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Abstract: The article reports on light enhancement by structural resonances in linear
periodic arrays of identical dielectric elements. As the basic elements both subwavelength
spheres and rods with circular cross section have been considered. In either case it has been
demonstrated numerically that high-Q structural resonant modes originated from bound states
in the continuum enable near-field amplitude enhancement by factor of 10–25 in the red-to-near
infrared range in lossy silicon. The asymptotic behavior of the Q-factor with the number of
elements in the array is explained theoretically by analyzing quasi-bound states propagation
bands.
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1. Introduction

Light trapping by periodic structures is a mainstream idea in thin film photovoltaics [1, 2]. The
idea dates back to the paper by Sheng, Bloch, and Steplemann who fist proposed to employ a
periodic grating substrate in amorphous silicon solar cells [3]. Since then the periodic structures
that diffract light and increase the optical length within the absorbing material have been a
subject of numerous publications [4–8]. Most remarkably the dielectric gratings have allowed
for large enhancement factors [9] which exceed the fundamental limit for a Lambertian cell [10]
that holds well only if there is a high density of optical modes in the plane of the structure. At
the same time as one approaches the nanophotonic regime the wave nature of light comes into
play to call for theoretical approaches taking into account optical resonances [11].

Due to numerous applications [12] trapping, focusing, and concentration of light at the
nanoscale have recently emerged as topics of great interest primarily in regard to various
plasmonic devices [13–19] and photonic band-gap structures [20–23]. Another promising
directions of research is all-dielectric nanophotonics [24, 25] which employs subwavelength
dielectric objects, such as e.g. spherical nanoparticles [26], to tailor the resonant response of
the system. Scattering by clusters dielectric spheres has been in research focus for a long
time [27–31] with high-Q resonant modes in linear [32–34] as well as circular [35] arrays
predicted a decade ago. Nowadays, thanks to immense progress in manipulating dielectric
nanoparticles [36–38], we witness a surge of interest in optical devices based on clusters and
arrays of dielectric spheres including subwavelength waveguides [39–41], optical nanoantenas
[36, 42], and circular oligomers [43, 44].

In this article we consider light enhancement by high-Q structural resonances in linear one-
dimensional periodic arrays of identical dielectric elements. In what follows the term structural
resonance will be applied to a resonance whose position and width are dictated by the spatial
distribution of dielectric elements. Thus, the structural resonances can be contrasted to both
natural material resonances and Mie resonances of individual dielectric elements. As the basic
elements both spheres and rods with circular cross section will be considered. To achieve high-
Q resonances and, consequently, high enhancement factors we propose to tune the parameters
of the arrays to bound states in the continuum (BSCs) which are localized states with the
eigenfrequency embedded into continuum of propagating solutions [45]. With the state of the
art in the BSC research thoroughly reviewed in the above reference here we simply mention the
key experiments on optical BSCs in periodic dielectric structures [46–51].

The BSCs in linear periodic arrays of dielectric cylinders were predicted theoretically in the
earlier paper [52] where the role of the BSCs in wave scattering was also highlighted. More
recently, the problem of BSCs in arrays of dielectric rods [53] was revisited with the existence
domains in the plane of radius and dielectric constant of the cylinders determined through
extensive numerical sumulations. Unlike the guided solution below the line of light [54,55] the
qusi-bound modes in the parametric vicinity of a true BSC are resonantly coupled with the freely
propagating plane waves to emerge in the scattering cross-section as sharp Fano resonances. In
fact the collapse of a Fano resonance is a generic feature inherent to BSCs [56–59] including
quasi-BSCs in plasmonics [60]. In the field of optics the above feature has allowed for design
of narrow band normal incidence filters [61–63]. The BSCs in linear arrays of dielectric spheres
were first reported in [64]. As before for arrays of cylinders we contrast the BSCs in arrays
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Fig. 1. BCSs in arrays of dielectric rods. Left panel: set-up of the array in x0y-plane. Right
panel: field patterns of BSCs 2, 3 from Table 1.

of spheres to the guided solutions below the line of light [32, 33, 39, 40, 65, 66]. The effect of
BSCs on plane wave scattering was considered [67, 68] with the trapping of light with orbital
angular momentum theoretically predicted. Light enhancement by symmetry protected BSCs
in photonic crystal slab was demonstrated in [69–71]. Here, along the same line we propose to
employ arrays of finite number of dielectric elements. Although formally BSCs do not exist in
finite structures [72] their traces could be observed in form of high-Q structural resonances [41]
similarly to the traces of photonic band structure emerging in scattering on small clusters of
spherical particles [73].

The article is organized as follows. In Section 2 we briefly review the BSCs in infinite arrays
in dielectric rods. Then we demonstrate structural resonances in the parametric vicinity of BSCs
in finite arrays. A simple theory predicting the positions of the structural resonances is proposed.
In Section 3 we show that the same theory applies for the arrays of dielectric spheres. In Section
4 we elaborate asymptotic behavior of the Q-factor and the enhancement factor for various types
of the structural resonances with the increasing number of elements in the array. Finally, we
conclude in Section 5.

2. Quasi-BSCs in arrays of dielectric rods

We consider an array of identical dielectric rods of radius R arranged along the x-axis with
period a. The axes of the rods are collinear and aligned with the z-axis. The cross-section of the
array in x0y-plane is shown in Fig. 1 (left panel). The numerical procedure for finding electro-
magnetic field in arrays of rods is well-known in literature [74] and was adapted for BSCs
in [52]. Suppose that the array is illuminated by a stationary TM plane wave with its electric
vector pointing along the axes of the rods, then according to the above references we have the
scattered field inside the rods in the following form

Ez (x , y) =
∑

j

∞∑

m=0

cm ( j)eimθ j Jm (k0
√
ε ρ j ), (1)

where j enumerates the rods, θ j , ρ j are the local polar coordinates for the j rod, Jm (k0
√
ε ρ j )

- the Bessel function, ε - the dielectric permittivity, cm ( j) - the expansion coefficient, and k0 -
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Table 1. BSCs in linear arrays of dielectric cylinders, ε = 15. SP stands for symmetry
protected.

BSC SP k0a k0
xa R/a ν μ aν aμ

1 Yes 1.8412 0 0.4400 4 2 5.25 ·10−4 0.20
2 Yes 3.0758 0 0.4400 2 2 9.6 ·10−3 0.05
3 Yes 3.5553 0 0.4400 4 2 2.4 ·10−3 0.177
4 Yes 2.3864 0 0.4400 2 2 6.85 ·10−3 0.092
5 No 2.8299 0 0.4441 4 2 3.17 ·10−3 -0.085
6 No 3.7156 1.6501 0.4400 2 1 5.27 ·10−3 -0.0721

the frequency. Outside the rods we have a similar expression for the scattering function

Ez (x , y) =
∑

j

∞∑

m=0

cm ( j)eimθ j H (1)
m (k0ρ j ), (2)

where H (1)
m (k0ρ j ) is the outgoing Hankel function. The summation over m in Eqs. (1) and

(2) runs to infinity. The only approximation in the numerical method is truncation to a finite
number of summands in Eqs. (1) and (2). This approximation makes possible to produce a finite
interaction matrix of the scattering system and subsequently a finite number of equations for
cm ( j), cm ( j) as described in [52]. The method is known to converge rapidly with the number
of multipoles [74]. In our computations we used m = 0, 1, ..., 9 which results in the relative
truncation error 10−5 as defined in [41]. We refer the reader to [52] for the lengthy equations
for amplitudes cm ( j), cm ( j).

2.1. BSCs in infinite arrays

In case of infinite arrays the summation over index j in Eqs. (1) and (2) is run from minus to
plus infinity. The translation invariance allows to apply the Bloch theorem in the form [74]

cm ( j) = cm (0)eikx a j , cm ( j) = cm (0)eikx a j , (3)

where kx is the x-axis component of the wave vector (Bloch vector). Although the solution (2) is
a superposition of outgoing functions it still can be totally decoupled from the far field outgoing
waves due to destructive interference between the waves emanating from different rods [52].
In that situation a BSC exists in the system even without the array being illuminated from the
far zone. In dependence on kx the BSCs are exceptional points in the quasi-BSCs propagation
bands where the imaginary part of the resonant frequency k0 turns to zero [41]. In general the
asymptotic behavior of the imaginary and real parts of the resonant frequency in the vicinity of
a BSCs is described by the following formulas

−�{k0a} = aν (kxa − kBSC
x a)ν + O[(kxa − kBSC

x a)ν+2], (4)

and
�{k0a} = kBSC

0 a − aμ (kxa − kBSC
x a)

μ
+ O[(kxa − kBSC

x a)μ+1], (5)

where kBSC
0 is the BSC frequency, kBSC

x - the BSC wave vector along the array axis, and ν, μ -
the leading coefficient of polynomial expansion [41]. The physical meaning of Eq. (4) is simple;
once the system is detuned in kx -space from a true BSC point kBSC

x the resonance acquires finite
life-time given by the inverse of �{k0}. Although the majority of BSCs have kBSC

x = 0, there
are also so-called Bloch BSCs which are trapped waves travelling along the array [52, 64, 75].
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In Table 1 we collect the parameters of six BSCs found for infinite arrays with ε = 15 (Silicon).
The values of aμ and aν in Table 1 were extracted from the data by a polynomial fit. For a
typical picture of the band structure of Bloch BSCs the reader is addressed to [41].

There are two generic types of BSCs in arrays of dielectric rods [52], symmetry protected,
and unprotected by symmetry. Field patterns of symmetry protected BSCs 2, 3 are shown in the
left panel in Fig. 1 where one can see that those BCSs are symmetrically mismatched with a
plane wave normally incident to the array. The asymptotic behavior of the resonance live-times
in the vicinity of a BSC was recently considered by Yuan and Lu [76] who argued that for
symmetry protected BSCs the leading term should be ν = 2. There were no, however, reliable
estimate for aν=2. In our numerical simulations we found that both ν = 2 and ν = 4 are possible.
In Table 1 we presented the data on four symmetry protected BCSs a couple for each ν = 2
and ν = 4. The asymptotic behavior of unprotected BSCs was also considered in [76] with a
mathematically rigorous result that for the the standing wave BSCs unprotected by symmetry
the leading term is ν = 4 which is in accordance with our findings for BSC 5. For Bloch BSC 6
we found ν = 2.

2.2. Quasi-BSCs in finite arrays

Next we discuss the the light scattering by various types of quasi-BSCs in finite arrays to
highlight the features related to the asymptotic behavior described by Eqs. (4) and (5). The
array now consists of N elements and summation over j in Eqs. (1) and (2) runs from 1 to
N . In Fig. 2 we present the results of numerical simulations of wave scattering by finite arrays
of N = 50 rods. The parameters k0 , kx which are the frequency and the x-component of an
impinging TM plane wave were swept in the parametric vicinity of BSCs 2 and 3. Notice that
only positive kx were considered for the system is symmetric with respect to the inversion of
the x-axis. For simplicity the response was recorded as the mean of the absolute value of the
leading coefficient in the expansion Eq. (1)

〈|cm0 |〉 =
1
N

N∑

j=1

|cm0 ( j) |, (6)

where m0 is the index of the coefficients cm0 ( j) in Eq. (1) with the largest absolute value (see
top panel in Fig. 2 where m0 = 1).

In both cases one can see "bright" spots following the asymptotic expression for the real
part of the resonant frequency (5). These spots correspond to the structural resonances with the
widths of the spots along k0-axis proportional to the inverse Q-factors which will be considered
in Section 4. The nature of the structural resonances could be easily understood by close
examination of the upper panel in Fig. 2 where we plotted the expansion coefficients cm ( j)
for the first resonant spot. One can see from the upper panel in Fig. 2 that the solution is nothing
but a sinusoidal standing wave locked between the edges of the array. Thus, to recover the
spectrum of the structural resonances one can write down the following condition for the k (p)

x

of the p structural resonance.

Nak (p)
x = πp, p = 1, 2, . . . , . (7)

Then by virtue of Eq. (5) we have

�{k (p)
0 a} = kBSC

0 a − aμ

(
πp
N
− kBSC

x a
) μ
, (8)

with p corresponding to the number of half-wavelengths between the edges and the field patterns

E (p)
z (x) � f (x , y) sin

(
πpx
Na

)
, (9)
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Fig. 2. Light scattering in the parametric vicinity of symmetry protected BSCs for dielectric
ε = 15 arrays of rods under illumination by a TM plane wave with unit amplitude.
Top panel: expansion coefficients cm ( j) vs. the number of the rod j for N = 50 for
BSC 3. The impinging wave parameters are tuned to the first resonance Eq. (7). The
resulting field pattern is shown on top of the subplot. South-west: mean value of the leading
coefficient 〈cm0 〉 vs. k0 , kx in the vicinity of BSC 2 for N = 50. South-east: The same for
BSC 3. White dash lines correspond to asymptotic behavior by Eq. (5). The frequencies of
structural resonances by Eq. (8) are shown by red horizontal lines.

where f (x , y) = f (x + a, y) is the periodic functions corresponding to the BSCs profiles in Fig.
1. Remarkably, despite the BCSs are standing waves the position of the first structural resonance
p = 1 is shifted from kx = 0 according to Eqs. (7) and (8). The field pattern of the first resonance
is shown on top of the upper panel in Fig. 2 to visualize Eq. (9). Notice the resemblance with
BSC 3 in Fig. 1. The resonant frequencies by Eq. (8) are plotted in Fig. 2 by red horizontal
lines. One can see that Eq. (8) predicts to a good accuracy the positions of two first resonances
p = 1, 2. For p ≥ 3 the positions of resonances deviate from Eq. (8) due to the higher order
terms in the polynomial expansion Eq. (5). This effect could be eliminated by further increase
of the length of the array Na with all resonances shifting to the BSC point according to Eq. (8).
In addition to the main sequence (8) in Fig. 2 one can see satellite resonant peaks. We speculate
that the satellites are due to oscillating coupling of the structural resonances to the impinging
wave with the same frequency but a different kx component. Finally, one can see from Fig. 2
that a BSC with ν = 4 produces a picture of resonances with smaller high-intensity spots to
evidence higher Q-factors.
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Fig. 3. Light scattering in the parametric vicinity of BSCs unprotected by symmetry for
dielectric ε = 15 arrays of rods under illumination by a TM plane wave with unit amplitude.
Left panel: Standing wave BSC 5 unprotected by symmetry; mean value of the leading
coefficient 〈cm0 〉 Eq. (6) vs. k0 , kx in the parametric vicinity of the BSC for N = 50 rods.
The BSC field pattern is shown on top of the subplot. Right panel: the same for Bloch
BSC 6; the star shows the position of BSC 6 in the parametric space k0 , kx . The BSC
field pattern is shown on top of the subplot in form of the real part of the travelling wave
amplitude. White dash lines correspond to asymptotic behavior by Eq. (5). The frequencies
of structural resonances by Eq. (8) are shown by red horizontal lines.

In Fig. 3 we present the results of numerical simulations of wave scattering by finite arrays
of N rods in the parametric vicinity of BSCs 5 and 6 from Table 1. The field patterns are shown
on top of the plot to demonstrate that now the BCSs are not symmetrically mismatched to the
normally incident wave. In contrast to symmetry protected ones the BSCs of this sort are much
more difficult to come by for they always require some adjustment of either radius R or Bloch
vector kx to occur through an involved interference picture [52]. One can see from Fig. 3 that
the response function (6) demonstrates features very similar to those in Fig. 2 with structural
resonances emerging at frequencies by Eq. (8). Again for standing wave BSC 5 we see that
only position of two first structural resonances are accurately predicted by Eq. (8). Another
source of error could be additional phase accumulated in reflection from the edge of the array
not accounted for by Eq. (7). Also notice that for Bloch BSC 6 the structural resonances are
equidistant with aμ=1 being the group velocity according to Eq. (5).

                                                                                                 Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14142 



Fig. 4. BCS in arrays of dielectric spheres. Left panel: set-up of the array. Right panel:
The field patterns in form of Hy component for BSC 7 and Hx component for BSC 8 in
x0z-plane.

Table 2. BSCs in linear arrays of dielectric spheres, ε = 15. SP stands for symmetry
protected.

BSC SP k0a k0
xa R/a ν μ aν aμ

7 Yes 3.6022 0 0.400 2 2 1.366 ·10−2 0.010
8 No 2.9280 0 0.485 4 2 0.1818 ·10−2 -0.0793

3. Quasi-BSCs in arrays of dielectric spheres

The system under scrutiny is schematically depicted in Fig. 4. For arrays dielectric spheres we
will follow the recipes from [64] where the method by Linton, Zalipaev, and Thompson [66]
was adapted for finding BSCs. The parameters of two BSCs, one symmetry protected, and one
unprotected by symmetry are given in Table 2. In the above referenced method the magnetic and
electric vectors could be found in terms of Mie coefficients am

n ( j), bmn ( j). For instance, outside
the spheres one has for the the scattered EM field electric vector E(r)

E(r) =
∑

j

∞∑

n=m∗

[
am
n ( j)Mm

n (r − r j ) + bmn ( j)Nm
n (r − r j )

]
, (10)

where j the number of the sphere in the array, r j - the coordinates of the j sphere, m - azimuthal
number, m∗ = max(1,m), and Nm

n (r),Mm
n (r) are spherical vector harmonics [77]. Again in

the case of infinite arrays we have according to the Bloch theorem

am
n ( j) = am

n (0)eikx a j , bmn ( j) = bmn (0)eikx a j . (11)

In this paper we restrict ourself we with m = 0, though BSCs with higher orbital angular
momentum are possible [67, 68]. The field patterns of BSCs from Table 2 are shown in the left
panel in Fig. 4. Notice that BSC 7 in Table 2 is a wave of the TM-type which means Hx=0, and
b0
n ( j) = 0 [64]. In contrast BSC 8 is a TE-wave with Ex=0, and b0

n ( j) = 0.
Let us now consider the resonant response of finite array with N spheres. Despite the

similarity of Eq. (10) to Eqs. (1) and (2) the numerical method is now computationally much
more expensive due to the necessity to evaluate lattice sums with involved special functions [66].
Though limited to the power of a desktop computer we can still circumvent the computational
difficulties by recollecting the resonant picture from the previous section. First by using Eq. (8)
one can obtain the frequencies of a structural resonance. Then the response function Eq. (6) is
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Fig. 5. Light scattering by structural resonances in the parametric vicinity of BSC 8 in
arrays of dielectric spheres. Top panel: the leading coefficients in Eq. (10) for the first
structural resonance N = 50. Bottom panel: the leading coefficients in Eq. (10) for the
second structural resonance N = 200. The insets show the response function Eq. (6)
evaluated with leading Mie coefficients a0

1 ( j), a0
3 ( j) against the Bloch wave vector kx .

computed numerically only in dependance on kx with coefficients a0
n ( j), b0

n ( j) from Eq. (10)
now used instead of cm ( j) in Eq. (6). The results for BSC 8 from Table 2 under illumination by
a TE-polarized plane wave of unit amplitude are plotted in Fig. 5. Again one can see sinusoidal
standing waves similar to Fig. 2. Notice that for the second resonance p = 2 in Eq. (8) we
intentionally chose N = 200 to eliminated the errors due to the higher order terms in Eq. (5).
The response function against kx for k0 corresponding to the first and the second resonances Eq.
(8) is also demonstrated in the insets in Fig. 5. Again one observes an oscillatory dependance
with a pronounced maximum corresponding to Eq. (7) as in Figs. 2,3. For BSC 7 the same
results were observed under illumination by a TM-polarized plane wave.

4. Light enhancement

Bearing in mind the structure of resonant response of finite arrays we can now address the
question of how many dielectric elements in the array are needed to observe the effect of
light enhancement in a realistic experiment with two figures of merit being the quality and
enhancement factors. Before proceeding to the assessment of those quantities we would like to
mention that so far all results were presented in dimensionless units to emphasize that the model
is applicable to silicon dielectric arrays both in the visible as well as in the near infrared where
the real part of the dielectric constant varies insignificantly with the frequency of light [78, 79].
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Fig. 6. Q-factors for structural resonances against the number of dielectric elements N . Left
panel: arrays of rods; BCR with k0a = 2.8908, kxa = π, R/a = 0.44. Right panel: arrays
of spheres; BCR with k0a = 2.052, kxa = π, R/a = 0.40. The black dash line shows
the best result found in [33]. The horizontal lines show the limits due to material losses in
silicon.

It should be noted, however, that the imaginary part in the same range can vary by orders of
magnitude. Thus, one may expect that the effect of light enhancement will be limited by the
material losses in silicon.

4.1. Q-factors

Here we use the standard definition of the Q-factor

Q =
ω

γ
, (12)

where ω is the resonance frequency, and γ is the resonance width, both quantities extracted
from the scattering data described in the previous sections Figs. 2,5. The Q-factors against the
number of dielectric elements in the array for the first (p = 1 in Eq. (8)) structural resonance
of BSCs 2, 3, 7, and 8 are plotted in Fig. 6. As expected from Eqs. (4) and (7) the Q-factor
for resonances with ν = 2 scales as Q ∼ N2, however, for ν = 4 we observed Q ∼ N3 which,
seemingly, contradicts our theoretical predictions. The contradiction can be resolved by noticing
that Eq. (4) only describes one specific mechanism of the radiation losses equally applicable for
both finite and infinite arrays, namely, the radiation from the sides of the arrays due to detuning
from the true BSC point in the parametric space. In the case of finite arrays there is another
radiation mechanism due to the losses at the edges as the wave bounces between them to form
the sinusoidal resonant mode shape Eq. (9). Obviously, for the guided modes below the line of
light that would be the only possible radiation mechanism because the radiative losses at the
sides are forbidden by total internal reflection. In fact, the scaling law for the edge radiation is
already obtained in [33] where the authors demonstrated that the Q-factor scales as Q ∼ N3.
Thus, one can conclude that in case of ν = 4 the radiative losses at the sides are suppressed by
the radiative losses at the edges resulting in the scaling law for resonances formed by guided
modes below the line of light [33].

In accordance with our findings we can now define side-coupled resonances with Q ∼ N2

for BSCs with ν = 2, and a wider class of edge-coupled resonances with Q ∼ N3 which

                                                                                                 Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14145 



10 32 100 320
N

0

0.5

1

1.5

2

2.5

3

lo
g(

F)

F~N

BSC 2
BSC 3
BCR

10 32 100 320
N

0

0.5

1

1.5

2

2.5

3

lo
g(

F) F~N

BSC 7
BSC 8
BCR

Fig. 7. The enhancement factor of dielectric arrays. Left panel: arrays of rods. Right panel:
arrays of spheres.

encompasses both BSCs with ν = 4 as well as the below continuum resonances (BCRs). Now
it is instructive to compare our results with the Q-factors for the BCRs. To do that in Fig. 6 we
plot the Q-factors for two BCR one for rods and spheres each. The parameters of the BCRs are
given in the caption to Fig. 6. One can see that both ν = 2 BSCs and BCR demonstrate a similar
dependance against N .

Finally, let us access the role of the material losses. The Q-factor limits were estimated based
on the data on the imaginary part of refractive index at λ = 500, 700nm by [78], and at λ =
1000nm by [79]. One can easily see from Fig. 6 that Q ≈ 103–104 resonances can be observed
with silicon in the red-to-near-infrared range for arrays of N ≈ 10–15 elements.

4.2. Enhancement factors

We define the enhancement factor F as the average of the square root of the field intensity I (r)
within the volume V = πR2Na (or area 2RNa) containing the whole of the finite array divided
by the square root of the field intensity carried by the incoming wave I0.

F =
1√
I0V

∫

V

dr
√

I (r). (13)

Although according to Eq. (9) the EM-field varies significantly in the vicinity of the array the
enhancement factor F defined through Eq. (13) is able to quantify to what extent the field
amplitude is enhanced by resonant scattering. In Fig. 7 we plot the enhancement factors for the
first (p = 1 in Eq. (8)) structural resonance of BSCs 2, 3, 7, and 8 as well as the BCRs used in
Fig. 6. The arrays were illuminated with a plane wave with frequency equal to the frequency of
the resonance. The kx - component of the incident wave each time was tuned to the maximum
response which in case of BSC were given by Eq. (7). For BCR the maximum response was
found at the strict normal incidence. One can see that only for the side-coupled resonances BSC
2,7 the enhancement factor is nicely fit by the expected dependence F ∼ √Q ∼ N [71]. Notice
that in the above reference the enhancement was defined through intensity rather that amplitude.
For the edge-coupled resonances we were unable to produce a simple polynomial fit which
is probably due to the residual side-coupling emerging through the specific excitation of the
resonance by a plane wave. More interesting, though, is that the side-coupled resonances BSC
2,7 produce significantly larger enhancement factors than the edge-coupled ones, and hence
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should be opted for as the operating resonances for light enhancement. In lossy silicon the
limits for the enhancement factor of the side-coupled resonances will be placed at the same
arrays lengths as were found from Fig. 6 for the Q-factors. Thus, comparing Fig.7 against Fig.6
one can conclude that the amplitude enhancement factors F ≈ 10–25 can be achieved with
arrays of 10–15 silicon subwavelength nanospheres in the red-to-near-infrared range with the
side-coupled resonances.

5. Conclusion

We demonstrated that the traces of bound states in the continuum in one-dimensional dielectric
arrays can be observed as a specific family of high-Q resonances specified by the number of
half-wavelengths placed between the edges of the arrays. Two types of such resonances were
identified. The edge-coupled resonances possessing a higher Q-factor are similar to the below
continuum resonances known earlier [33] to have the Q-factor scaling law as Q ∼ N3 with N
being the number of elements in the array. In contract, the side-coupled resonances with lesser
Q-factors have the scaling law Q ∼ N2. Interestingly, it is the side-coupled resonances related
to BSCs that under illumination by a plane wave demonstrate higher enhancement factors
providing a platform for light enhancement by finite dielectric arrays with the parameters tuned
to a BSC.

It should be pointed out that in terms of both the Q-factor asymptotics and compactness
our set-up is no match to ultra-compact Fabry-Perot cavities [80] where the Q-factor scales
exponentially with the number of periods in Bragg mirrors. Those asymptotics, however, are
hard to achieve in silicon nonophotonics as the subwavelength spheres are scaled down in size
to the visible wavelength where the material losses become significant. Our simulations show
that in the red-to-near-infrared range the Q-factors of 103–104 and the amplitude enhancement
factors F ≈ 10–25 can be achieved with arrays of 10–15 silicon subwavelength nanospheres.

In contrast to familiar Fano resonances [56–59] the structural resonances in finite systems
are shown to generate a complicated picture in the resonant response to illumination by a
plane wave. With the frequency of the impinging wave tuned to the structural resonance we
observed the oscillating behavior of the enhanced EM-field amplitude under variation of the
wave vector component directed along the array. In real systems the effect of finiteness will
be always eventually obscured by material losses. One may expect that with the increase of
the length of the array the many pronounced resonances will merge into a Fano feature. We
speculate that this picture could be explained by a properly set coupled mode theory [81] based
on analytical estimates for resonant frequencies and mode shapes obtained in this paper. Along
with asymptotic scaling law for edge-coupled resonances enhancement factor this constitutes a
goal for future studies.

The bound states in the continuum were recently employed for engineering high-Q resonators
for compact nanophotonic lasers [82] providing access to new coherent sources with intriguing
topological properties for optical trapping, biological imaging, and quantum communication.
To provide useful guidelines for practical implementations of structures supporting the bound
states the effects of both structural fluctuations [83] and substrate coupling [84] have recently
been considered. As it was mentioned earlier in the introduction the BSCs are only allowed
in infinite systems [72] so that in design of BSC-based devices the researchers will always be
bound with residual radiation losses. We believe that our model of the BSC related structural
resonances sheds some light onto important aspects of emerging BSC nanophotonics [45, 85].
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