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Abstract—A brief overview of the basic concepts and problems of the physics of quasi-one-dimensional
(q1D) compounds is given. A consistent theoretical description of the nature of the so-called pseudogap state
still remains the main problem. A simplified model of the pseudogap state based on the formation of small-
radius polarons is considered within the cluster perturbation theory.
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1. INTRODUCTION
The scattering of free electrons and holes by optical

and acoustic phonons is a first-order effect of pertur-
bation theory with respect to electron–phonon inter-
action (EPI). At the same time, there is a second-
order effect, which is associated with the fact that, in a
number of cases, phonons may change the energy
spectrum of free charge carriers. This phenomenon is
called the polaron effect, and a charge carrier interact-
ing with phonons is called a polaron. Polaron theory is
a large field of solid state physics. Today, there is a new
surge of activity in this field. First of all, this is associ-
ated with the study of high-temperature superconduc-
tors, various multiferroics, manganites with colossal
magnetoresistance, and quasi-one-dimensional (q1D)
systems. Moreover, the recently arisen possibility of
modeling and simulation of many polaron phenomena
in systems of ultracold atoms in 1D and 2D optical lat-
tices has strongly attracted the attention of researchers,
because it allows one to appropriately change the
parameters of a physical system [1–3]. To this end,
one immerses an optical lattice with carriers (Bose or
Fermi atoms) in a Bose–Einstein condensate; as a
result of interaction with this condensate, a polaron
state is formed in the form of a carrier dressed in a
coherent phonon cloud—Bogolyubov excitations [4, 5].
In the present study, we deal only with q1D systems.
Below we give basic information and recent results on
the study of the electronic structure of q1D systems
and outline the main challenges that require solution.

Theoretical investigations of 1D electronic sys-
tems, which started long before q1D-type crystals
were obtained experimentally, have shown that the
properties of electronic 1D systems significantly differ

from the properties of crystals with 2D or 3D motion of
electrons. The following three statements adequately
characterize the whole specifics of 1D systems [6].

(a) A metallic 1D system without Coulomb inter-
action of electrons is unstable with respect to a peri-
odic potential with wave vector 2kF. This instability
leads to a self-consistent periodic variation in the elec-
tron density and the displacement of lattice atoms and
opens a gap in the energy spectrum at the Fermi level.
In other words, a decrease in the temperature of a 1D
metal should give rise to lattice distortions with wave
number equal to twice the Fermi momentum, and the
ground state of a 1D chain of atoms at zero tempera-
ture is the dielectric state [7]. Such a self-consistent
variation in the electron density and the position of
lattice atoms is called a charge density wave (CDW).

(b) In a 1D electronic system with a half-filled
band, single-electron excitations are separated from
the ground state by a gap for an arbitrarily weak repul-
sion of electrons [8]. This assertion is proved in the
case when the electron interaction is described within
the framework of the Hubbard Hamiltonian. How-
ever, there is no reason to believe that this statement is
not correct for the real Coulomb interaction of elec-
trons. Thus, the Coulomb interaction between elec-
trons leads to a dielectric (Mott) transition as tem-
perature decreases.

(c) Single-electron states in a 1D system are local-
ized in an arbitrarily weak random potential. There-
fore, at low temperatures, the conductivity of a 1D
electronic system in a lattice with defects cannot be
metallic [9]. In his now classical work [10], Berezinskii
was the first to give a consistent solution to the prob-
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lem of localization of electronic states in a one-dimen-
sional system with arbitrarily weak disorder.

All these statements show that a 1D electronic sys-
tem can be nonmetallic at low temperatures for at least
three reasons.

In spite of the fact that q1D conductors with CDWs
have not yet found practical application, the diversity
and uniqueness of their properties still attract the atten-
tion of researchers from different countries [11, 12].

In recent years, great interest has been shown in the
study of a pseudogap in the spectrum of elementary
excitations in various q1D systems. Pseudogap anom-
alies were observed in a number of experiments, such
as the measurements of optical conductivity, inelastic
neutron scattering, and angle-resolved photoemission
spectroscopy (ARPES) [13].

Characteristic features of the intensity spectra of an
ARPES signal in q1D compounds with CDWs are the
shift of the maximum intensity of the spectrum in depth
from the Fermi level and its broadening with stronger
energy smearing compared with that of conventional
3D quasiparticles in metals at the Fermi level, for which
the maximum is described by a Lorentzian. Among
inorganic materials, ARPES was applied to blue bronze
K0.3MoO3 [14], as well as to (TaSe4)2I [15].

According to mean field theory, the density of
states for single-particle excitations within the Fröh-
lich model is described by the inverse square root
dependence dN/dE = D(E) ~ 1/ ; however,
the spectra of real q1D compounds with density waves
hardly ever exhibit inverse square root behavior [16].
Experimental spectra of the density of states are
almost always smeared near the energy E = 2Δ by a
value much greater than kBT [17, 18]. One of the rea-
sons is the strong f luctuations of the order parameter
and EPI, which lead to the interaction of free carriers
with these f luctuations and give rise to self-localized
states. According to modern concepts, f luctuations
also lead to a difference between the temperature of
the Peierls transition and the value predicted by mean
field theory.

The order parameter describing the modulation of
CDWs is given by

where the brackets 〈…〉 denote thermodynamic aver-
aging. A gap of 2Δ opens in the electronic spectrum at
the Fermi level, and the dispersion of a single-particle
excitation becomes

In this case, just as for superconductivity, the pre-
dicted ratio of the Peierls gap to the critical tempera-
ture is

− Δ2E

+
−Δ = 〈 + 〉 = ΔF F

F F

2 2
F 2 2(2 ) | | ,i k x i k x

k kg k b b e e
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However, according to numerous experimental data
[16, 19, 20], in inorganic q1D conductors, the value of
2Δ/kBTC ranges from 8 to 14, depending on the com-
pound; therefore, one distinguishes between the tran-
sition temperature in the mean field theory, TMF, and
the experimentally determined transition temperature
TP. According to modern concepts, TP corresponds to
the temperature of 3D ordering, T3D, where the inter-
action between fluctuations of the order parameter of
CDWs on neighboring 1D chains (i.e., in a direction
perpendicular to the direction of maximum conduc-
tivity) gives rise to the correlation of the order param-
eter in all three directions and a 3D CDW. A theoreti-
cal justification is given in [21] by Lee, Rice, and
Anderson, who showed that, strictly speaking, the sys-
tem has no long-range order at any finite temperature,
because the correlation function decays exponentially
with the distance:

However, below T3D ~ TMF/4, the correlation length
ξ(T) diverges exponentially; therefore, one can assume
that, at temperatures below TMF/4, a Peierls superlattice
is formed in the system. Strong f luctuations of the
order parameter Δ also exist above T3D and are cor-
related up to T* > T3D; for T > T*, the correlation
length ξ⊥ becomes less than the distance between the
chains. The results of calculations show that the sys-
tem exhibits a dip in the density of states, rather than a
gap. Only at temperatures T < TMF/4 the density of
states approaches the value obtained in the molecular
field approximation. A decrease in the transition tem-
perature, obtained in [21], is a result of a compromise
between two opposite tendencies: on the one hand,
the state with CDWs has the lowest energy for T < TMF,
while, on the other hand, in a strictly 1D system, long-
range order is impossible at finite temperature.

Direct experimental manifestations of f luctuations
in q1D conductors are the smearing of X-ray reflec-
tions corresponding to the superstructure and the
observation of a pseudogap in the optical spectra at
temperatures T > T3D [16, 20], as well as the CDW
fluctuations, which are directly observed in femtosec-
ond spectroscopy experiments [22].

There are quite a large number of theoretical stud-
ies in which the authors try to explain the observed
anomalies. We can distinguish two main areas of these
investigations. One of them is based on the formation
of polarons in which the shift and smearing of the
maximum of the density of states are explained in the
framework of the polaron theory; i.e., mobile polarons
with small coherence length are considered as quasi-
particles. The interaction with phonons increases the
effective mass of a carrier and gives rise to harmonics
near the quasiparticle peak at EF, instead of a typical
Lorentzian, as well as leads to the smearing and shift of
the quasiparticle peak by 〈nph〉 , where 〈nph〉 is the

〈Δ Δ 〉 ∝ − ξ( ) (0) exp( / ( )).x x T

ω�
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average number of phonons interacting with electrons
and  is the characteristic phonon energy. However,
the recent studies of K0.3MoO3 [23], where a quasipar-
ticle peak with fine structure was obtained at 80 K with
a resolution of about 1 meV, have shown that these fea-
tures, as well as the small coherence length of quasi-
particles recovered from the k dispersion, are better
described by the so-called theoretical “ladder” model,
in which electron–electron interactions are essential
and in the framework of which the bound states due to
the presence of spin and holon excitations are respon-
sible for the peak. Features inherent in these exci-
tations in the ARPES spectra are smeared due to
Gaussian fluctuations and the fluctuations of the CDW
wave vector on the crystal surface. At the same time, in
(TaSe4)2I, EPI remains essential, and the CDW gap is
likely to open against the background of the polaron
gap, which exists at temperatures above TP [24].

Another direction suggests that the pseudogap
phenomena are mainly attributed to CDW-type short-
range-order f luctuations. Quite a long time ago,
Sadovskii proposed an exactly solvable model for the
formation of a pseudogap in a 1D system due to devel-
oped short-range-order f luctuations of the CDW or
the spin density wave (SDW) type [25–27]. This
model stems directly from [21] and is of interest in con-
nection with attempts to explain the pseudogap state of
HTSC cuprates [28–30]. In particular, in [28–30], a
significant generalization of this model was made to
the case of a 2D electronic system in a random field of
developed spin f luctuations (of antiferromagnetic
short-range order).

As a rule, following Brazovskii [31, 32], one con-
siders the effect of thermodynamic f luctuations of the
order parameter on the Peierls gap in q1D systems
similar to the effect of static disorder—by introducing
a random potential with a Gaussian white noise type
distribution. Brazovskii was the first who obtained the
smearing of optical spectra, bound soliton states, and
some other features.

2. P-GTB METHOD

In the cases of weak and strong electron–phonon
coupling, one can apply perturbation theory with
respect to EPI and electron hopping, respectively.
In the first case, a large-radius polaron is formed, and
the most accurate approach is that consisting in using
a self-consistent Born approximation to calculate the
self-energy part of the electron Green’s function.
In the second case, one applies the strong-coupling
polaron theory or the theory of small-radius polarons
and the Lang–Firsov canonical transformation [33].
These methods are well studied and provide controlled
approximations. In the case of an intermediate EPI,
analytical calculations based on perturbation theory
become impossible. Therefore, increasing interest has
recently been shown in nonperturbative methods such

ω�
as the diagrammatic Monte Carlo method [34–36],
the method of exact diagonalization of small clusters
[37], variational methods [38], and the density matrix
renormgroup method [39].

In the present study, we are not going to use pertur-
bation theory with respect to EPI; instead, we con-
sider the cases of strong and weak EPI within the gen-
eralized tight binding (GTB) method [40]. The advan-
tage of this method is that it allows one to consider the
cases of weak, strong, and intermediate EPI within the
same approach. Moreover, the method allows one to
calculate the electronic structure at various tempera-
tures. Originally, the GTB method and its first-princi-
ples version LDA + GTB were proposed to describe
the electronic structure of cuprates—high-tempera-
ture superconductors and various Mott–Hubbard sys-
tems—and are, in fact, an implementation of the clus-
ter perturbation theory in terms of Hubbard’s X opera-
tors. The results of calculations by the GTB method
quantitatively depend on the set of microscopic param-
eters used, such as hopping integrals t. Using LDA wave
functions for calculating Wannier functions by the
projection technique [41], one can calculate the
parameters of an appropriate model based on the real
crystalline structure of the systems under test and thus
relate the model approach to the characteristic fea-
tures of real chemical compounds. In [42], the authors
proposed a polaron version of the GTB (P-GTB) to
calculate the electronic structure of strongly cor-
related systems with strong EPI. In this approach, one
can distinguish three main stages.

(1) Decomposition of an infinite crystal lattice into
a set of unit cells (clusters); in our case of the one-
dimensional chain, these are clusters with two atoms.
Exact diagonalization of the intracell Hamiltonian with
regard to EPI and determination of the energy Ep and
the multiparticle wave functions |p〉 of local polarons.

(2) Construction of polaron Hubbard’s X operators
 = |p〉〈q| on the basis of local multielectron and

multiphonon eigenstates from Section 1. The indices p
and q include a set of quantum numbers that charac-
terize the state of the system. The calculation of the
matrix elements of the creation and annihilation oper-
ators of electrons and phonons in this basis allows one
to express single-electron and phonon operators at a
site as a liner combination of Hubbard’s operators,
which are quasi-Fermi for electrons and quasi-Bose
for phonons.

(3) In the general case, a multiband model with
electron–electron and electron–phonon interactions
is expressed as a generalized Hubbard model in the
representation of X operators with a set of local
polaron states and the intercell hopping and interac-
tion between them. The X operator representation
allows one to take into account strong correlations and
EPI in the first approximation of the theory. The band
structure of quasiparticle excitations is formed due to
intercell hopping, the conduction band (valence band)

pq
fX
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being attributed to the dispersion of Fermi excitations
between multiparticle states with Ne and Ne + 1 (Ne – 1)
electrons (Fig. 1).

An important new aspect of the theory developed is
the dependence of the dispersion laws of quasiparticles
on the occupation numbers of local states. In our case,
temperature changes the occupation numbers of dif-
ferent multielectron terms and the occupation num-
bers of multiphonon levels, which may lead to a strong
dependence of the dispersion laws of polarons on tem-
perature.

3. MINIMAL MODEL

In the Peierls transition due to EPI, not only the
electronic, but also the phonon system is rearranged
(Kohn anomaly); therefore, a consistent analysis of
the Peierls transition requires the introduction of a
Hamiltonian describing electrons, phonons, and their
interaction.

In the strong-coupling model, one can assume that
the displacement of ions from equilibrium position
changes only resonance integrals t (hopping integrals).
Therefore, the electron Hamiltonian with regard to
the motion of ions is given by

(1)

where pi and ui are the momentum and displacement
operators of an atom at site i, t' is the derivative of the
resonance integral with respect to the interatomic dis-
tance, and M is the ion mass. Further, one usually
passes to the phonon representation and obtains a
Fröhlich Hamiltonian; however, it is more convenient
to deal with the representation of bare Einstein pho-
nons. Let us introduce the creation and annihilation

+
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operators of an excitation quantum of the ith oscilla-
tor, i.e.,  and bi:

As a result, we obtain

(2)

where λ0 is the EPI parameter. Below, we will use, as cus-

tomary, a dimensionless EPI parameter λ = /ztω0,
where z is the number of nearest neighbors, and distin-
guish the cases of weak (λ = 0.02) and strong (λ = 0.4)
EPI.

Let us decompose the one-dimensional chain into
a set of elementary cells (clusters) with two neighbor-
ing atoms in a cell. Then expression (2) is rewritten as

(3)
where HC and HCC are the intracell and intercell parts
of the Hamiltonian (2), respectively:

(4)

(5)
Here

is the energy of local oscillations in a cluster;

contains electron hopping in a cell;

and

are intracell parts of the electron–phonon and pho-
non–phonon interactions, respectively;
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Fig. 1. Schematic view of multielectron vibronic energy
levels of the eigenstates of a cluster with Ne = 1, 2, 3 elec-
trons and Fermi excitations between these levels (arrows).
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describes intercluster electron hopping; and 
and  are the intercell parts of the electron–pho-
non and phonon–phonon interactions, respectively.
The index f numbers the position of a cell in the new
superlattice, and l = 1, 2 is the position of an atom in a
cell.

Single-electron and phonon annihilation and cre-
ation operators in a cell  f with spin projection σ can be
expressed as a linear combination of X operators,
which are quasi-Fermi for electrons:

and quasi-Bose for phonons:

where |p〉 and |q〉 are multielectron and multiphonon
eigenstates of the intracell part of Hamiltonian (4)
HC|p〉 = Ep|p〉 with different numbers of electrons Ne =
1, 2, or 3. In other words, since the number of different
root vectors (pq) is finite, the vectors can be num-
bered, and each vector can be assigned a number m;
then

For Ne = 1, the set of eigen-wave functions |p〉i,
doubly degenerate with respect to the spin σ, can be
represented as

where
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from which, for nph >  and a given value of EPI,
the energy of the ground state |p0〉,

and the weight coefficients

(when considering various temperature phenomena,
one should track the invariance of the energy  of the
nearest excited states |p〉i and the weight coefficients

(  + 1) ≈ ( )) cease to change. In other

words,  determines the number of phonons that
should be taken into consideration for a given value of
EPI in order that a “phonon dressing” of an electron
be formed and a polaron be created. For Ne = 2, eigen-
states can be represented, with regard to the Pauli
principle, as a linear combination
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Fig. 2. Set of energy levels of eigenstates of a cluster with
Ne = 1 electron for (a) nph = 0, (b) nph = 7, (c) for weak
EPI with nph = 7 and λ = 0.04, and (d) for strong EPI with
nph = 30 and λ = 0.2. Calculations are made for t = 1 eV
and ω0 = 0.05 eV.
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the hole representation has a form analogous to that
for Ne = 1.

Figure 2 demonstrates, as an example, a set of
energy levels of eigenstates of a cluster with Ne = 1 for
three possible cases:

(1) nph = 0. In the absence of local oscillations,
there are only two electron states that are doubly
degenerate with respect to the spin projection σ: the
ground state

and the excited state

(Fig. 2a);
(2) nph = 7 and λ = 0. In the presence of local oscil-

lations but in the absence of EPI, there is an equidis-
tant spectrum for the ground |p〉0 and excited |p〉1 elec-
tronic states (Fig. 2b);

(3) the case of a weak, nph = 7 and λ = 0.02 (Fig. 2c),
and strong, nph = 30 and λ = 0.4 (Fig. 2d), EPI.

Figure 3 demonstrates the histogram of the distri-
bution of the weight contribution

of the basis states |al, σ〉|nph〉 with different numbers of
phonons to the ground state |p〉0 in cases (1) and (2) of
(a, b) weak and (c) strong EPI. One can see that, as the
value of EPI increases, the contribution of basis states
with a greater number of phonons increases, while the
fraction of pure electronic states, conversely, decreases.
Such a redistribution of weight leads to the situation
that Fermi excitations between multiparticle states with
Ne and Ne + 1 (Ne – 1) electrons (Fig. 1) acquire a sat-
ellite structure, so that the specific weight Z of the
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quasiparticle peak decreases, while the specific contri-
bution of a noncoherent phonon to the total spectral
weight, conversely, increases. Band broadening takes
place with stronger energy smearing of quasiparticle
peaks in the ARPES spectra.

Without taking into account the intercell electron–
phonon  and phonon–phonon  interac-
tions, Hamiltonian (3) in the representation of X oper-
ators takes the form

(6)

where

contains intercluster hopping integrals tfg.
To obtain the dispersion relations for quasiparticle

excitations, we apply the method of equations of
motion for the matrix Green’s function of polarons:
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Fig. 3. (Color online) Histograms of the weight contribution of basis states with various numbers of phonons to the ground state
of a cluster with Ne = 1 electron in the cases of (a) nph = 0 and nph = 7, λ = 0, (b) weak nph = 7 and λ = 0.02, and (c) strong nph = 30
and λ = 0.4 EPI. Calculations are made for t = 1 eV and ω0 = 0.05 eV.
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Fig. 4. Electronic structure (band structure, density of states, and the spectral density at the point with the wave vector k = π/2
at the chemical potential level) in the absence of EPI. All calculations are performed for the following values of the parameters:
λ = 0, t = 1 eV, and δ = 0.03 eV.
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Fig. 5. Electronic structure (band structure, density of states, and the spectral density at the point with the wave vector k = π/2 at
the chemical potential level) in the case of a weak EPI calculated for three values of temperature: (a) T = 0, (b) T = T ′, and (c) T >
T ′. All calculations are performed for the following values of parameters: ω0 = 0.05 eV, λ = 0.02, t = 1 eV, and δ = 0.02−0.05 eV.
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and the density of single-particle states for a given spin
projection (Nk is the normalization factor)

are expressed in terms of the Fermi single-particle
Green’s function.

For the Green’s function , we can write a gener-
alized Dyson equation [42, 43]

(7)

Here, (ω) and (ω) are the mass and strength
operators, respectively, (ω) is a local intracell prop-
agator, and

σ σω = ω∑
1( ) ( , )

kk

N A k
N

D̂

−ω = ω − ω + Λ + Σ ω ω1
0

ˆ ˆˆ ˆ ˆ ˆˆ( ) [ ( ) ( )( ) ( )] ( ).k k k k k kD G P t P

Σ̂k k̂P

0Ĝ

where tk is the Fourier transform of intercluster hop-
ping.

The similarity between (6) and the Hamiltonian of
the Hubbard model in the X operator representation
allows one to apply many perturbation theory methods
known for the Hubbard model. In the Hubbard-I
approximation, the structure of exact Green’s func-
tion (7) is preserved, the mass operator is set equal to
zero, and the strength operator is

where

σ σ
σ

= γ γ∑ˆ *( ) ( ) ,mn
k kt m n t

ω = δˆ ( ) ,mn
k mn mP F

≡ = 〈 〉 + 〈 〉( ) pp qq
mF F pq X X

Fig. 6. Electronic structure (band structure, density of states, and the spectral density at the point with the wave vector k = π/2
at the chemical potential level) in the case of a strong EPI calculated for three values of temperature: (a) T = 0, (b) T = T ′', and
(c) T @ T '′. All calculations are performed for the following values of parameters: ω0 = 0.05 eV, λ = 0.4, t = 1 eV, and δ = 0.02–
0.05 eV.
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is a filling factor, called the end factor in the diagram
technique for X operators [44]. From Eq. (7) we obtain

Here

where

The dispersion relation of Fermi quasiparticles is
determined by the equation for the poles of the matrix
Green’s function :

(8)

This equation has a form similar to the dispersion
equation of the strong-coupling method in single-
electron bandgap theory but differs from the latter in
two respects: first, the indices m and n number single-
particle excitations in the multielectron and multipho-
non systems, respectively, rather than single-electron
orbitals, and, second, the effective hopping integral is
determined by the product of tmn(k) and the filling fac-
tor Fm, which depends on the occupation numbers of
the initial and finals states (Fig. 1). As a result, the
band structure of quasiparticles depends on tempera-
ture, in contrast to the single-electron band structure.

4. BAND STRUCTURE OF POLARONS WITHIN 
CLUSTER PERTURBATION THEORY P-GTB

The cluster perturbation theory has been successfully
applied to the analysis of the Hubbard model [45, 46]

− −= +1 1
0

ˆ ˆ ˆ .k kD D t

= δ ω − Ω0
ˆ /( ),mn

mn m mD F

Ω ≡ Ω = −( ) .m p qpq E E

ˆ
kD

δ ω − Ω − =det || ( )/ ( )|| 0.mn
mn m mF t k

and is exact in the limit of electron–electron interac-
tion U = 0 and U → ∞. In our case, we do not consider
electron correlations, and precisely the first variant is
implemented; therefore, we do not face the problems
associated with the artificial period-doubling of the
crystalline lattice. This is clearly seen in Fig. 4, which
demonstrates the results of our cluster calculation in
the absence if EPI. For λ = 0, Hamiltonian (2) is
exactly diagonalized by passing to the k-space. The
electronic band structure exhibits typical metallic
behavior, and, as is obvious, no dips associated with
the artificial period-doubling of the one-dimensional
chain of atoms arise in the density of states (Fig. 4b);
the spectral density A(k, ω) at the point with wave vec-
tor k = π/2 at the chemical potential level manifests
itself by a Lorentzian peak (Fig. 4c). The band struc-
ture is independent of temperature.

If a long-range order arises in the system (for exam-
ple, of SDW or CDW type), a (dielectric) gap opens in
the spectrum of elementary excitations. For instance, in
our example, at T = 0 and λ ≠ 0, a gap Eg = 2Δ opens in
the energy spectrum at the Fermi level (Figs. 5a and 6a).
The system becomes dielectric. The width of the gap is
determined by the value of EPI. In the cases of weak
and strong EPI, two peaks arise in the spectral density,
which correspond to “Bogolyubov” quasiparticles
(Figs. 5a''' and 6a'''). Thus, the ground state of the sys-
tem has qualitatively the same form irrespective of the
value of EPI—the dielectric gap is attributed to the
CDW-type long-range order.

However, as temperature increases, these two cases
exhibit essentially different behavior. In the case of
weak EPI, the spectral weights of the two peak overlap
at T = T ' (Fig. 5b''') and, for T > T ', they merge

Fig. 7. Schematic illustration of the formation of a
pseudogap state as a result of a strong EPI. The dashed line
shows the location of a coherent quasiparticle peak. The
solid line shows the position of the intensity maximum of
the APRES spectrum.

E
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k

Fig. 8. (Color online) Specific weigh Z of a quasiparticle
peak as a function of a wave vector k in the case of a strong
EPI. Calculations are performed for the following values of
parameters: ω0 = 0.05 eV, λ = 0.4, and t = 1 eV.
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together into a single Lorentzian peak (Fig. 5c'''),
which is characteristic of a normal metal (a Fermi liq-
uid), and the dielectric gap in the density of states
slowly disappears (Figs. 5b'' and 5c'').

A qualitatively different variation in the band struc-
ture with increasing temperature can be observed in
the case of strong EPI. Figures 6b and 6c demonstrate
the main polaron effect—the splitting of bands into
polaron subbands and the formation of polarons
themselves—Fermi-type excitations in the system that
are a manifestation of a hybridized state of Fermi-type
quasiparticles and local multiphonon Frank–Condon
resonances [47, 48]. A significant renormalization of
single-particle excitations occurs due to the strong
EPI. Considerable part of spectral weight is redistrib-
uted between a coherent peak of quasiparticle exci-
tations and the noncoherent part of the spectrum that is
located at lower energy and is attributed to the emer-
gence of vibronic satellites. At some temperature T =
T '', the spectral weights of two peaks overlap (Fig. 6b''');
however, due to the strong decrease in the spectral
weight of the coherent quasiparticle peak, a so-called
hidden Fermi surface opens. Since in ARPES experi-
ments one directly measures the product f(ω)A(k,ω),
where f(ω) = [exp(ω/T) + 1]–1 is the Fermi distribu-
tion function, characteristic features of the intensity
spectra of an ARPES signal for q1D compounds with
CDWs are the shift of the maximum intensity into the
band gap away from the Fermi level and its broadening
with stronger (Gaussian) energy smearing compared
with that for ordinary quasiparticles in three-dimen-
sional metals at the Fermi level, for which the maxi-
mum is described by a Lorentzian. Schematically, this
situation is illustrated in Fig. 7; Fig. 8 demonstrates
the calculated specific weight Z of the quasiparticle

peak as a function of the wave vector k in the case of a
strong EPI for T = T ''. In spite of the fact that the sys-
tem passes to the metallic state for T > T '', a dip in the
density of states remains even at high temperatures
T ≫ T '' (Fig. 6c''). All the calculations have been
made in the Hubbard-I approximation to exclude the
damping of quasiparticle excitations and smearing of
the gap with increasing temperature.

The solid line in Fig. 9 shows the temperature
dependence of Eg/2ΔMF, where 2ΔMF is the gap width
in the mean field theory as a function of normalized
temperature T/TMF in the cases of weak (a) and strong
(b) EPI. One can see that T ' an T '' are less than TMF.
The dashed curve in Fig. 9b demonstrates the behavior
of the effective gap /2ΔMF, which is determined at
a level where the density of states is e times greater than
the density of states at the Fermi level: DOS( /2) =

eDOS(0). It is clear that the gap  exists in the spec-
trum for arbitrarily high temperatures and, as tem-
perature increases, reaches a constant value approxi-
mately equal to Eg(0)/2. Such behavior well agrees
with the results of [49], where the authors experimen-
tally determined a certain effective gap Δeff in the spec-
trum of K0.3MoO3, which exists for T > TP.

5. CONCLUSIONS
On the basis of the calculations and the compari-

son of two limit cases of EPI, we can conclude that the
ground state of quasi-one-dimensional systems has
qualitatively the same form irrespective of the elec-
tron–phonon interaction—the dielectric gap is
attributed to CDW-type long-range order. In q1D sys-
tems with strong EPI, along with a CDW gap, which is
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Fig. 9. Temperature dependence of the dielectric gap Eg (solid line) and the effective gap  (dashed line) in the cases of (a)
weak and (b) strong EPI; 2ΔMF and TMF are the gap and the transition temperature in the mean field theory.
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responsible for the dielectric ground state, there exists
a polaron gap, or a gap of polaron origin, which is
responsible for the pseudogap behavior of these gaps
with increasing temperature.

In addition to q1D compounds, pseudogap phe-
nomena are observed in manganites with colossal
magnetoresistance and in HTSC cuprates. The nature
of this phenomenon within the polaron approach has
remained the subject of constant discussions [50–57].
In the present study, we have presented a theoretical
calculation that confirms the statements made above.
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