
2120

ISSN 1063-7834, Physics of the Solid State, 2017, Vol. 59, No. 11, pp. 2120–2126. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © V.V. Val’kov, A.O. Zlotnikov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 11, pp. 2100–2106.

Effect of the Intersite Coulomb Interaction
on Chiral Superconductivity at the Noncollinear Spin Ordering

V. V. Val’kov* and A. O. Zlotnikov
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036 Russia

*e-mail: vvv@iph.krasn.ru
Received April 26, 2017

Abstract—We investigate the effect of the intersite Coulomb interaction in a planar system with the triangular
lattice on the structure of chiral order parameter Δ(p) in the phase of coexisting superconductivity and non-
collinear 120° magnetic ordering. It has been established that the Coulomb correlations in this phase initiate
the state where the quasi-momentum dependence Δ(p) can be presented as a superposition of the chiral
invariants corresponding to the  + idxy and px + ipy symmetry types. It is demonstrated that the inclusion
of the Coulomb interaction shifts the Δ(p) nodal point positions and, thereby, changes the conditions for a
quantum topological transition.

DOI: 10.1134/S1063783417110300

1. INTRODUCTION
The interest in superconductivity with the chiral

symmetry type of the order parameter is due to the for-
mation of a topologically nontrivial phase and, conse-
quently, edge states [1]. After the discovery of super-
conductivity in the NaxCoO2 compound, it was sug-
gested that the chiral  + idxy superconducting
phase is implemented in quasi-two-dimensional sys-
tems with the triangular lattice [2]. In such a supercon-
ducting phase, a quantum topological concentration
transition can occur [3, 4]. At the point of this transi-
tion, the elementary excitation spectrum becomes
gapless. These circumstances explain close attention
to the systems with the chiral symmetry of the super-
conducting order parameter.

Recently, it has been established that the long-
range magnetic order, along with the spin-orbit inter-
action, can lead to implementation of the Majorana
edge states in a topological superconductor with sin-
glet pairing [5, 6]. This effect was demonstrated on the
triangular lattice for the noncollinear magnetic order
with the stripe structure in the chiral  + idxy

superconducting phase [5]. Further investigations
showed [7] that within the t – J model, the chiral sym-
metry of the superconducting order parameter is
impossible at the stripe magnetic structure. At the
same time, the chiral superconductivity still can be
implemented for the magnetic structure correspond-
ing to the noncollinear 120° magnetic ordering. This
result indicates that the Majorana edge states should
be sought in a homogeneous phase of the coexisting
chiral superconductivity and 120° spin ordering. Later

on, the conditions for implementation of the Majo-
rana modes were established for such a phase using the
quadratic Hamiltonian [8].

The absence of exact solutions for the Heisenberg
model on the triangular lattice caused the uncertainty
in the problem on implementation of a certain mag-
netic structure. It has been considered for a long time
that in the aforementioned model the spin liquid state
is implemented [9]. At present, however, most
researchers prefer the scenario of implementing the
120° long-range magnetic ordering with three sublat-
tices. This state is the most favorable from the classical
point of view at J2 < J1/8, where J1 and J2 are the
parameters of exchange between the nearest and next-
to-nearest neighbors. In the Hubbard model on the
triangular lattice, using the mean field approximation
[10] and slave boson representation [11], the phase
diagrams were built, which demonstrate the existence
of different states, including noncollinear and nonco-
planar, with the spin and charge ordering. In these
approaches, the ground state with the 120° spin order-
ing is retained upon near-half-filling doping. The
most interesting regime of electron doping at the pos-
itive integral of hoppings between the nearest neigh-
bors is considered to qualitatively describe the
NaxCoO2 electronic structure. Weber et al. [12]
showed the implementation of the phase of coexisting
chiral superconductivity and 120° magnetic ordering
near n = 1.1 using the variational Monte Carlo
method. In this case, the magnetic phase remained
stable up to a concentration of n = 1.4. In the frame-
work of this approach, the magnetization at half-fill-
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ing was slightly decreased (to M ≈ 0.4). The result from
the spin wave theory is M ≈ 0.25 [13].

As is known, the intersite Coulomb interaction in
the t–J model suppresses the d-type superconductiv-
ity. Therefore, the superconducting phase is frequently
described taking into account additional contributions
to the Cooper instability mechanism [14]. In systems
with strong intersite repulsion for the first coordina-
tion sphere, the superconducting phase can be imple-
mented if there is the pairing interaction in the second
coordination sphere. In addition, the superconducting
state can be retained at the strong Coulomb repulsion
when the pairing and Coulomb interactions have dif-
ferent symmetrical properties because of complexity
of a unit cell [15]. This situation is observed, e.g., in
cuprate superconductors, and manifests itself in the
theoretical description with the use of the spin-fer-
mion model [15] obtained from the Emery model in
the strong correlation regime.

In this work, we investigate the effect of the inter-
site Coulomb correlations on the formation of the
phase of coexisting chiral superconductivity and 120°
magnetic order with regard to the exchange interaction
within two coordination spheres. Along with the ordi-
nary suppression of the superconducting state, the
intersite repulsion at the noncollinear magnetic order-
ing leads to the nontrivial effect of modifying the
quasi-momentum dependence of the superconduct-
ing order parameter. As a result, the solution for the
order parameter Δ(p) is determined not only by the
chiral  + idxy invariants, as in the case of the
phase without magnetic ordering, but also by the
occurring invariants with the px + ipy symmetry type.
Admixing of the additional invariants is caused by the
induced spin-triplet pairings in the magnetically
ordered state [16, 17]. These pairings are characterized
by the odd p-type classification with respect to the
number of irreducible representation (orbital moment
value) if the wave function is even by frequency. In this
case, new components have the chiral px + ipy sym-
metry type due to the triangular lattice symmetry.
It should be noted that the triplet pairings are caused
by the intersite Coulomb interaction in the magneti-
cally ordered state, since the exchange interaction in
the t–J model does not have a triplet superconductiv-
ity channel.

The induced contributions of the triplet pairings
change the positions of nodal points of the supercon-
ducting parameter inside the Brillouin zone. This
changes the conditions for forming the gapless exci-
tations in the coexistence phase. As a result, the afore-
mentioned effects will be reflected in the description
of topological transitions in the phase of coexisting
chiral superconductivity and noncollinear magnetism.
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2. HAMILTONIAN OF THE STRONGLY 
CORRELATED FERMIONS

ON THE TRIANGULAR LATTICE
We study the effect of the intersite Coulomb repul-

sion on the phase of coexisting chiral superconductiv-
ity and 120° spin ordering in the framework of the
t‒J1–J2–V model on the triangular lattice from [3, 4]
with the description of the Cooper instability with the

 + idxy symmetry type of the order parameter in
the intercalated sodium cobaltates. As was shown in
[3], there are several factors that require the pairing
exchange interaction in the second coordination
sphere to be necessarily taken into account. First, the
inclusion of such pairings in the consideration of the
superconductivity with the  + idxy symmetry type
leads to the occurrence of nodal points in the Brillouin
zone, for which the superconducting order parameter
turns to zero. This circumstance made it possible to
dissolve the contradiction related to the fact that the
theoretical calculations for the triangular lattice pre-
dicted the  + idxy Cooper instability channel to
be the most favorable, while most experiments
pointed out the gapless superconductivity implemen-
tation in sodium cobaltates. Second, it is well known
that the intersite Coulomb interaction in systems with
the strong correlations prevents, to a great extent, the
d-type superconductivity. However, the largest contri-
bution is made by the Coulomb interaction between
the nearest neighbors, since the correlations between
the next-to-nearest neighbors are often suppressed by
screening effects. In view of this, it is assumed that
when the intersite Coulomb correlations are taken into
account, the dominant contribution to the Cooper
instability can be made by the pairing interaction
between the next-to-nearest neighbors.

We limit the consideration to the upper Hubbard
subband with the subspace consisting of the singly |σ〉
and doubly |2〉 occupied electronic states, as was pro-
posed to qualitatively describe sodium cobaltates. The
Hamiltonian of the t–J1–J2–V model in the atomic
representation is

(1)

where ε is the seed electron energy, μ is the chemical
potential, U is the intra-atomic Coulomb repulsion, tfm
is the intensity of electron hoppings, and Jfm is the
exchange interaction parameter. The Hubbard opera-
tors are expressed via one-site electronic states as
Xnm = |n〉〈m|, where n, m = ↑, ↓, 2. The operation of the
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Hubbard operators on the basis of states is determined
by the formula Xnm|p〉 = δmp|n〉. The last term of the
Hamiltonian describes the Coulomb interaction
between electrons on the nearest sites with the param-
eter V and  =  +  + 2  is the operator of
the number of electrons on the site.

3. GREEN’S FUNCTIONS FOR THE PHASE
OF COEXISTING SUPERCONDUCTIVITY 
AND NONCOLLINEAR SPIN ORDERING

To solve the formulated problem, we use a method
of the diagram technique for Hubbard operators [18]
and determine Green’s functions in the Matsubara
representation

(2)

where α and β are the indices designating a pair of
one-site states. At the noncollinear magnetic ordering
with the average spin value on the site 〈Sf〉 =
M(cos(QRf), –sin(QRf), 0), the Fourier transform for
Green’s functions is written in the form

(3)

Solving directly the system of equations for Green’s
functions, we establish the relation between quasi-
momenta p1 and p2:

(4)

It can be seen that for Green’s functions with the
invariable projection of the fermion spin moment the
connection between the quasi-momenta is determined
by the conservation law. For Green’s functions
describing the spin flip processes, the quasi-momenta
are related by vector Q of the magnetic structure for the
fermion with σ = ↑ and –Q for the fermion with σ = ↓.

For the sake of brevity, we write the matrix Green’s
function in the block form
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As is known, the matrix Green’s function can be
presented as a product  =  ⋅ , where  is the force
operator matrix, which is written in the loopless
approximation

(7)

where f2σ = 〈 〉 + 〈 〉. Since in the investigated

magnetic phase we have 〈 〉 = 0, we have f2σ = n/2,
where n = 〈 〉. At the transition to the representation
for the force operator, we took into account that at the
noncollinear spin ordering, the average values of the
nondiagonal operators are nonzero: 〈 〉 =

Mexp(‒iQRf) and  〈 〉 = Mexp(iQRf).

The Dyson–Gorkov equation for function  has
the standard form

(8)

where  is the matrix Green’s function for the non-
collinear magnetic phase (the diagrams for these func-
tions were presented in [7]). The mass operator  takes
into account only the anomalous components respon-
sible for the Cooper instability in the one-loop
approximation

(9)

(10)

It follows from the general symmetry relations for the
Green’s function that Δ2(p) = –Δ1(–p). Then, Δ1(p) ≡
Δ(p). Taking this into account, the solution of Eq. (8)
is presented in the form

(11)

where ξp = ε + U – μ + J0(1 – n/2) + V0n + ntp/2, J0 =
6J1 + 6J2, V0 = 6V, and tp is the Fourier image of the
hopping integral. We introduced the parameters deter-
mining the self-consistent field Rp = M(tp – JQ) and
Rp–Q = M(tp–Q – JQ), where JQ = –3J1 + 6J2 is the
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Fourier image of the exchange integral for the wave
vector Q = 2π/a(1/ , 1/3) of the 120° magnetic
structure. The occurrence of the terms proportional to
the hopping integrals in the effective exchange field is
caused by the account for the kinematic interaction in
the noncollinear magnetic phase [7].

4. EXCITATION SPECTRUM
AND CHIRAL ORDER PARAMETER

OF THE COEXISTENCE PHASE
The elementary excitation spectrum in the phase of

coexisting superconductivity and noncollinear mag-
netic order is determined from the expression

(12)

where

(13)

It should be noted that this spectrum has the property
Eλp = Eλ, –p + Q.

The analytical expressions for Green’s functions
are determined from reciprocal matrix (11). Note that
to find the anomalous function G2↓,↑2(p, iωn) from
expression (9) for the superconducting order parame-
ter, we can use the above formulas by making the
replacement p → p + Q in (11). Summating over the
Matsubara frequencies in (9), we obtain the integral
self-consistency equation, the solutions of which
determine the quasi-momentum dependence of the
superconducting order parameter

(14)

where the equation core is determined as

As we showed previously [7], in the approximation
linearized by the parameter Δ(p) valid near the critical
temperature, the solution of Eq. (14) at the 120° mag-
netic ordering corresponds to the linear superposition
of the  + idxy and px + ipy invariants

(15)
where the chiral invariants have the form
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and
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The functions φ21(p) and φ22(p) determine the chi-
ral  + idxy invariants corresponding to the pairing
interactions between the nearest and next-to-nearest
neighbors, respectively, and φ11(p) is the chiral px + ipy
invariant for the first coordination sphere.

Due to the splitting of the core Φ(p, q), integral
equation (14) is reduced to the system of nonlinear
algebraic equations that allow the temperature depen-
dences of anomalous amplitudes of the superconduct-
ing order parameter Δ(p) to be established:
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5. RESULTS OF THE NUMERICAL 
CALCULATIONS

Figure 1 shows concentration dependences of the
temperature corresponding to the onset of supercon-
ductivity with the chiral symmetry of the order param-
eter at the 120° magnetic ordering for different inter-
site Coloumb interaction parameters V. It is assumed
that the temperature of the onset of magnetic order is
much higher than the critical temperature of super-
conductivity. The magnetization value used is M = 1 –
n/2. The parameters J1 = 0.5t1 and J2 = 0.06t1 are the
constants of exchange between the nearest and next-
to-nearest neighbors and t1 is the parameter of hop-
ping between the nearest neighbors (t1 ~ 0.1 eV). To
simplify the analysis, the effects of long-range hop-
pings are ignored. It can be seen that the increase in
the parameter of intersite repulsion leads to the
expected superconductivity suppression. At V = 2J1
and larger, the Cooper instability is induced by the
pairing interaction in the second coordination
sphere. Since J2 ≪ J1, with the intersite Coulomb
correlations taken into account the transition to the
coexistence phase occurs at fairly low temperatures
(several kelvins).

As we showed above, the effect of intersite Cou-
lomb correlations in the phase of coexisting supercon-
ductivity and 120° spin ordering is not only reduced to
renormalization of the anomalous amplitude Δ21, but
also manifests itself in the fact that the solution for the
superconducting order parameter is determined by
superposition of the chiral  + idxy and px + ipy

invariants. The intensity of admixing the chiral px + ipy
invariant is determined by the amplitude Δ11. The

−2 2x yd

occurrence of triplet pairings in the seed singlet super-
conducting phase at the antiferromagnetic ordering
was discussed previously [16, 17]. These pairings are
determined as dynamically induced by the magnetic
order. It means that they are developed separately
from the pairings in the triplet superconductivity
channel, which can exist without magnetic ordering.
In the investigated model, the last processes are
ignored.

Figure 2 presents temperature dependences of the
anomalous amplitudes of the chiral superconducting
order parameter at V = 0.96t1 and n = 1.12. The chosen
doping concentration is close to optimal. It can be
seen that for the presented Coulomb repulsion param-
eter, the contribution of the pairing interaction in the
first coordination sphere specified by the amplitude
Δ21 is significantly suppressed as compared with the
contribution Δ22 determining the pairing interaction
between the next-to-nearest neighbors. The ampli-
tude Δ11 characterizing the induced triplet states takes
negative values. It means that these processes do not
additionally contribute to the formation of Cooper
instability against the background of the long-range
magnetic order and open an additional channel for
superconductivity suppression. This effect, however,
only leads to the minor decrease in the temperature of
superconductivity onset, since the Δ11 value is essen-
tially lower than the amplitude Δ22.

Figure 3 shows a decrease in the amplitude Δ22 with
increasing parameter V. It can be seen that the Cou-
lomb repulsion between the nearest neighbors does
not sharply suppress the superconductivity, since the
main contribution to the Cooper instability at large V
values is made by the pairing interaction between the
next-to-nearest neighbors. The growth of Coulomb

Fig. 1. Dependences of the temperature of the transition to
the phase of coexisting chiral superconductivity and 120°
spin ordering on the concentration n = 1 + x at different
parameters V of the intersite Coulomb repulsion: V = 0.5t1
(solid line), V = 0.8t1 (dashed line), and V = 2J1 = t1 (dot-
ted line).

Fig. 2. Temperature dependences of the amplitudes Δ22
(solid line), Δ21 (dashed line), and Δ11 (dotted line) of the
chiral superconducting order parameter at V = 0.96t1 and
n = 1.12.

×

×
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repulsion results in the fast drop of the anomalous
amplitude Δ21. At V = 2J1, this amplitude turns to zero.
With a further increase in V, the amplitude Δ21
becomes negative. This behavior is illustrated in the
inset in Fig. 3, where the dependences of the ampli-
tudes Δ21 and Δ11 on the intersite repulsion parameter
relative to the Δ22 value are shown. Interestingly, the
amplitude Δ11 also changes its sign and becomes posi-
tive with increasing V at Δ21 < 0. However, this occurs
at the very low critical temperatures of superconduc-
tivity (tenths of kelvins).

The account for the Coulomb repulsion modifies
the quasi-momentum dependence of the supercon-
ducting order parameter by admixing of the triplet
invariant. This leads to the change in the positions of
nodal points in the Brillouin zone, where the super-
conducting order parameter turns to zero. Open circles
in Fig. 4 show the Δ(p) nodal points at Δ11 = 0 and
closed circles are obtained taking into account the
contributions of triplet pairings. The Δ21 and Δ22 values
were chosen at a concentration of n = 1.12 near zero
temperature (Fig. 2). At Δ11 = 0, the superconducting
order parameter contains nodal points at the center
and at the crossing of the hexagonal Brillouin zone
boundaries, as well as 12 points inside the zone: six of
them are located near the boundaries, which is caused
by the smallness of amplitude Δ21, and the rest six
points are slightly shifted relative to nodal points of the
invariant φ22(p). It can be seen that with regard to the
triplet invariant with Δ11 = –0.32Δ22, the nodal points
located in the Brillouin zone shift and three new
points near (0, 0) arise.

6. CONCLUSIONS

As is known, the intersite Coulomb interaction
usually suppresses the d-type superconductivity due to
renormalization of the effective pairing interaction
parameter. For the investigated phase of coexisting
chiral superconductivity and noncollinear 120° spin
ordering, the additional effect occurs on the triangular
lattice. This effect is related to the fact that the Cou-
lomb interaction initiates the formation of a nontrivial
structure of the superconducting order parameter;
specifically, Δ(p) is presented in the form of linear
superposition of the chiral  + idxy and px + ipy

invariants. Admixing of the triplet invariant is only
caused by the Coloumb interaction and only for the
coexistence phase. In this case, the anomalous ampli-
tude determining the intensity of the contribution of
triplet pairing has negative values in a wide range of
parameters. This evidences for the occurrence of an
additional contribution leading to suppression of the
phase of coexisting superconductivity and noncollin-
ear magnetic ordering. In the investigated case, this
contribution does not significantly affect the critical
temperature of the transition to the coexistence phase;
nevertheless, the result obtained changes the qualita-
tive picture of symmetry classification of the super-
conducting order parameter and is important for
studying the topological properties of the supercon-
ducting state in the presence of the 120° magnetic
ordering.

−2 2x yd

Fig. 3. Dependence of the anomalous amplitude Δ22 on
parameter V of the intersite Coulomb repulsion in the limit
of zero temperature at a concentration of n = 1.12. Inset:
dependences of amplitudes Δ21 and Δ11 on V with respect
to the Δ22 value.

×

Fig. 4. Nodal points of the superconducting order param-
eter Δ(p) with regard to the chiral px + ipy invariant (closed
circles) and with disregard of it (open circles).
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