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Abstract—The effect of the Coulomb repulsion of holes on the Cooper instability in an ensemble of spin–
polaron quasiparticles has been analyzed, taking into account the peculiarities of the crystallographic struc-
ture of the CuO2 plane, which are associated with the presence of two oxygen ions and one copper ion in the
unit cell, as well as the strong spin–fermion coupling. The investigation of the possibility of implementation
of superconducting phases with d-wave and s-wave of the order parameter symmetry has shown that in the
entire doping region only the d-wave pairing satisfies the self-consistency equations, while there is no solution
for the s-wave pairing. This result completely corresponds to the experimental data on cuprate HTSC. It has
been demonstrated analytically that the intersite Coulomb interaction does not affect the superconducting
d-wave pairing, because its Fourier transform Vq does not appear in the kernel of the corresponding integral
equation.
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1. INTRODUCTION
Analysis of specific properties of the normal phase

of high-temperature superconductors (HTSCs) leads
to the conclusion [1] that the insulator state of these
materials is of the Mott—Hubbard type [2, 3].
Accordingly, it was proposed that weakly doped
HTSCs be described on the basis of the Hubbard
model [3] in the strong electron correlation (SEC)
regime. In [1], the subsystem of the spin moments of
copper ions was considered in accordance with the
scenario of resonant valence bonds, while the charge
excitation ensemble formed as a result of doping was
interpreted as the Fermi subsystem exhibiting the
Cooper instability. The mechanism of formation of
the superconducting phase appearing in such an
approach was of the electronic origin and led to high
values of superconducting transition temperature Tc.

Another solution to the problem of superconduct-
ing pairing with high Tc was proposed in [4], where it
was shown that in the range of low hole concentra-
tions, the fermion ensemble described by the Hubbard
model in the limiting SEC regime (U → ∞) exhibits
the Cooper instability in the s-wave channel. The new
scenario of superconducting pairing was based on the
kinematic interaction that is initiated in the Hubbard
fermion ensemble due to the quasi-Fermi anticommu-
tation relations between the Hubbard operators [5].

The kinematic mechanism of Cooper instability was
also of the electron origin and ensured high supercon-
ducting transition temperatures. The inclusion of the
intersite Coulomb interaction between fermions in the
Shubin–Vonsovsky model [6, 7] leads to a decrease in
the superconducting transition temperature [8–10]
and gives temperatures matching the experimental
data.

The single-orbital Hubbard model, which basically
reflects the role of the SEC in the properties of the
ground state and makes it possible to analyze new
mechanisms of Cooper instability in an ensemble of
strongly correlated fermions, disregarded specific fea-
tures of the crystalline structure of HTSCs. As a result,
important properties of the Fourier transforms of the
matrix elements for the intersite Coulomb repulsion,
which are inherent in the actual HTSC structure, were
lost. This gave rise to the problem (see below) associ-
ated with the strong suppression of the superconduct-
ing phase with the d-wave type of the order parameter
symmetry in the case when the Coulomb repulsion of
fermions located at the nearest crystal lattice sites is
taken into account.

The model reflecting the actual structure of the
CuO2 plane was formulated in [11]. The model took
into account the fact that one copper ion and two oxy-
gen ions are located in the unit cell on the CuO2 plane.
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The inclusion of on-site Coulomb interactions made it
possible to pass to the SEC regime and to correctly
describe the Mott–Hubbard ground state of the sys-
tem in the case of one hole per unit cell. The papers
[12–14] should also be mentioned in this connection,
in which the models that took into account the HTSC
structure, but differing either in the number of elec-
tron orbitals of copper and the type of filling of elec-
tron orbitals for Cu3+ ions [13] or in the structure of
included interactions were proposed [14].

In the so-called Emery model that is used most fre-
quently [11], it was shown that the emergence of an
additional hole in the CuO2 plane leads to the forma-
tion of the spin–singlet state of the hole located on the
copper ion and an additional hole moving in the oxy-
gen binding orbital [15]. This stimulated attempts at
constructing an effective one-band model for cuprate
HTSCs [16–19].

Presuming that an effective Hubbard model or its
low-energy versions in the SEC limit must ultimately
appear, most papers devoted to the HTSC problem
were based on the t–J model on a simple square lat-
tice. In such an approach, the same fermions formed
both the charge and the spin subsystems, and the
exchange and spin–fluctuation mechanisms initiated
Cooper pairing in the d-wave channel [20–22].

Therefore, it seemed that the origin of the effective
attraction between the Hubbard fermions had basi-
cally been revealed. However, the problem associated
with the intersite Coulomb repulsion of holes at oxy-
gen remained unsolved. As a matter of fact, the Coo-
per instability in the Hubbard model [4], t–J model
[21, 22], or t–J* model [23, 24] was suppressed when
the intersite Coulomb repulsion of charge carriers was
taken into account. This effect manifested itself most
strongly in the d-wave channel so that superconduc-
tivity was suppressed completely for V1 ~ 1–2 eV. As a
result, the contributions associated with the electron–
phonon, spin–fluctuation, and charge–fluctuations
contributions [25, 26] had to be taken into account
additionally to compensate the strong repulsion asso-
ciated with the intersite Coulomb interaction of holes.
It should be noted, however, that the Coulomb inter-
action potential between holes in different cells was
chosen in [25, 26] equal to V = 0.2 eV, which is much
lower than the spin–fluctuation pairing potential gsf =
1.5 eV caused by the kinematic interaction; it is only
for this reason that the superconducting d-wave phase
was preserved. Due to a stronger kinematic mecha-
nism [4], Cooper pairing for the superconducting
s-wave phase was also observed at comparatively high
values of V.

As a result, the following problem obviously arose:
the superconducting d-wave phase required for explain-
ing experimental results was strongly suppressed by the
Coulomb repulsion of holes located at the nearest
sites. Note that argumentation associated with the
screening of the Coulomb interaction, which is some-

times used in this connection, appears as unconvinc-
ing in the given case because the repulsion of holes at
the shortest distances was considered [27]. Low effec-
tiveness of screening in HTSCs was noted in [14] and
was associated with the low concentration of holes at
oxygen ions.

The problem of neutralization for the Coulomb
repulsion of holes at oxygen has required the revision
of the existing theories of Cooper instability in
HTSCs. It should be noted in this connection that an
analogous problem also existed in the theory of classi-
cal superconductors. Its solution had become possible
after it was shown [28, 29] that the electron–phonon
interaction in a certain region of the momentum space
initiated effective attraction between fermions, which
could compensate for the bare repulsion.

It was shown in our recent paper [30] that the solu-
tion for the problem of stability of the superconducting
d-wave phase in cuprates is associated with the rejec-
tion of the Hubbard model as well as its low-energy
modifications and with the return to the model taking
into account the actual structure of the CuO2 plane in
HTSCs. The role of such a model is played by the
spin–fermion model (SFM) formulated at early stages
of development of the HTSC theory [31–36]. This
model follows directly from the Emery model [11] if
we take into account the effects of covalent mixing of
copper and oxygen orbitals in perturbation theory with
allowance for the actual relations between the initial
Hamiltonian parameters. Specific features of the
SFM are associated with the following factors. First,
the SFM takes into account the spatial separation of
the subsystems of copper and oxygen ions (homeopo-
lar states of copper describe one hole). Second, which
is significant, the presence of two oxygen ions with the
px and py orbitals in the unit cell is taken into account.

It was shown in [30] that the allowance for the
above-indicated features of the SFM leads to the stabil-
ity of the phase with the -wave symmetry of the
order parameter towards the strong Coulomb repulsion
of holes located at the nearest oxygen ions. However,
the following two problems remain unsolved: (i) the
manifestation of the Coulomb interaction of holes at
the same oxygen ion in the problem of Cooper insta-
bility and (ii) the competition of the superconducting
d-wave and s-wave phases. This study is devoted to the
solution of these problems.

This article is organized as follows. In Section 2,
the Emery model for cuprate superconductors is for-
mulated. In Section 3, the spin–fermion model is
described, which follows from the Emery model in the
SEC regime. Section 4 is devoted to the derivation of
the equations for the normal and anomalous Green
functions. The system of integral equations for the
superconducting order parameter components is given
in Section 5. In Section 6, the influence of the Cou-
lomb interaction on the evolution of Cooper instabil-
ity in a spin polaron ensemble is analyzed. The stabil-
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ity of the superconducting d-wave pairing towards the
Coulomb repulsion of holes at the same and adjacent
oxygen ions is demonstrated. The competition
between the d-wave and s-wave pairings is investigated
based on the calculated concentration dependences of
the superconducting transition temperature. In the
concluding section, the results of this study are dis-
cussed. For convenience of presentation of the results,
cumbersome analytic expressions are given in Appen-
dices A and B.

2. HAMILTONIAN OF THE EMERY MODEL
It is well known that the main features of the elec-

tronic structure of the CuO2 plane in HTSCs is cor-
rectly described by the Emery model [11, 12, 14], in
which the Hamiltonian in the representation of the
secondary quantization operators can be written in the
form

(1)

Here, (dfσ) and (plσ) are the creation (annihila-
tion) operators for the d- and p-fermions, respectively,
at copper (f) and oxygen (l) sites with spin projections
σ = +1/2, –1/2. One of the four vectors connecting
the copper ion with the oxygen ions in the CuO2 plane
is denoted by δ: δ = {±x/2, ±y/2}, where x = (a, 0) and
y = (0, a), a being the unit cell parameter. Vector δ
connects the copper ion at site f with the oxygen ions
in the position l = f + δ (Fig. 1). The particle number
operators at copper and oxygen ions are defined as

=  =  and  =  =

. By εd and εp we denote the bare on-site
energies of fermions on copper and oxygen ions,
respectively. Parameters Ud and Up in the Hamiltonian
indicate the Coulomb repulsion energy for two parti-
cles with opposite spin projections at a copper and an
oxygen site, respectively; Vpd is the Coulomb repulsion
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energy for fermions at the copper and oxygen ions, and
Vpp is the parameter of the Coulomb interaction of fer-
mions at oxygen ions. By tpd, we denote the hopping
integral for a charge carrier from an oxygen ion to a
copper ion. Function ϑ(δ) takes into account the
effect of the relation between the phases of copper and
oxygen orbitals on the hybridization processes. For the
orbital profiles shown in Fig. 1, function ϑ(δ) assumes
the following values upon the variation of δ: ϑ(δ) = 
for δ = ±x/2 or δ = ±y/2 [15]. By tpp(Δ) = tρ(Δ), we
denote the fermion hopping integral between nearest
oxygen orbitals. Its sign is determined by function
ρ(Δ), where vector Δ connects the nearest oxygen ions.
For the chosen sequence of phases of oxygen orbitals,
ρ(Δ) = 1 for Δ = ±(x + y)/2 and ρ(Δ) = –1 at Δ =
±(x – y)/2.

The Hamiltonian of the Emery model is a typical
Hamiltonian in the multiband theory of metals in the
tight-binding approximation. It belongs to the Hub-
bard type (the Emery model is often referred to in the
literature as the three-band or extended Hubbard
model) because it describes both intraatomic Cou-
lomb correlations and hopping between one-ion states
of copper and oxygen. However, the Emery model is
more realistic as compared to the Hubbard model
because it takes into account the chemical composi-
tion of copper oxides.

∓1

Fig. 1.  orbitals of fermions on copper ions and px
and py orbitals of fermions at the oxygen ions on the CuO2
plane, which are taken into account in the Emery model.
The dashed lines bound the unit cell with parameter a. The
dotted lines connect four oxygen orbitals that are closest to
the copper orbital.

a py py
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3. SPIN–FERMION MODEL
According to experimental data, in the undoped

state with one hole per unit cell, the system is in the
state of a Mott–Hubbard insulator [2]. In the Emery
model, this corresponds to the SEC regime:

(2)

These inequalities require, on the one hand, that the
Coulomb correlations at the copper ion be taken into
account correctly; on the other hand, these inequali-
ties make it possible to carry out the reduction of the
Hamiltonian in the Emery model and to obtain the
SFM [31–36]:

(3)

where

(4)

(5)

(6)

(7)

(8)

The relation between the operators of the oxygen sub-
system in the initial Emery model and the secondary
quantization operators in the SFM in the momentum
representation is established by the relations

(9)

Operators akσ and bkσ correspond to the annihilation of
a hole with momentum k and spin projection σ, respec-
tively, in the x- and y-sublattices of the oxygen ions.

In the expression for the Hamiltonian , we have
introduced the functions

(10)

where μ is the chemical potential and parameter τ =
/Δpd. The function
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describes the hybridization processes in the second
order of perturbation theory (parameter τ) as well as
direct hopping of holes between the oxygen ions
(parameter t). The dependence for the sign of the hop-
ping integrals on the direction of vector Δ leads to the
emergence of function ψk in expression (11).

For brevity, the momenta over which the summa-
tion is performed are denoted by 1, …, 4. The delta
function δ1 + 2 – 3 – 4 in the above expressions takes into
account the momentum conservation law. For operator

 of the intersite Coulomb repulsion, we take into
account the interactions only between the nearest oxy-
gen ions. The intensity of these interactions is charac-
terized by parameter V1. Function φk in  is defined as

(13)

Operator  describes in the k representation both spin-
correlated hopping of holes between oxygen ions and
the exchange interaction of a hole at the oxygen ion
with the spins at the nearest copper ions. Parameter J
of this interaction is defined as J = 4 /Δpd. In opera-
tor , Sf denotes the vector operator of the spin local-
ized at site f, while vector operator σ is composed of
the Pauli matrices: σ = (σx, σy, σz). For brevity of nota-
tion, we have introduced in expression (7) the operator

(14)

The last term  in the Hamiltonian (3) appears in
the fourth order of perturbation theory and describes
the exchange interaction of spins localized at copper
ions.

The Hamiltonian in the SFM in the momentum
representation was considered earlier in [38], where the
spectrum of the Fermi quasiparticles in Sr2CuO2Cl2
was analyzed in the self-consistent Born approxima-
tion. However, the Coulomb interaction operators

, , and  were not taken into account.
When deriving expression (3) for the Hamiltonian

in the SFM, we assumed that the Coulomb repulsion
parameter for holes at copper ions was Ud = ∞. In fur-
ther analysis of the conditions for the evolution of the
Cooper instability in the SFM, we will use the well-
established values of parameters for the Emery model
[39, 40]: tpd = 1.3, Δpd = 3.6, Up = 4.0, and Vpd = 1.2
(in electronvolts). For the hole hopping integral at oxy-
gen, we will use the value of t = 0.12 eV [41], and the
exchange interaction constant between the spins of the
copper ions is chosen to be I = 0.136 eV, which is in
conformity with the available experimental data on
cuprate superconductors. The parameter of the inter-
site Coulomb repulsion of holes is chosen as V1 =
1‒2 eV [37].
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4. EQUATIONS FOR THE GREEN FUNCTIONS

An important feature of the SFM is that the
exchange coupling between localized spins and the
spins of holes turns out to be strong: J = 1.88 eV ≫ τ ≈
0.47 eV. This means that when describing the oxygen
ion subsystem, the strong coupling between holes at
oxygen ions and the subsystems of spins at copper ions
must be taken into account exactly. For this purpose,
it is convenient to use the Zwanzig–Mori projection
method [42–44]. The method for calculating the dis-
persion curves for spin–polaron excitations in the
SFM, which is based on this approach, was described
in detail in [45] and was actively used in subsequent
studies [41, 46, 47].

For taking into account the aforementioned strong
spin–charge coupling, it is necessary to introduce one
more operator into the basis set of operators (apart of
operators akα and bkα), viz.,

(15)

For analyzing the conditions for Cooper instability, we
must supplement the above set of three operators with
three extra operators [30, 47] (  = –α):

(16)

The addition of these operators to the basis makes it
possible to analyze not only normal, but also anoma-
lous thermodynamic means using a unified approach.

The exact equations of motion for the first three
basis operators have the form
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where  =  + , and invariant γ1p of the square
lattice will be defined later (see relation (24) below). In
addition, in equation of motion (19), we have intro-
duced the Fourier transform of the spin operator

Within the projection method [42, 43], the system
of the equations of motion for the Green functions can
be written as
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equations for the normal Gij and anomalous Fij Green
functions ( j = 1, 2, 3):

(22)

Here, we have introduced the following notation for
the normal Green functions:

Functions Gi2 and Gi3 (i = 1, 2, 3} are defined analo-

gously, the only difference being that instead of , we

have operators  and , respectively. The anoma-
lous Green functions are defined as
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For the components of the superconductor order
parameter, which are defined as
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we obtain
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where Ik = 4Iγ1k, and the mean is given by
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uid. In this case, spin correlation functions Cj = 〈S0 〉

appearing in expressions (23) and (26) satisfy the rela-
tions

(28)

where rj is the coordinate of the copper ion in the jth

coordination sphere. In this case, 〈 〉 = 〈 〉 = 〈 〉 = 0.
When deriving the fifth equation in (26) for the

mean values of the product of operators that cannot be
reduced to the basis operators, we have used the rela-
tion

(29)

where summation over indices α and β is implied.
Relation (29) is valid in the SU(2) invariant phase and
makes it possible to express this mean in terms of the
mean value of the basis operators. The anomalous
mean 〈Lq↑L–q↓〉 playing the decisive role in the realiza-
tion of the d-wave superconductivity in the ensemble
of spin–polaron quasiparticles appears in the sum in
the equation for the order parameter component Δ5k in
system (26) only when relation (29) is used. For ther-
modynamic means containing the scalar product of
the spin operators, the uncoupling procedure was
used. This explains, in particular, the emergence of
magnetic correlator C1, which is proportional to
exchange integral I, in the first term on the right-hand
side of the expression for Δ5k.

The contributions to Δ5k from the intersite Cou-
lomb interaction immediately after the evaluation of
the commutators have the form

(30)

Since the operators in the mean cannot be reduced to
basis operators even when relation (29) is used, the
uncoupling procedure is employed for the mean values
in expression (30) taking into account the SU(2)
invariance of the spin subsystem. This procedure leads
to the emergence of the term proportional to V1 in the
fifth equation in (26).

It should also be noted that since we are interested
in the weak doping regime, the contributions appear-
ing in expressions (23) and (26) as a result of uncou-
pling of the means and proportional to correlators of
the density–density type are not considered here.

Analysis of system of equations (22) in the normal
phase leads to the conclusion that the Fermi excitation
spectrum in the SFM is determined by the solutions to
the dispersion equation
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and contains three branches: , , and  [47].
Lower branch  is characterized by a minimum near
point (π/2, π/2) of the Brillouin zone and is separated
considerably from the two upper branches  and .
The lower branch appears due to the strong spin–
charge coupling that induces the exchange interaction
between holes and localized spins at the nearest cop-
per ions, as well as spin-correlated hopping. At low
doping levels, the dynamics of holes at oxygen ions is
determined predominantly by the lower branch .

5. SUSTEM OF EQUATIONS
FOR THE SUPERCONDUCTING ORDER 

PARAMETER COMPONENTS

For analyzing the conditions for the Cooper insta-
bility, let us express the required anomalous Green
functions in terms of parameters  in the linear
approximation. These functions have the form

(32)

and corresponding functions (k, ω) are given in
Appendix A. 

The Green functions required for analyzing the
conditions for the emergence of superconductivity are
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Using the spectral theorem [48], we obtain the fol-
lowing expressions for anomalous means and the closed
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(33)

where the following functions have been introduced:

(34)

System of equations (33) will be used below for deter-
mining the temperature of transition of an ensemble of
polarons to the superconducting state with preset type
of order parameter symmetry.

6. COMPETITION OF d- AND s-WAVE 
PAIRINGS OF SPIN POLARONS TAKING 

INTO ACCOUNT THE COULOMB 
INTERACTIONS

It can be seen from system (33) that the kernels of
integral equations are uncoupled; therefore, the solu-
tion to this system can be sought in the form

−Δ = − Δ + Δ∑ ∑
( ) ( )

5 0 1
1 1* * *( ) ( )l l

k lq k q a lq

lq lq

R q I R q
N N

+ Δ

+ Δ − γ ψ Δ

− φ Δ

∑

∑ ∑

∑

( )
1

( ) ( )
1 2 2

( )
2

1 *cos ( )

1 1* *cos ( ) ( )

1 *sin sin ( ) ,

l

x b lq

lq

l l

y c lq k q lq

lq lq

l

x y q lq

lq

k R q
N

k R q R q
N N

k k R q
N

( )
= ψ + γ

− +

+ +

− ξ +
− ξ +

( ) (1) ( )
0 1 1 33

( )
1

( ) ( )
11 22

( )
, , 31

( )
, , 32

3( ) ( ) 2 ( )
4

8 3 ( )
2

3 ( ( ) ( ))
8

2( ( ) ) ( )

2( ( ) ) ( ),

l l

q ab q

l

uu

l l

p

l

x q x q q y

l

y q y q q x

R q V M q J M q

J
IC M q

U M q M q

q s t s M q

q s t s M q

= −
= ψ −

+
= ψ −

+

( ) ( ) ( )
1 33 1

( ) ( ) ( )
1 1 1

( )
11

( ) ( ) ( )
1 1 1

( )
22

( ) ( ) ( ),

( ) ( ( ) 2 ( )

( )),

( ) ( ( ) 2 ( )

( )),

l l l

a uu

l l l

b q ab uu

l

p

l l l

c q ab uu

l

p

R q M q C M q

R q C V M q JM q

U M q

R q C V M q JM q

U M q

=
= − − − ψ

= +
+ − ⎛ ⎞= ⎜ ⎟− − ⎝ ⎠

( ) ( )
2 1 2

( ) 2 ( ) 2 ( ) ( )
11 22

( ) ( ) ( )
21 12

( ) ( )
( ) 1 1 1

2 2 2 2
1 1 2 1 3

( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ),

( , ) ( , )
( ) tanh .

24 ( )( )

l l

ab

l l l l

uu qx qy q ab

l l l

ab

l l

l nm q nm q q

nm

q q q q q

R q V C M q

M q s M q s M q M q

M q M q M q

S q E S q E E
M q

TE E E E E

(35)

where eleven amplitudes Bj (j = 1, 1φ, 1ψ, …) determine
the contribution of the corresponding basis functions to
the expansion of the order parameter components.
Substituting these expressions into Eqs. (33) and equat-
ing the coefficients of the corresponding trigonomet-
ric functions, we obtain the system of eleven algebraic
equations for determining amplitudes Bj. Actually, the
situation is simplified because the system splits into
two independent subsystems. The first subsystem
defines three amplitudes (B1φ, B2φ, and Bss). Numeri-
cal calculations show that in the entire doping range of
interest, this system has no solutions and will not be
considered here.

The second subsystem of equations defines the
remaining eight amplitudes Bj, which can be conve-
niently written in the form of a column vector:

(36)

In matrix form, the system of eight equations can be
written as

(37)

where components of eighth-order matrix  can be
calculated using the expressions

(38)

and functions wij(q) are given in Appendix B.
To determine the dependence of superconducting

transition temperature Tc on doping level x for differ-
ent types of the order parameter symmetry, we should
solve Eq. (37) together with the equation for chemical
potential μ. In deriving the equation for μ, we should
take into account the fact that all order parameters
Δjk → 0 in the limit of interest T → Tc. As a result, we
obtain the following equation for determining the
chemical potential:

(39)

where f(E) = (eE/T + 1)–1 is the Fermi–Dirac distribu-
tion function.

The results of numerical self-consistent solution of
system of equations (37) together with equation (39)
for the chemical potential are represented in Fig. 2.
Solid curve 1 shows the dependence of the critical
temperature of superconducting -wave pairing
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on the doping level for Up = 0 and V1 = 0. This curve
was obtained earlier in [47] and is in good agreement
with experimental data on the absolute value of Tc and
on the doping region in which the Cooper instability
evolves.

An important aspect of the approach developed here
is that the inclusion of Coulomb interaction V1 of fermi-
ons located at the nearest oxygen ions does not affect
the Tc(x) dependence for superconducting -wave
pairing: curve 1 in Fig. 2 remains unchanged [30]. The
cause for such a behavior can be found after analysis of
the solutions to system of integral equations (33).
In the doping region in which the above type of pair-
ing is realized for T ≲ Tc, the solutions to algebraic sys-
tem (37) for the amplitudes are such that only four
amplitudes Bcx, Bcy, B1ψ, and B2ψ differ from zero and
Bcx = –Bcy, B1ψ = –B2ψ, and |Bcx|/|B1ψ| ~ 103. This
means that the dependence of the superconducting
gap on k is mainly due to the fifth component Δ5k of
superconducting order parameter, which in this case
has the form

(40)

Since for the d-wave pairing for Up = 0, amplitudes Bcx

and Bcy in the equation for Δ5k are determined not by
parameter V1, but by the exchange coupling constant I
alone, we arrive at the conclusion that the Coulomb
repulsion of holes located at neighboring oxygen sites
do not suppress the superconducting phase with the

-wave order parameter symmetry [30].

This means that in the case of the d-wave pairing
and Up = 0, we can obtain instead of system (37) a sim-
pler equation for the superconducting transition tem-
perature Tc [47, 49, 50]. This equation follows from the
fifth equation of system (33) and has the form

(41)

This equation implies, in particular, that the exchange
interaction of spin moments of the copper ions, which
is transformed into effective attraction as a result of the
strong spin–charge coupling, is the mechanism of the
Cooper instability. The results of solution of Eq. (41)
and system (37) for the d-wave pairing and Up = 0
obviously coincide and correspond to solid curve 1 in
Fig. 2.

In contrast to the intersite interaction, the allow-
ance for the Coulomb interaction Up of two holes at
one oxygen ion leads to the suppression of the super-
conducting d-wave phase. However, as it follows from
comparison of curve 2 (Up = 3 eV) and curve 1 (Up = 0)
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in Fig. 2, this suppression is not essential for the
implementation of HTSC, since in the region of the
optimal doping (x ≈ 0.16), the critical temperature
remains high.

From the system of integral equations (33), it fol-
lows that the solution corresponding to the s-wave
phase should have the form

(42)

Calculations show that for all the realistic parameters of
the model, there is no nontrivial solution. Consequently,
in the SFM, when the strong coupling of holes on oxygen
ions with spin moments of copper ions is correctly taken
into account, the superconducting phase with the s-wave
symmetry of the order parameter is not realized. This is
the main difference between the theory of HTSC devel-
oped here and the approaches based on the effective sin-
gle-band models of strongly correlated fermions on the
square lattice, in which along with the superconducting
d-wave phase, there is always a solution for the supercon-
ducting s-wave phase.

7. CONCLUSIONS

The main results of this study can be formulated as
follows.
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Fig. 2. Doping dependences of the superconducting tran-
sition temperature for the -type of pairing, obtained
for the model parameters J = 1.88, τ = 0.47, t = 0.12, and
I = 0.136. Curves 1 and 2 describe Tc(x) for Up = 0 and
Up = 3, respectively. The inclusion of interstitial Coulomb
interaction V1 does not influence these dependencies. All
energy parameters are measured in electronvolts.
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(1) It has been shown that the neutralization for
the negative effect of the intersite Coulomb interac-
tion of holes in the oxygen subsystem on the Cooper
instability in the d-wave channel occurs as a result of
two factors. The first factor is associated with the
analysis of the actual crystallographic structure of
the CuO2 plane, according to which the Coulomb
repulsion of fermions in the oxygen sublattice is
determined by the Fourier transform of intersite
interaction Vq = 4V1cos(qx/2)cos(qy/2). The second
factor is associated with the electron correlations lead-
ing to the emergence of strong coupling between the
localized spins of copper ions and holes at the oxygen
ions. As a result, the spin–polaron quasiparticles are
formed and move over the copper ion sublattice; in the
ensemble of these particles, the Cooper instability
evolves. The Coulomb repulsion between bare holes
with the Fourier transform Vq is renormalized into the
interaction between the spin-polaron quasiparticles so
that the momentum dependence of this effective inter-
action corresponds to the structure of the copper ion
sublattice. As a result, the situation takes place, when
the effective repulsion between spin polarons falls out
of the equation for the superconducting order param-
eter with the d-wave symmetry. At the same time, the
contribution of such an effective repulsion remains for
the Cooper instability in the s-wave channel.

(2) The solution of the system of self-consistent
integral equations for superconducting phases showed
that in the spin–fermion model, only the phase with
the d-wave symmetry of the order parameter is real-
ized, whereas solutions for the s-wave pairing are not
available for all the admissible levels of doping. These
results completely correspond to the experimental
data on cuprate superconductors. In this connection,
we note that within the t–J model, the superconduct-
ing s-wave pairing is realized, and the critical tempera-
ture corresponding to this phase is much higher than
Tc for the d-wave pairing. Concerning the differences
that arise, it is appropriate to point out that in our
approach the spin subsystem of copper ions, which is
separated from the hole subsystem, plays an important
role, whereas within the t–J model, the electron and
spin degrees of freedom are due to the same electrons.

(3) The effect of Coulomb repulsion Up for quasi-
particles at the same oxygen ion on the dependence of
the superconducting transition temperature supercon-
ducting phase with the d-wave symmetry of the order
parameter on the doping level has been analyzed. It is
shown that taking Up into account leads to decrease in
the superconducting transition temperature, but this
temperature remains within the limits that are
observed experimentally.

It should also be noted that the different contribu-
tions of the Coulomb interaction to the conditions of
realization of superconducting phases with different
symmetries of the order parameter are manifested, for
example, in the Kohn–Luttinger theory of supercon-

ductivity [51]. In our case, the separation factor plays
a decisive role, when two types of oxygen orbitals
spaced from the spins of the copper ions are taken into
account.
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APPENDIX A

Functions (k, ω) appearing in the expressions for
anomalous Green functions Fij(k, ω) (32) have the form
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(43)

These expressions include the functions,

(44)

APPENDIX B

Integrand functions wij(k) defining matrix elements
Wij in expression (38) have the form

ω = −ω ω(5)
31 ( , ) ( , ) ( , ),xy yS k Q k Q k

ω = − −ω ω(3)
32 3( , ) ( , ) ( , ),k y xS k K Q k Q k

ω = − −ω ω(4)
32 3( , ) ( , ) ( , ),k x xS k K Q k Q k

ω = −ω ω(5)
32 ( , ) ( , ) ( , ),xy xS k Q k Q k

ω = − ω(1) 2 (5)
33 11( , ) ( , ),kS k K S k

ω = −ω(2) 2 (5)
33 12( , ) ( , ),kS k K S k

ω = −ω(3) (2)
33 33( , ) ( , ),S k S k

ω = ω(4) 2 (5)
33 22( , ) ( , ),kS k K S k

ω = −ω ω(5)
33 ( , ) ( , ) ( , ).xy xyS k Q k Q k

ω = ω − ξ +
ω = ω − ξ +

ω = ω − ξ ω − ξ −
ω = ω − ξ ω − ξ −

( ) ( ) ( ) ( )

3
2

3 (3 ) ( ) ( )
2

( , ) ( ) ,
( , ) ( ) ,

( , ) ( )( ) ,

( , ) ( )( ) .

x y x y y x k x y

L k x y k

x y L x y x y k

xy x y k

Q k J t J

Q k t J J K

Q k J K

Q k t

= ζ = ζ
= ζ = ζ γ

= ζ ψ = ζ ψ
= ζ = ζ

(5) (5)
11 12

(5) (5)
13 14 2

(2) (3)
15 16

(1) (4)
17 18

( ) , ( ) cos ,

( ) cos , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

k k x

k y k k

k k k k

k k

w k w k k

w k k w k

w k w k

w k w k

= ζ = ζ
= ζ = ζ γ

= ζ ψ = ζ ψ
= ζ = ζ

(5) (5)
21 , 22 ,

(5) (5)
23 , 24 , 2

(2) (3)
25 , 26 ,

(1) (4)
27 , 28 ,

( ) , ( ) cos ,

( ) cos , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

x k x k x

x k y x k k

x k k x k k

x k x k

w k w k k

w k k w k

w k w k

w k w k

= ζ = ζ
= ζ = ζ γ

= ζ ψ = ζ ψ
= ζ = ζ

(5) (5)
31 , 32 ,

(5) (5)
33 , 34 , 2

(2) (3)
35 , 36 ,

(1) (4)
37 , 38 ,

( ) , ( ) cos ,

( ) cos , ( ) ,

( ) , ( ) ,

( ) , ( ) ,

y k y k x

y k y y k k

y k k y k k

y k y k

w k w k k

w k k w k

w k w k

w k w k

= − ψ =
= = γ

= − ψ = − ψ
= − ψ = − ψ

(5)
41 1 2 42 41

43 41 44 41 2
(2) 2 (3) 2

45 1 2 46 1 2
(1) (4)

47 1 2 48 1 2

( ) ( ), ( ) ( )cos ,
( ) ( )cos , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

k ab x

y k

ab k ab k

ab k ab k

w k V C M k w k w k k

w k w k k w k w k

w k V C M k w k V C M k

w k V C M k w k V C M k

where (l = 1, …, 5)
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