
Propagating Bloch bound states with orbital
angular momentum above the light line
in the array of dielectric spheres
EVGENY N. BULGAKOV1,2 AND ALMAS F. SADREEV1,*
1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
2Siberian State Aerospace University, Krasnoyarsk, Russia
*Corresponding author: almas@tnp.krasn.ru

Received 24 November 2016; revised 11 March 2017; accepted 23 March 2017; posted 27 April 2017 (Doc. ID 281443); published 17 May 2017

We present propagating Bloch bound states in the radiation continuum with orbital angular momentum in an
infinite linear periodical array of dielectric spheres. The bound states in the continuum demonstrate a giant
Poynting vector spiraling around the array. They can be excited by a plane wave with incident linear polarization
with a small tilt relative to the axis of the array. © 2017 Optical Society of America
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1. INTRODUCTION

Recently, periodical structures like arrays of rods have attracted
attention with regard to the bound states in the radiation con-
tinuum (BSC) [1–18]. These BSC solutions are homogeneous
along the axis of the rods and localized in the direction normal
to the plane of the array. Their discrete eigenfrequencies are
embedded into the radiation continuum, that is, they settle
above the light line. Several mechanisms were elaborated for
the BSCs, among them the symmetry protection, Fabry–
Perot, and the mechanism of full destructive interference,
which were outlined recently in the review by Hsu et al.
[19]. The majority of the BSCs represents standing waves with
a null Bloch vector. However, propagating Bloch BSCs were
also reported [11,15,18].

BSCs were shown to exist in the one-dimensional infinite ar-
ray of dielectric spheres [20–23]. The array is remarkable because
of its rotational symmetry, which gives rise to preservation of the
orbital angular momentum (OAM). The diffraction continua
given by vector cylindric modes [20] are also specified by the
corresponding OAM given by the integer m. As a result, the
BSCs can be considered independently in each sector m.

The angular momentum is composed of the spin angular
momentum (SAM) and OAM describing the polarization
and the phase structure distribution of EM fields, respectively.
The OAM of EM fields has been the focus of research since
Padgett, Courtial, and Allen investigated the mechanism of
the OAM in laser modes [24,25]. In Ref. [21], we have shown
that quasi-BSCs with OAM can be excited by light beam with
circular polarization. If the frequency of incident light is close

to the BSC frequency, the electromagnetic field in the near zone
of the array blows up [21,26–28]. Consequently, a giant
Poynting vector current circulating around the array was dem-
onstrated [21]. In the present paper, we consider the Bloch
BSCs with OAM, which propagate along the array of dielectric
spheres. They also demonstrate a giant Poynting vector now
spiraling around the array. In contrast to the standing quasi-
BSCs with OAM, which can only be excited by a plane wave
with circular polarization, the propagating quasi-BSC with
OAM can be excited by plane wave with incident linear
polarization with tilt relative to the array axis.

2. BLOCH PROPAGATING BSCS

Our numerical approach is based on the analytical theory by
Linton et al., who managed to obtain a multipole relation
in a closed form that is suitable for finding guided modes in
the array of dielectric spheres below the light line [29].
Their approach was also successfully applied for solutions em-
bedded into the lowest diffraction continua, bound states in the
continuum [20]. In particular, we revealed Bloch waves with a
non-zero Bloch vector β, which can be interpreted as waves
guided along the array similar to the Bloch solutions in a peri-
odic array of infinitely long dielectric rods [11,15,18]. BSCs
with OAM jmj ≠ 0 but β � 0 were reported earlier [21].
Here we present Bloch BSCs that have both β ≠ 0 and m �
�1 embedded into the first diffraction continuum n � 0 but
below the next continua with n > 0 where the cylindrical con-
tinua are classified by the integer n � 0; 1; 2;… and are given
by the scalar function [30]
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ψmn � H �1�
m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − �β� 2πn�2

q
r
�
eimϕ�i�β�2πn�z ; (1)

where H �1�
m is the Hankel function of the first order. In what

follows, the radius and the wave length 2π∕β are measured in
terms of the period of the array h, and the frequency k0 is
measured in terms of c∕h, where c is the light velocity.

The Maxwell equations can be written as an analogue of the
Lippmann–Schwinger equation:

bL ~ψ � ~ψ inc; (2)

where the structure of the matrix bL is given in Refs. [20,29] and
the columns ~ψ are composed of the amplitudes of the expan-
sion over vector spherical harmonics. The incident plane wave
can be written in the following form:

~ψ inc � ~ψTE � κ ~ψTM: (3)

The TE and TM modes of electromagnetic field are expressed
through function ψ [21,30], in particular, for the TE mode
Hz � ψ and for the TM mode Ez � ψ . The factor κ controls
the polarization of the incident wave. In particular, the imagi-
nary κ � i gives a circular polarization, while the real κ defines
a linear polarization of the incident field.

For fixed permittivity of the spheres ε � 10, the BSC sol-
ution is sought in the space of three parameters: the radius of
the spheres R, the frequency k0, and the Bloch vector β by find-
ing the real poles of the matrix bL, as shown in Fig. 1. That
numerical procedure is described in detail in Refs. [20–22].
For the degenerate Bloch BSC with m � �1, we obtain
βc � 1.302, as shown in Fig. 1, provided that the other param-
eters are tuned to the BSC point given in the figure caption.
Then, the BSC solution is given by the homogeneous part of
Eq. (2), bL ~ψ c � 0.

The z-component of the magnetic field of the BSC solution
is shown in Fig. 2. All other solutions with different Bloch vec-
tors β ≠ βc leak into the radiation continuum n � 0 as seen
from Fig. 1, but they still can serve in a guiding capacity with
high quality factor [22]. Figure 3 shows that the frequency and

the Bloch vector of the BSC can be tuned by the radius and
permittivity of the dielectric spheres.

Previously, we have demonstrated the transfer of SAM of a
plane wave with circular polarization into OAM of a standing
BSC [21]. Here we demonstrate that a wave with linear polari-
zation can excite the propagating Bloch quasi-BSC with
m � �1. Specifically, the incident wave was applied as follows.
The wave vector of the incident plane wave was chosen to be
~k � �kx; 0; β�, where kx �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20c − β

2
p

; β � βc � 0.005. The
polarization is given by parameter κ in Eq. (3). In particular
for κ � 0, the incident wave is a TE mode in the plane
�x; z�. However, as soon as κ is real, the polarization of electric
field tilts relative to the plane �x; z�.

In the vicinity of the BSC point, the solution is mainly given
by the eigenfunction of the matrix bL whose complex eigenvalue
Lc is closest to zero (the condition Lc � 0 defines the BSC sol-
ution) [21]:

~ψ ≈ Bm�1
~X m�1
BSC � ~X m�−1

BSC ; (4)

where

Bm��1 �
1

Lc
�DTE � κDTM�; Dσ � ~Y �

BSC ~ψσ ; (5)

where σ � TE;TM labels the polarization of electromagnetic
field. ~Y �

BSC and ~X BSC are the left and right eigenvectors of the
matrix:

Fig. 1. Imaginary (main plot) and real (inset) parts of the complex
eigenfrequency of propagating solution withm � �1 versus the Bloch
vector β for other relevant parameters tuned to the BSC point
k0c � 4.327; R � 0.489; ε � 10. The closed circle marks the BSC
Bloch vector βc.

Fig. 2. Propagating Bloch BSC with the Bloch vector βc � 1.302,
frequency k0c � 4.327, and OAM m � 1 calculated for spheres with
ε � 10; Rc � 0.489. The real part of the electromagnetic field com-
ponent Hz is shown.

Fig. 3. BSC frequency k0c and Bloch BSC vector βc versus radius
and permittivity of dielectric spheres.
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bL~X BSC � Lc ~X BSC; ~Y �
BSC

bL � Lc ~Y
�
BSC: (6)

Both eigenvectors are decomposed at subspaces m � �1.
Therefore, the amplitude Bm��1 can be interpreted as re-
sponses with OAM m � �1 to the incident wave with linear
polarization in the vicinity of the BSC point as dependent on
the sign of κ. In particular, the case κ > 0 is shown in Fig. 4(a),
which demonstrates a resonant enhancement in the vicinity of
the BSC frequency k0c � 4.327. More importantly, Fig. 4
shows that the amplitudes Bm��1 are substantially different

for a plane wave with oblique incidence. The change of the
sign of κ interchanges priority of Bm��1, which in turn changes
the direction of spiraling.

The spiraling currents nearby the array become giant,
because of enhancement of the EM fields for the frequency
close to the BSC frequency, as shown in Fig. 5. This figure
is complemented by Figs. 6(a) and 6(b), with iso-surfaces of
absolute value and the azimuthal component in Fig. 6(b) of
the Poynting vector, which demonstrates the enhancement.

The next unique property of the BSC is related to the Fano
resonance collapse [26,31] that reflects in the resonant features
of the cross sections of the array in the vicinity of the BSC fre-
quency. Similar to the BSCs with β � 0 and m ≠ 0, which
were presented in Ref. [21], the Bloch BSC with OAM
demonstrates resonant features shown in Fig. 7.

(a) (b)

Fig. 4. Enhancement factor Bm�1 (dashed line) and Bm�−1 (solid
line) versus frequency for the parameters listed in Fig. 1,
β � βc � 0.0062, and (a) κ � 1 and (b) κ � 0.5. In the case of
κ � −1; −0.5, the dashed and solid lines are interchanged.

Fig. 5. (a) Streamlines of Poynting vector, (b) currents in the x, y
plane at selected slices along the array axis z � 0.25 (inside the sphere)
and z � 0.5 (between spheres), and (c) currents in the x, z plane at
selected slices y � 0.
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Fig. 6. (a) Iso-surfaces of Poynting vector at two selected values and
(b) value of azimuthal component of the Poynting vector normalized
to the incident wave around the spheres at distance r � 0.588 from
the center of sphere and z � 0.
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Fig. 7. Total cross-section for scattering of plane wave by the array
in the vicinity of the Bloch BSC with OAM at β � βc � 0.0062.
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3. DISCUSSIONS AND SUMMARY

The standing BSCs with OAM m � �1 but β � 0 and m �
�2 and the propagating Bloch BSCs with β ≠ 0 but with zero
OAM were previously predicted due to the axial symmetry of
the array [20,22]. In the present paper, we have filled the gap
between the two by finding propagating Bloch BSCs with both
β ≠ 0 and OAM m � �1 for dielectric particles with the per-
mittivity around ten. The Bloch vector βc can be tuned by
variation of the permittivity, as shown in Fig. 3. Although
we revealed only m � �1 BSCs, in general, there is no restric-
tion for the Bloch BSCs with OAM jmj > 1. To the best of our
knowledge, the BSCs with OAM guided along the array have
not been previously proposed as a possible fundamental effect
for device applications. One of the most important possible ap-
plications is lasing through the BSC, as was demonstrated in
Refs. [32–34]. The principal feature of lasing by the array
of dielectric spheres is that the laser beam carries the OAM
without the use of special chiral symmetry broken media
[35–37]. The next important result is excitation of propagating
quasi-BSCs with OAM by linearly polarized plane waves.

In practice, the array holds a finite number of spheres.
Preliminary simulations show that in a finite array of spheres,
the BSCs become quasi-BSCs [21]. Nevertheless the giant enhance-
ment of scattered field in the near zone holds in a finite array too
though the enhancement factor decays towards the ends of the array.

Funding. Ministry of Education and Science of the
Russian Federation (Minobrnauka) (N 3.1845.2017); Russian
Foundation for Basic Research (RFBR) (16-02-00314).

Acknowledgment. This work was partially supported by
the Ministry of Education and Science of the Russian
Federation and by the Russian Foundation for Basic
Research. We acknowledge discussions with D. N. Maksimov.

REFERENCES

1. A.-S. Bonnet-Bendhia and F. Starling, “Guided waves by electromag-
netic gratings and non-uniqueness examples for the diffraction prob-
lem,” Math. Methods Appl. Sci. 17, 305–338 (1994).

2. D. V. Evans and R. Porter, “Trapping and near-trapping by arrays of
cylinders in waves,” J. Eng. Math. 35, 149–179 (1999).

3. O. Cohen, B. Freedman, J. W. Fleischer, M. Segev, and D. N.
Christodoulides, “Grating-mediated waveguiding,” Phys. Rev. Lett.
93, 103902 (2004).

4. S. P. Shipman and S. Venakides, “Resonant transmission near
nonrobust periodic slab modes,” Phys. Rev. E 71, 026611 (2005).

5. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in
the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).

6. W. J. Hsueh, C. H. Chen, and C. H. Chang, “Bound states in the con-
tinuum in quasiperiodic systems,”Phys. Lett. A 374, 4804–4807 (2010).

7. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.
Joannopoulos, and M. Soljačić, “Observation of trapped light within
the radiation continuum,” Nature 499, 188–191 (2013).

8. C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos,
and M. Soljačić, “Bloch surface eigenstates within the radiation con-
tinuum,” Light Sci. Appl. 2, 1 (2013).

9. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S.
Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact sur-
face Fano states embedded in the continuum of the waveguide ar-
rays,” Phys. Rev. Lett. 111, 240403 (2013).

10. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical perspective
for bound states in the continuum in photonic crystal slabs,” Phys.
Rev. Lett. 113, 037401 (2014).

11. E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation
continuum in a periodic array of dielectric rods,” Phys. Rev. A 90,
053801 (2014).

12. Z. Hu and Y. Y. Lu, “Standing waves on two-dimensional periodic
dielectric waveguides,” J. Opt. 17, 065601 (2015).

13. M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, and X. Luo,
“Sharp Fano resonance induced by a single layer of nanorods with
perturbed periodicity,” Opt. Express 23, 2895–2903 (2015).

14. C.-L. Zou, J.-M. Cui, F.-W. Sun, X. Xiong, X.-B. Zou, Z.-F. Han, and
G.-C. Guo, “Guiding light through optical bound states in the continuum
for ultra high-Qmicroresonators,” Laser Photon. Rev. 9, 114–119 (2015).

15. Y.-J. Hung and I.-S. Lin, “Visualization of Bloch surface waves and
directional propagation effects on one-dimensional photonic crystal
substrate,” Opt. Express 24, 16003–16009 (2016).

16. Y. Wang, J. Song, L. Dong, and M. Lu, “Optical bound states in slotted
high-contrast gratings,” Opt. Lett. 33, 2472–2479 (2016).

17. C. Blanchard, J.-P. Hugonin, and C. Sauvan, “Fano resonances in
photonic crystal slabs near optical bound states in the continuum,”
Phys. Rev. B 94, 155303 (2016).

18. L. J. Yuan and Y. Y. Lu, “Propagating Bloch modes above the light line
on a periodic array of cylinders,” J. Phys. B 50, 05LT01 (2017).

19. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić,
“Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).

20. E. N. Bulgakov and A. F. Sadreev, “Light trapping above the light cone
in one-dimensional array of dielectric spheres,” Phys. Rev. A 92,
023816 (2015).

21. E. N. Bulgakov and A. F. Sadreev, “Transfer of spin angular momen-
tum of an incident wave into orbital angular momentum of the bound
states in the continuum in an array of dielectric spheres,” Phys. Rev. A
94, 033820 (2016).

22. E. N. Bulgakov and D. N. Maksimov, “Light guiding above the light line
in arrays of dielectric nanospheres,” Opt. Lett. 41, 3888–3891 (2016).

23. E. N. Bulgakov and A. F. Sadreev, “Trapping of light with angular
orbital momentum above the light cone in a periodic array of dielectric
spheres,” Adv. Electromagn. 6, 1 (2017).

24. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momen-
tum,” Phys. Today 57(5), 35–40 (2004).

25. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins,
behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).

26. A. F. Sadreev, E. N. Bulgakov, and I. Rotter, “Bound states in the con-
tinuum in open quantum billiards with a variable shape,” Phys. Rev. B
73, 235342 (2006).

27. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene
based on bound states in the continuum,” Sci. Rep. 5, 8266 (2015).

28. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhance-
ment of asymptotic optical bound states in the continuum,” Sci. Rep. 5,
18301 (2015).

29. C. M. Linton, V. Zalipaev, and I. Thompson, “Electromagnetic guided
waves on linear arrays of spheres,” Wave Motion 50, 29–40 (2013).

30. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
31. C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, “Resonant

tunneling in a quantum waveguide: effect of a finite-size attractive
impurity,” Phys. Rev. B 60, 10962–10970 (1999).

32. Z. Zhang, Y. Li, W. Liu, and J. Yang, “Controllable lasing behavior
enabled by compound dielectric waveguide grating structures,”
Opt. Express 24, 19458–19466 (2016).

33. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté,
“Bound state in the continuum nanophotonic laser,” in CLEO: Science
and Innovations (2016), paper SM4E.

34. P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser,
and L. Feng, “Orbital angular momentum microlaser,” Science 353,
464–467 (2016).

35. Y. Gorodetski, A. Drezet, C. Genet, and T. W. Ebbesen, “Generating
far-field orbital angular momenta from near-field optical chirality,”
Phys. Rev. Lett. 110, 203906 (2013).

36. R. Dall, M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp,
C. Schneider, S. Höfling, and E. A. Ostrovskaya, “Creation of orbital
angular momentum states with chiral polaritonic lenses,” Phys. Rev.
Lett. 113, 200404 (2014).

37. N. Yu and F. Capasso, “Optics with designer metasurfaces,” Nat.
Mater. 13, 139–150, 2014.

952 Vol. 34, No. 6 / June 2017 / Journal of the Optical Society of America A Research Article


	XML ID funding

