model
(Fig. 2). When the dipole–dipole interaction is taken
into account, the dependence of Hc on Rc/δ exhibits a
quadratic increase, which is predicted by the RMA
model for 1.5 < Rc/δ < 3, and the coercive force then
(at Rc/δ > 3) levels off monotonically. At Rc/δ < 1, the
decrease in Hc slows down, which is clear if we use the
relation Hc ∝ Ha(Rc/Rm). In the limit of low Rc/δ, the
approaching of the maximum limiting value Rm should
lead to the minimum limiting value of Hc. However,
the maximum value Rm is limited by the sample size.
The existence of this limitation is demonstrated by the
calculations of the correlation magnetization radius
given below (see Fig. 7 and the related discussions).

This limitation also causes an increase in the error
of a numerical experiment when Rc/δ decreases. When
Rm approaches the sample size, a small number of sto-
chastic domains leads to the fact that the system can-
not be averaged; i.e., the f luctuations of the physical
parameters grow. The remanent magnetization for the
calculation that takes into account a dipole–dipole
interaction is higher than for the calculation when it is
not taken into account and passes through a maximum
at Rc/δ ≈ 2.5 when Rc/δ changes.

4. STOCHASTIC MAGNETIC 
MICROSTRUCTURE. MAGNETIZATION 

CORRELATIONS

Figure 4 shows the distribution of magnetization
projections in the state with remanent magnetization.
At low Rc/δ, the magnetization is almost uniform for
both versions, with and without dipole–dipole inter-
action (Fig. 4, Rc/δ = 0.577). As Rc/δ increases, the
nonuniformity becomes more pronounced: the uni-
form region size decreases and the magnetization
fluctuation amplitude increases. At Rc/δ = 4, the uni-
form magnetization region size becomes comparable
with the cell size.

The nonuniformities of the magnetic microstruc-
ture calculated with allowance for dipole–dipole
interaction are slightly extended along axis y, and the
nonuniformities calculated without regard for this
interaction are isotropic. The correlation functions of
magnetization calculated as

(6)

are decreasing and can be used to estimate the spatial
lengths of magnetic of correlations and the dispersion
of magnetization Cm(0) (Figs. 5, 6). The anisotropic
magnetization correlations in the system calculated
with allowance for dipole–dipole interaction are char-
acterized by an anisotropic correlation function
(Fig. 5). Here, negative correlations are observed
along x, which agrees with the numerical results and
the experimental data obtained earlier for thin films
[40, 60–62]. We will estimate the correlation proper-
ties for this case only for the correlations along x.

Magnetic correlation radius Rm is determined from
functions Cm(r) as the distance along which the cor-
relations become half as much (Fig. 7). Several seg-
ments can be distinguished in the dependences of Rm
on Rc/δ and of Hc on Rc/δ. For Rc/δ > 3, Rm almost

= 〈 + 〉( ) ( ' ) ( ')m y yC r m x r m x

Fig. 4. (Color online) Nonuniformity of magnetization
(for component my) in the remanent state at various Rc/δ
ratios. (left column) Calculation without regard for
dipole–dipole interaction and (right column) calculation
with allowance for dipole–dipole interaction.
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Rc/δ = 4.000 Fig. 5. (Color online) Correlation function of magnetiza-
tion with allowance for dipole–dipole interaction. 
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coincides with half the cell size. This result can easily
be understood, since cells become exchange-uncou-
pled with each other. In this limit, the correlation
function of magnetization repeats the correlation
function of the easy magnetization axis of a cell [11,
28, 63]. In our micromagnetic model (where the easy
magnetization axis of an individual cubic cell 10 nm in
size is uniform), the correlations of an easy magnetization
axis decrease with the distance as C(r) = C(0)(1 – r/Rc)
for r < Rc and as C(r) = 0 for r > Rc. As follows from this
formula, the correlation radius of the easy magnetiza-
tion axis, which is determined as the distance along
which the correlations become half as much, is 0.5Rc,
i.e., 5 nm. Indeed, the correlation radius of magneti-
zation in Fig. 7 tends toward this value at Rc/δ > 3.

In the calculations without regard for dipole–
dipole interaction for a layer with 0.8 < Rc/δ < 1.5, the
dependence of Rm on Rc/δ agrees with the prediction

of the RMA model. According to the RMA model, we
have Rm ∝ δ2/Rc = Rc(Rc/δ)–2 for 2D systems with a
Heisenberg (3D) magnetic moment [30, 59, 64]. The
data in Fig. 7 at 0.8 < Rc/δ < 1.5 group well along a
straight line at a slope of –2 in the log–log coordinates,
which means that the dependence Rm ∝ (Rc/δ)–2 holds
true.

A deviation from the power dependence predicted
by the RMA model is also observed at 1.5 < Rc/δ < 3,
as in the dependence of the coercive force. As will be
shown below, this deviation can be associated with a
change in the correlation function of magnetization
apart from the formation of topological magnetic
defects in a magnetic structure. Indeed, the decrease
in the correlation function with increasing distance is
linear at high Rc/δ and is nonlinear at low Rc/δ (see
Fig. 6). At Rc/δ < 0.8, the points in Fig. 7 slowly
approach a constant, which is caused by the finite size
of the sample under study. Indeed, the upper limit in
Fig. 7 (about 200 nm) is close to half the short side of
a 500-nm rectangular plate. In this limit, the magneti-
zation correlations are obviously bounded by this size
from above.

The dipole–dipole interaction turned out not to
affect the dependence of magnetization correlations
on Rc/δ. However, the correlation radii in the range
Rc/δ > 0.8 are seen to exceed those in a sample without
regard for dipole–dipole interaction. At Rc/δ < 0.8,
the situation is inverted: the correlation magnetization
radii in a sample with dipole–dipole interaction turn
out to be smaller. It is interesting that the dependence
of Rm on Rc/δ with allowance for dipole–dipole inter-

Fig. 6. (Color online) Correlation functions and the distri-
bution of magnetization projections (my) (a) without and
(b) with allowance for dipole–dipole interaction. 
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action does not contain an additional region, which is
similar to the third region in the dependence of Rm on
Rc/δ without regard for dipole–dipole interaction
(which was discussed above). The transition from the
dependence Rm ∝ (Rc/δ)–2 to constant Rm, which is
bounded by the cell size from high values of Rc/δ,
occurs in a very narrow Rc/δ range. Note that the data
on the dependence of Rm on Rc/δ (Fig. 7) agree with
the detected data on the dependence of Hc on Rc/δ
(Fig. 2) in terms of the RMA model, Hc ∝ Ha/  =
HaRc/Rm.

The magnetization projection distributions exhibit
a more compact and symmetric scatter of the compo-
nents with respect to zero with allowance for dipole–
dipole interaction and low value of Rc/δ (see Fig. 6). At
Rc/δ = 4, a qualitative difference between the distribu-
tions shown in Figs. 6a and 6b is visible. The distribu-
tion of the components in Fig. 6a is almost uniform
with respect to zero, and a specific feature in the form
of a maximum near zero is observed in Fig. 6b. This
result can be understood from the following consider-
ations. In the case of calculations with allowance for
dipole–dipole interaction, the magnetization loses
one degree of freedom: magnetization projection mz
turns out to be close to zero, and mx and my can f luc-
tuate in the range from –1 to +1. Without regard for
dipole–dipole interaction, all three projections can
fluctuate the range from –1 to +1. The magnetization
vectors for Rc/δ = 4 without regard for dipole–dipole
interaction can be distributed almost uniformly within
a hemisphere, and a uniform distribution within a
semicircle should take place with allowance for this
interaction. It can easily be shown that the distribution
of transverse magnetization projections in this case
should be qualitatively different, as is seen in Figs. 6a
and 6b.

5. TOPOLOGICAL DEFECTS IN A MAGNETIC 
MICROSTRUCTURE

Apart from smooth stochastic rotation of magneti-
zation between various points in a sample, its mag-
netic microstructure also has specific points, so-called
topological magnetic defects. Near a defect, the orien-
tation of magnetization changes sharply. A vortex,
hedgehog, or saddle magnetization structure can form
in the vicinity of a defect. To estimate the influence of
such defects on the magnetic properties, we calculate
their number. It is difficult and ambiguous to distin-
guish individual defects visually against the back-
ground of a stochastic magnetization distribution;
therefore, we used a quantitative characteristic,
namely, a topological or skyrmion charge [65]

(7)

N

⎛ ⎞∂ ∂= ×⎜ ⎟∂ ∂π ⎝ ⎠∫3
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4
q dV

x yM
M MM

The topological charge density (integrand in this
expression) is a scalar alternating quantity. The values
of q calculated for various values of Rc/δ f luctuate
about zero (Fig. 8). A quantity that is proportional to
the number of defects is obtained by integrating the
modulus of the topological charge density,

(8)

As Rc/δ increases, the number of defects increases
from zero to a constant at high values of Rc/δ (Fig. 8).
This picture agrees with the evolution of the heteroge-
neity of a magnetic structure discussed for Figs. 4, 6,
and 7. A decrease in the size of regions with a uniform
magnetization orientation with increasing Rc/δ leads
to an increase in the volume fraction of the boundaries
between magnetic correlation volumes, where topo-
logical magnetic defects form.

Thus, we expect an increase in the number of topo-
logical magnetic defects with Rc/δ. Figure 8 can be
used to qualitatively explain the deviation from the
quadratic dependence of Hc on Rc/δ in the range 1.5 <
Rc/δ < 2 in Fig. 2. At low Rc/δ, the number of defects
is small, and the RMA model states that the quadratic
dependence of Hc on Rc/δ is fully caused by the aver-
age magnetic anisotropy of a stochastic magnetic
domain. The deviation from this dependence when
Rc/δ increases in the range 1.5 < Rc/δ < 2 toward an
increase can be related to the increase in the number
of defects that is observed in Fig. 8. Indeed, the rota-
tion of magnetization near a defect requires additional
work to be done by a magnetic field, which should
result in an increase in the magnetic hysteresis. For
high Rc/δ, an ordered state of magnetization, against

⎛ ⎞∂ ∂= ×⎜ ⎟∂ ∂π ⎝ ⎠∫3
1 .

4
TN dV

x yM
M MM

Fig. 8. (Color online) (open symbols) Topological charge
q and (solid symbols) the number of topological defects NT
vs. Rc/δ. (circles) Calculation without regard for dipole–
dipole interaction and (squares) calculation with allow-
ance for dipole–dipole interaction.
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the background of which a defect can be detected, is
broken and the concept of a defect becomes inapplica-
ble. The absence of such a deviation for the depen-
dence of Hc on Rc/δ in the results of the calculation
that takes into account dipole–dipole interaction can
be associated with a substantially smaller number of
topological defects forming in the system (Fig. 8).
Indeed, dipole–dipole interaction effectively “turns
off” the transverse component of magnetization. In
our 2D system, this turning-off can be considered as a
transition from the Heisenberg model to the so-called
xy model, which is characterized by a two-component
spin. According to [66], this approach should corre-
spond to the transition from nonsingular topological
structures with a weak metastability to singular struc-
tures with a strong metastability. The increase in the
metastability means the growth of potential barriers
that separate defectless and defect states. When mov-
ing along the limiting hysteresis loop from high fields
to zero and, then, to the coercive field, we pass from a
fully homogeneous state of magnetization to a hetero-
geneous state, which contains only topological
defects. Since the nucleation of a defect in both cases
(with and without dipole–dipole interaction) is
caused by a random local anisotropy (which has the
same absolute value), a smaller number of topological
defects should form in the magnetic microstructure.
The data in Fig. 8 support this consideration: the
number of defects decreases substantially when
dipole–dipole interaction is turned on. According to
Imry and Ma [66, 67], the absolutely stable state in a
system with a random magnetic anisotropy is charac-
terized by the zeroth average projection of magnetiza-
tion; therefore, a high remanent magnetization in the
system with turned on dipole–dipole interaction also
points to a higher metastability of this system (Fig. 3).

In our calculations, we used a random uniaxial
anisotropy of neighboring crystallites for simplicity.
We now discuss the applicability of our results to sys-
tems with a cubic anisotropy of crystallites. It is known
that the shape of a hysteresis loop in a system of non-
interacting crystallites with a cubic local symmetry
differs from the shape of a loop for a system of uniaxial
grains [18]. In particular, the Stoner–Wohlfarth
model gives Hc = 0.32Ha and Mr/Ms = 0.83 for a posi-
tive cubic anisotropy constant when a chaos is taken
into account in the orientation of a local magnetic
anisotropy [68]. We can also expect that a numerical
investigation of the problem for a cubic local anisot-
ropy would lead to a change in both the asymptotic
values of Hc and Mr/Ms in the limit of exchange-
uncoupled crystallites and a shift in the characteristic
sizes at which the modes of exchange-coupled and
exchange-independent crystallites are exchanged.
Some of the obtained results are retained for ferro-
magnets with a cubic structure. For example, the
exponents of the power dependences of the coercive
force and the correlation magnetization radius are
solely determined by the dimension of a system and

the competition of a chaos in the orientation of a local
easy magnetization axis, which breaks a long-range
magnetic order and orders the influence of exchange
interaction. Moreover, the qualitative difference
between the behaviors of the coercive force and the
number of topological defects in the presence and
absence of dipole–dipole interaction in transient modes
should be retained, since this difference is caused by a
change in the topological class of the problem.

6. CONCLUSIONS

Using a micromagnetic simulation, we studied the
hysteresis loops and the micromagnetic structure of a
ferromagnetic nanocrystalline layer with a randomly
oriented local easy magnetization axis and 2D magne-
tization correlations. The properties and the micro-
magnetic structure of the layer are determined by the
competition between the anisotropy and exchange
energies and also by the dipole–dipole interaction
energy. The calculation without regard for dipole–
dipole interaction for noninteracting crystallites
results in the shape of a hysteresis loop that is pre-
dicted by the Stoner–Wohlfarth model. The correla-
tion magnetization radius approaches a constant,
which is comparable with the crystallite size. For a
layer with strongly interacting crystallites, the depen-
dences of the coercive force and the correlation mag-
netization radius on the reduced grain size or the
structural correlation radius agree with the predictions
of the RMA model for 2D systems, namely, a qua-
dratic increase in the coercive force and a hyperbolic
decrease in the correlation magnetization radius. For
the intermediate case where the exchange correlation
energy density is comparable with the local anisotropy
constant, the coercive force increases with the reduced
grain size more sharply than it is predicted by the
RMA model. In the calculation with allowance for
dipole–dipole interaction, this segment in the depen-
dence of the coercive force on the reduced grain size is
absent. The magnetic microstructure consists of an
ensemble of magnetic correlation volumes, or stochas-
tic magnetic domains. Topological magnetization
defects form along the boundaries between the mag-
netic correlation volumes. As the reduced grain size
increases, the number of defects increases from zero to
a constant. Dipole–dipole interaction suppresses the
formation of topological magnetization defects. The
change in the number of these defects with the ratio of
the anisotropy and exchange parameters agrees with a
sharper change in the coercive force with the grain size
than that predicted by the RMA model for the calcu-
lation without regard for dipole–dipole interaction
and with the absence of this effect when dipole–dipole
interaction is taken into account.
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