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Abstract. The magnetic structure of a polycrystalline nanowire at the weak or missing magnetostatic
interaction exhibits the special self-organization of magnetization. As is known, the magnetization structure
forming in a random crystallographic anisotropy field has a characteristic length range, which involves tens
and hundreds of crystallites. This leads to the occurrence of stochastic domains. The induced uniform
anisotropy of magnetostatic nature or the texture co-directed with the crystallite anisotropy axes masks
the picture of stochastic domains. Nevertheless, as we show, the information on stochastic domains remains
in the magnetization structure. The experimental techniques for obtaining information on the magnetic
properties of stochastic domains are proposed.

1 Introduction

The phenomenon of self-organization in the energy flux,
which is accompanied by the occurrence of ordered struc-
tures at the random energy arrangement (Bernard cell,
lasers, Belousov-Zhabotisky reaction, column structure of
basalts, etc.), has evoked physical imagination. In all the
observed situations, the competing factors (chaos and one-
dimensional ordering) come into play. For instance, in the
Bernard cell, the chaos is heat motion of liquid molecules
and the ordering factor is the uniform temperature gradi-
ent in a homogeneous field of gravity. In the well-known
self-organization manifestations, the external evidence is
remarkable: ordered structures arise against the back-
ground of chaos.

Recently, there has been a keen interest in studying rel-
atively new magnetic objects – ferromagnetic nanowires –
with self-organization elements in the structure. In partic-
ular, the authors of [1,2] demonstrated the simplest case of
magnetization self-organization in a nanowire bunch un-
der the action of demagnetizing fields. The result observed
was quite expected: neighboring nanowires appeared op-
positely magnetized. The phenomenon of self-organization
of the structures was observed in many systems contain-
ing the factor responsible for ordering: in systems of elec-
tric [3] and magnetic dipoles [4], superconductors [5], and
thin ferromagnetic films [6–8]. In addition, it is interesting
to consider the magnetization self-organization processes
in 1D systems (nanowires and nanostripes) [9,10]. In par-
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ticular, Rougemaille and Schmid [9] studied the formation
of an ordered domain structure in wires with a diameter
of a few atomic layers depending on the fabrication tech-
nique used.

In this work, we investigate the unusual self-
organization type, specifically, the occurrence of the
stochastic magnetization superstructure in a polycrys-
talline 1D ferromagnet. We consider a polycrystalline
nanowire with a crystallite size somewhat smaller than
the domain wall thickness (tens of nanometers). The crys-
tallite easy magnetization directions are randomly dis-
tributed over a sphere. The exchange coupling between
neighboring crystallites and crystallographic anisotropy
of individual crystallites compete in the magnetic struc-
ture formation. The exchange coupling tends to uniformly
distribute the magnetization, while the local anisotropy
tends to create the random magnetization distribution.
The magnetization field in the absence of the uni-
form macroscopic anisotropy is a conglomerate of the
so-called stochastic domains (SDs) or magnetic blocks
(MBs) [11–14]. The occurrence of the new length δS

corresponding the SD size was detected in real experi-
ments by different authors using different experimental
tools [15–17].

Let us consider in more detail the magnetic properties
of SDs. Ferromagnetic crystallites forming a wire exhibit
the random orientation of local easy magnetization axes
(EMAs) and, generally speaking, the spread in size, shape,
and magnetic constants. The crystallites are so small that
the inequality a � δ0 can be considered valid, where a
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is the crystallite size and δ0

√
A/K is the domain wall size

in a homogeneous material (A and K are the exchange
and anisotropy constants, respectively). Since the param-
eter a is small, the coordinate dependence of the magne-
tization m(r) inside a crystallite can be considered weak.
When solving the linearized Landau-Lifshitz equation for
m(r) at the crystallite width, we limit the consideration
to the terms of the second order of smallness. This allows
us to obtain the function m(r) in the quadratic approx-
imation [18]. The obtained m(r) distribution is used to
express the magnetic energy of a crystallite, which is rep-
resented by a function of magnetization direction angles at
the grain boundaries, including polar angle ϑ and azimuth
angle φ. The total energy E(ϑ1 . . . ϑN+1, φ1 . . . φN+1) of a
magnet is the sum of energies of all crystallites. This com-
pletes the first stage.

At the second stage, we minimize the total energy E
relative to the polar angle ϑn and azimuth angle φn of the
magnetization at the crystallite boundaries and arrive at
the system of equations

∂E

∂ϑ
= 0,

∂E

∂φ
= 0. (1)

In the expression for energy E, we took into account the
exchange energy inside a crystallite and between crys-
tallites, anisotropy energy, Zeeman energy, and energy
of magnetostatic interaction between crystallites in the
dipole approximation.

System of equations (1) was numerically solved using
different techniques, including the gradient descent [18],
field descent [19], and shootings [20]. These methods sim-
ulated the real experiment; in all cases, the characteristic
length δS was determined, which is the SD linear size.

Now, let us consider a computer experiment for observ-
ing the presence of SDs in the magnetization structure.
First, we exclude the macroscopic uniform anisotropy from
the expression for the magnetic energy. We apply an ex-
ternal magnetic field perpendicular to the wire axis OZ,
which magnetizes the nanowire to saturation. Then, the
field is quasistatically decreased to zero. After that, the
procedure is repeated in an external field rotated around
the OZ axis by a certain angle. Repetition of the proce-
dure at small rotations of the external magnetic field at
gradual decreasing to zero leads to the initial configura-
tion. However, at certain magnetic field and rotation angle
values, the magnetization of some part of the neighboring
crystallites does not return to the initial position. The
wire part appears switched. Figure 1 shows the charac-
teristic case of the magnetization switching by a rotating
field [21,22]. One can see two mechanically stable mag-
netization angle distributions obtained at the same EMA
directions. Vast magnetization regions containing tens or
hundreds of coherently switched crystallites arise in the
structure. These regions behave as independent forma-
tions, which almost do not interact with one another, and
are called stochastic domains (SDs). The SD sizes are ran-
dom values. The mathematical simulation shows that the
possible sizes run the values from tens to hundreds of crys-
tallite sizes. The SDs are characterized by their own in-
duced anisotropy.

Fig. 1. Numerically simulated characteristic distributions of
the polar and azimuth angles of magnetization along the wire
upon switching by the rotating field. The numbers of crystal-
lites are plotted on the abscissa axis.

2 Induced stochastic anisotropy

The magnetization distribution pattern shows that the oc-
currence of coherently switched regions can be considered
as the manifestation of self-organization. This statement
is grounded not only on the magnetic structure geome-
try, but on deeper manifestations. The SDs exhibit the
pronounced uniaxial anisotropy [14] with its effective con-
stant and effective axis direction.

To calculate the effective anisotropy constant for a
block, we write the torque from the side of the random
anisotropy field of an ensemble of crystallites contained in
the SD. For the sake of simplicity, this calculation can be
made with regard of the fluctuations of crystallites vol-
umes and local anisotropy constants. Assuming the mag-
netization variation inside a SD to be minor and specified
by the angle ϑ, we obtain the torque around the axis per-
pendicular to OZ:

Mϑ =
∂

∂ϑ

N∑

n=1

vnKn (mnen)2

= 2
N∑

n=1

vnKn (mnen)
∂ (mnen)

∂ϑ
. (2)

Here, vn and Kn is the volume and local anisotropy con-
stant for the nth crystallite, en are the EMA direction
orts, and N the number of crystallites in a SD. The
same torque should be induced by the effective anisotropy

http://www.epj.org


Eur. Phys. J. B (2017) 90: 40 Page 3 of 8

of the SD that involves the block crystallites. We can write
the effective anisotropy torque as

Mϑef
=

∂

∂ϑ
V Kef (meef )2 = 2V Kef (meef )

∂ (meef )
∂ϑ

.

(3)
Here, Kef and eef are the effective anisotropy constant
and effective anisotropy axis (EAA) direction vector of
the block, and V =

∑
vn is the block volume. We equalize

expressions (2) and (3) and obtain

N∑

n=1

vnKef (meef)
∂ (meef )

∂ϑ
=

N∑

n=1

vnKn (mnen)

× ∂ (mnen)
∂ϑ

. (4)

Representation the scalar products in this expression via
polar and azimuth magnetization angles, we obtain the
effective constant

Kef =

[〈
K2

〉 − μ2 〈K〉2
N

(
σ2

v + 1
)

+ μ2 〈K〉2
] 1

2

. (5)

Here, we introduced μ = 〈cos(2(αn − αm))〉, crystallite
EMA polar angle α, and dimensionless crystallite volume
dispersion. The angular brackets indicate averaging over
the ensemble.

Expression (5) is universal. It allows calculating the ef-
fective constant of a magnetic block for the two- and three-
dimensional models (not only for nanowires) in the arbi-
trary directions of local axes, including the orientational
texture, and local constants and volumes of crystallites,
including those for periodic structures [23,24]. In the sim-
ple case of the uniform distribution of the crystallite local
anisotropy axes directions over a sphere, expression (5) is
simplified and acquires the form

Kef =
1
V

√
1
3
N 〈v2〉 〈K2〉. (6)

It should be noted that when the volumes and constants
K of crystallites are identical, expression (6) acquires the
well-known form Kef ≈ K/

√
N .

3 The occurrence of a superstructure

In the mechanism of the occurrence of a superstructure,
the special role is played by the exchange coupling. The
exchange extracts a certain mode, which manifests it-
self as a stochastic or magnetic domain, from the ran-
dom picture of the easy anisotropy axes distribution. To
under-stand the mechanism of SD nucleation, below we
semi-qualitatively analyze the occurrence of the induced
stochastic anisotropy.

To study the features of the distribution of the SD
effective easy axes directions, we return to equation (4).

Using this equation, we obtain the expression for the ef-
fective direction of the anisotropy axis

sin(2αef ) =
K

Kef

N∑

n=1

sin(2αn) = s0. (7)

Let us calculate the density of distribution of the quantity
s = sin(2αef ), which can be presented in the form

ρ(s) =

α0∫

−α0

. . .

α0∫

−α0

N∏

n=1

ρ(αn)δ(s − s0)dαn. (8)

Here, ρ(αn) is the density of distribution of the EMA po-
lar angles. For simplicity, assume this function to be inde-
pendent on the crystallite number and α0 to be a half of
the polar angle of cone opening in the EMA distribution.
In expression (8), the δ-function excludes the implementa-
tions αn that do not satisfy condition (7) from integration.
To obtain the final form of (8), we use the refining tech-
nique described in [25]. Further calculations suggest the
identical multiplying of the density ρ(s) by the exponen-
tial factor with the fitting parameter β and subsequent
expansion in the Fourier integral:

Ω(ξ) =

∞∫

−∞
ρ(s) exp(βs) exp(Iξs)ds

=

∞∫

−∞

α0∫

−α0

. . .

α0∫

−α0

exp(βs + Iξs)

×
N∏

n=1

ρ(αn)δ(s − s0)dαnds. (9)

The presence of the δ-function in the integrand of expres-
sion (9) after integration over s allows us to present the
multiple integral as a product of identical single integrals

Ω(ξ) =
N∏

n=1

α0∫

−α0

ρ(α) exp
(

(βs + Iξs)
K

Kef
sin(2α)

)
dα

= ω(ξ, β, α0)N . (10)

Here,

ω(ξ, β, α0) =

α0∫

−α0

ρ(α) exp
(

(βs + Iξs)
K

Kef
sin(2α)

)
dα.

The function ω(ξ, β, α0) is localized by parameter ξ and
the main contribution is made by long-wavelength har-
monics with small numbers ξ. We expand ω(ξ, β, α0) in
the series over the smallness degrees ξ of up to the second
order:

ln(ω(ξ, β, α0)) ≈ ln(ω0) +
∂ ln(ω(ξ, β, α0))

∂ξ

∣
∣
∣
∣
ξ=0

ξ

+
1
2

∂2 ln(ω(ξ, β, α0))
∂ξ2

∣∣
∣
∣
ξ=0

ξ2. (11)
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Then, equation (10) acquires the form

Ω(ξ) = ωN
0 exp

(
Ismidξ − σ2ξ2

)
. (12)

Here, we introduced the designations

smid = N
∂ ln(ω(ξ, β, α0))

∂(Iξ)

∣
∣∣
∣
ξ=0

,

σ2 =
N

2
∂2 ln(ω(ξ, β, α0))

∂(Iξ)2

∣
∣
∣∣
ξ=0

. (13)

After the backward transformations, we arrive at

ρ(s) =
1
2π

exp(−βs)

α0∫

α0

exp(−Iξs)Ω(ξ)dξ. (14)

The maximum accuracy of the calculation of expres-
sion (14) is attained at the fitting parameter β at which
the current s value coincides with the average smid value.
Consequently, under the condition s = smid, the desired
distribution has the form

ρ(s) =
ωN

0√
2πσ2

exp(−βs). (15)

As an example of using equation (15), we consider the in-
teresting particular case of the uniform distribution of the
EMA polar angle in the range from −α0 to α0. In this
case, we have ρ(α) = 1/(2α). Taking this into account, we
calculated expressions (13) and determined the β value
using equation (15). It should be emphasized that at the
complete chaos in the EMA directions (−π/2 . . . + π/2),
the calculation with the use of equation (15) yields the
correct limit case of the uniform distribution of the ef-
fective axes directions. Upon narrowing of the cone, the
direction αef = 0 is implemented more often. For the nar-
row cone (α0 � 1), the Gaussian approximation (β = 0)
is satisfactory [26].

To experimentally determine the distribution func-
tion for the effective anisotropy axes for verifying rela-
tions (15), we can use an experimental technique similar
to that described in Introduction, i.e., the rotating field
technique. For this purpose, the external field angles at
which the magnetization in a block changes its direction
should be detected, since this event occurs when the field
appears perpendicular to the effective axis of a block. If
angle ε is the field application angle at which the magne-
tization jump occurs in the block, then the distribution
density ρ∗(ε − π/2) is the density of distribution of the
effective axes. To ensure correctness of the comparison
between the theory and experiment, the latter should in-
volve, along with fixing the field angles, determination of
the fitting parameter, i.e., the average number N of crys-
tallites in a domain, which enters the expression for dis-
persion. The computer experiment carried out with regard
of the aforesaid for several EMA misorientations showed
very good agreement between the numerically calculated
distributions of the effective anisotropy axes and the ana-
lytical calculation using equation (15).

Fig. 2. Example of the magnetization distribution in a one-
dimensional material with the randomly distributed EMA di-
rections (solid line) in comparison with the effective axes di-
rections deter-mined using the moving averaging technique.

In the context of the idea about the nature of
anisotropy in stochastic magnets, it seems reasonable to
attribute the magnetization field structure to the stochas-
tic anisotropy structure, yet not with the local one. To
clarify this correlation, the fluctuations of the effective
anisotropy axes for crystallite groups in a sample were nu-
merically studied. Here, the main idea was that the mag-
netization at each point of a sample is affected by the field
of anisotropy closest to this place in the region with char-
acteristic size δS . For each sample point, the direction of
the effective anisotropy axis in the closest vicinity contain-
ing N crystallites was calculated using equation (4). Thus,
the first block involved crystallites from the first to Nth;
the second block, from the second to (N + 1)th; the third
block, from the third to (N + 2)th, and so on. This tech-
nique for determining the directions of the effective block
axes was latter called the moving averaging. For the same
implementation of the EMA directions, the magnetization
configuration ϑ(z) was built. After that, αef (z) and ϑ(z)
were compared. The degree of coincidence of the depen-
dences αef (z) and ϑ(z) strongly depends on the averaging
range N . As a coincidence criterion, the average squared
difference Δ =

∑
n(ϑn − αef )2/N was chosen. The NS

value was determined at which the Δ value is the smallest.
Figure 2 shows magnetization configurations (solid lines)
and distributions of the effective anisotropy axes (dots) to
illustrate the correlation between the magnetization direc-
tions and SD effective anisotropy axes directions.

Note that the magnetization rotation dispersion within
a SD cubically depends on the coordinate z, as in the mod-
els where the magnetization was not allowed to get out the
plane [14]. Consequently, the functional dependence of the
linear sizes of magnetic blocks on the crystallite parameter
b = a/δ0 remains invariable:

δS = δ0

(
12
b

) 1
3

. (16)

Then,

NS =
δS

a
≈

(
12
b4

) 1
3

. (17)
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The NS value calculated using equation (17) agrees well
with the SD sizes from the computer experiment. Since
the fluctuations of the magnetization field of an inhomo-
geneous magnet follow the fluctuations of the anisotropy
axes of a crystallite group, expression (15) for the density
of distribution of the effective anisotropy axes is simulta-
neously the statistical distribution of the magnetization
vector of a stochastic magnet. The correlation breaks that
can be seen in Figure 2 can be explained by the fact that
the SDs are characterized by a certain spread of the ef-
fective anisotropy constants. In addition, there is a weak
interaction between separate SDs. As a result, the SDs
with the prevailing effective anisotropy affect the magne-
tization orientation of weaker domains. The exchange cou-
pling strengthens the fragile stochastic regularity. Thus,
the self-organized area arises, where the exchange cou-
pling ensures the quasi-homogeneous magnetization. The
SD structure is diverse and depends on the fabrication
technique and prehistory. The SD sizes can differ by an
order of magnitude. In particular, a SD shown in Figure 1
contains over three hundreds of crystallites. At the same
time, at the continuous magnetization rotation, the SDs
sometimes arise whose size barely reaches the domain wall
thickness value.

When the magnetostatic interaction starts working,
SDs become invisible. Classical domains and domain walls
appear. We may mistakenly assume that switching on the
uniform macroscopic anisotropy annihilates SDs and dis-
appears the characteristic length δS . Meanwhile, the mag-
netization self-organization is observed in nanowires in
the presence of the uniform macroscopic anisotropy in-
duced by magnetostatics. Stochastic domains are analo-
gous to the normal modes of bound oscillators, which can
be excited or not, but exist as a structural unit. Below
we consider some ways of obtaining the superstructure
parameters.

4 Self-organization manifestation upon
magnetization switching

Let the wire be magnetized in the z axis direction, i.e.,
along the effective anisotropy axis caused by magneto-
statics. The magnetic structure is almost homogeneous,
except for weak oscillations of the EMA direction. Below
we show that some parts of the inhomogeneities are initial
nuclei of inverse domains. The observations show that the
sizes of these parts are similar to those of SDs.

We apply an external magnetic field in the direction
opposite to the average magnetization. The applied field
increases deviations of the magnetization from the z axis
direction. The beginning of this process is illustrated in
Figure 3.

When the external field attains a critical value of
Hnucl ≈ 0.16μ0MS , the magnetization of separate nuclei
drastically rotates, which results in the occurrence of 180-
or 360-degree domain walls [27]. Figure 4 illustrates the
end of this process.

Upon magnetization switching of a nucleus, its spatial
size remains nearly invariable. The frequently occurring

Fig. 3. Enhancement of magnetization fluctuations with an in-
crease in the external magnetic field. The solid line corresponds
to h = 0 and the dashed line, to – h = 0.05.

Fig. 4. Domain structure formed at attaining the critical field.

360-degree domain walls and some of 180-degree walls do
not move upon variation in the external magnetic field.
The low mobility originates from the fact that at large
saturation magnetizations MS of a material, the demag-
netizing field creates satellite domains with the opposite
magnetization at the domain edges (Fig. 4). The domain
wall continuation in the satellite works as a part of the
360-degree wall, pinning the latter [27]. The nuclei do-
main walls are special and have the anomalously low mo-
bility. The obtained domains are located in the places
where SDs would be located if the induced magnetostatic
anisotropy were absent. Thus, despite the effect of such a
strong masking factor as the anisotropy induced by mag-
netostatics, the information about SDs is stored. The phe-
nomenon of pinning the domain walls that separate the
regions related to SDs can apparently be observed in ex-
periments. The experiment should follow the scenario de-
scribed above.
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Fig. 5. Characteristic spectral density of the distribution of
the polar angle for a magnet at b = 0.1.

5 Spectral analysis of magnetization

As was shown in the previous section, self-organization
manifests itself even at the prevailing uniform anisotropy.
Spectral study of the magnetization distribution function
makes it possible to consider the structure in more detail
without switching the sample magnetization. Let us con-
sider the spectral density G(ξ) of the spatial distribution
of the polar angle ϑ(z)

G(ξ) =
1

4π2

⎛

⎝
L∫

0

ϑ(z) cos(zξ)dz

⎞

⎠

2

+
1

4π2

⎛

⎝
L∫

0

ϑ(z) sin(zξ)dz

⎞

⎠

2

. (18)

The spatial magnetization distributions ϑ(z) shown in
Figures 2 and 3 were obtained at the same implementa-
tion of the stochastic anisotropy field at different external
fields. These distributions were subjected to the spectral
analysis.

It can be seen that with an increase in the field, the
families of functions ϑ(z) exhibit the common features.
The peaks and dips in the ϑ(z) curves are positioned at the
same places and only have different values. However, in the
critical external fields, one can observe significant differ-
ences. The nuclei transform to domains. At the same time,
it is remarkable that the spectral densities at any exter-
nal field values completely coincide. The effects masking
the self-organization (external field, texture in the EMA
directions, magnetostatics, etc.), are not reflected in the
spectral density. The form of G(ξ) is determined by the
primary interactions (crystallographic anisotropy and ex-
change), i.e., by SDs. The main contribution to the spec-
tral density is made by the long-wavelength region. It is
important that, as expected, the spectral density plot con-
tains a noticeable maximum corresponding to the crystal-
lite sizes (right-hand part in Fig. 5).

Fig. 6. Example of implementation of the pinning force for a
magnet at b = 0.04.

The invisible domains are analogous, to a certain ex-
tent, to the observed superstructure in a bulk weak fer-
romagnet [28]. The main difference of SDs is their visible
absence in the presence of masking factors.

6 Spectral analysis of force relief

The authors of [29–31] theoretically discussed domain wall
pinning in superdispersed 1D materials on the force relief
of magnetic inhomogeneities and statistical properties of
this relief. They calculated the coercivity and domain wall
start field are demonstrated that the average wavelength
of the force relief coincides with the domain wall width.
In this study, we simulated the nanowire magnetization
switching in order to investigate the pinning force spec-
trum. The computations were made using the gradient
descent technique with the initial seed magnetization dis-
tribution that initiates the formation of one stable domain
wall in the nanowire. As the magnetic field applied along
the z-axis was increased, the total SD energy was detected
and its derivative yielded the force of interaction between
the wall and inhomogeneities.

Figure 6 shows the characteristic implementation of
the pinning force. Figure 7 presents the result of the spec-
tral analysis of the force relief of wires with the same
cross section and parameter b = 0.1, but different ra-
tios μ0M

2
S/K. This ensured approximately the same SD

size, but different widths of domain walls between clas-
sical domains. At the values of μ0M

2
S/K approximately

corresponding to those of iron (Fig. 6a), two pronounced
spectral density maxima are observed. The maximum cor-
responding to the large k values is determined by the
magnetization ripples upon tuning to the local anisotropy
of separate crystallites. The wavelength of this ripples is
about b. The other maximum is, in our opinion, complex
and contains peaks responsible for the domain wall width
and SD size (in this case, their characteristic sizes are com-
parable, i.e., the average wavelengths coincide). It can be
seen from the figure that with decreasing MS , the maxi-
mum creeps and the density peak responsible for the in-
creasing domain wall width becomes pronounced. In this
case, the peak responsible for the SD is nearly invariable.

Thus, the force relief has at least three pronounced har-
monics: two long-wavelength – SD size (correlation radius
of the magnetization), domain wall size with the imposed
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Fig. 7. Spectral density Ω(k) of the force relief for samples with different MS values. The EMA directions are distributed
randomly and uniformly over a sphere. Here, k ≈ 1/λ, where λ is measured in units of a.

short-wavelength modulations – crystallite size. The do-
main wall width can be estimated using the expression

δW ≈
√

A

μ0M2
S + μK

=

√
A

μ0M2
S

K + μ
. (19)

Here, the denominator can be interpreted as the effec-
tive uniaxial anisotropy constant along the long axis of
the 1D material. As a rule, in ferromagnets the magneto-
static term prevails over the crystallographic anisotropy
even in the case of the rigid texture (μ = 1). Therefore,
the dependence δW (μ) is difficult to check. The numerical
estimation of δW using formula (19) agrees satisfactorily
with the simulation results shown in Figure 7 [26].

7 Conclusions

We reported the results of computer simulation of the
properties of magnetization and relief pinning a domain
wall in 1D inhomogeneous ferromagnets. The spectral
analysis of magnetization allowed us to determine the
long-wavelength harmonic, which is attributed by us to
the existence of the so-called stochastic domains (mag-
netic blocks). The wavelength of this harmonic coincides
with the stochastic domain size. It is noteworthy that this
characteristic length manifests itself not only in the triv-
ial manner, as in the magnetization switching process, but
also in the implicit case as a result of spectral decompo-
sition of the magnetization or force pinning the domain

wall. The dependence of the wavelength of the harmonic
responsible for the stochastic domain on the linear crys-
tallite size coincides with the theoretical estimations.

It was demonstrated that the parameter characteriz-
ing the new self-organization is the induced stochastic
anisotropy. We derived the universal expression for the
induced stochastic anisotropy, which involves fluctuations
of the crystallite size, fluctuations of the local constants,
and arbitrary distribution of the local anisotropy axes
directions, which explains the nucleation of a stochastic
domain.

The magnetostatic interaction leads to the formation
of a domain structure and, consequently, to the occurrence
of one more characteristic length – the domain wall width.

Variants of experimental determination of the stochas-
tic self-organization in the presence of a masking factor
(strong induced anisotropy) were proposed.
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