_____ ЛАБОРАТОРНАЯ ____ ТЕХНИКА

УДК 537.632.5

СВЕРХВЫСОКОВАКУУМНАЯ МНОГОФУНКЦИОНАЛЬНАЯ УСТАНОВКА ДЛЯ СИНТЕЗА НИЗКОРАЗМЕРНЫХ СТРУКТУР И ИХ IN SITU ИССЛЕДОВАНИЙ МЕТОДОМ СПЕКТРАЛЬНОЙ МАГНИТОЭЛЛИПСОМЕТРИИ В ТЕМПЕРАТУРНОМ ДИАПАЗОНЕ 85–900 К

© 2017 г. Д. В. Шевцов^{а, b,} *, С. А. Лященко^{а, b}, С. Н. Варнаков^{а, b}

 ^a Институт физики им. Л.В. Киренского СО РАН Россия, 660036, Красноярск, Академгородок, 50, стр. 38
 ^b Сибирский государственный аэрокосмический университет им. академика М.Ф. Решетнева Россия, 660037, Красноярск *e-mail: snowman-82@mail.ru Поступила в редакцию 10.10.2016 г. После доработки 27.01.2017 г.

Представлены результаты модернизации сверхвысоковакуумной многофункциональной установки, позволяющей в едином технологическом цикле получать полупроводниковые или металлические наноструктуры и исследовать их оптические и магнитооптические свойства в температурном диапазоне 85–900 К. Возможности созданной системы были продемонстрированы на примере исследования температурной зависимости комплексной диэлектрической проницаемости объемного Si посредством спектральных эллипсометрических измерений.

DOI: 10.7868/S003281621705010X

Непрерывное развитие микроэлектронной промышленности в сторону миниатюризации, энергосбережения и увеличения производительности электронных устройств обеспечивает стабильный спрос на новые материалы, технологию их синтеза и исследования свойств. Например, применение методов молекулярно-лучевой эпитаксии полупроводников позволяет создавать высококачественные структуры полевых транзисторов для устройств электроники [1], а эпитаксия ферромагнитных материалов - путь для создания устройств спинтроники [2]. Кроме методов синтеза важны и методы in situ анализа структурных, оптических и магнитных свойств создаваемых материалов. Особенно актуальны неразрушающие in situ методы анализа, поскольку для исследования синтезируемых наноструктур необходим сверхвысокий вакуум, препятствующий процессам загрязнения и окисления образца.

В роли неразрушающего бесконтактного метода анализа в последние десятилетия хорошо зарекомендовал себя метод эллипсометрии [3]. Применение спектральной эллипсометрии в диапазоне от 1.5 до 6 эВ с приложением к образцу внешнего магнитного поля фактически объединяет эллипсометрические и магнитооптические методы анализа, что позволяет определять как оптические свойства и морфологию поверхности [4], так и исследовать электронную структуру и магнитные свойства синтезируемых ферромагнитных материалов [5]. Однако наибольший исследовательский интерес представляют неразрушаюшие in situ методы анализа с возможностью контроля и задания температуры образца в широком диапазоне – от единиц градусов Кельвина и вплоть до термического разрушения образца. Например, в случае ферромагнетиков анализ температурных зависимостей поля насыщения и коэрцитивной силы из магнитооптических измерений позволяет установить фазовый состав ферромагнитной структуры, поведение и тип доменных границ [6].

Анализ литературных данных показывает, что in situ контроль температурных зависимостей оптических свойств позволяет: 1) наблюдать твердофазные реакции и изменение морфологии поверхности образца [7]; 2) проводить контроль технологии отжига и протекания межслоевых реакций в различных наноструктурах, измеряя спектрограммы диагональных компонент тензора диэлектрической проницаемости в зависимости от температуры; 3) проводить анализ спин-

Рис. 1. Блок-схема сверхвысоковакуумной многофункциональной установки. *1* – вакуумная камера; *2* – шток с держателем образца; *3* – исследуемый образец; *4* – электромагнит; *5* – магнитопровод; *6* – шиберный затвор; *7* – шлюзовая камера перезагрузки; *8* – источник света; *9* – обтюратор; *10* – монохроматор; *11* – световод; *12* – линейный сильфонный транслятор; *13* – вакуумный сильфонный трехстепенной манипулятор; *14* – проточный испаритель-нагреватель; *15* – блок анализатора; *16* – молекулярный источник; *17* – блок поляризатора; *18* – система подачи азота; *19* – магниторазрядный насос; *20* – компьютер; *21* – блок питания магнита; *22* – блок питания проточного нагревателя; *23* – блок питания нагревателя образца; *24* – блок питания испарителя.

поляризованной плотности электронных состояний в ферромагнетике, измеряя спектральные зависимости недиагональных компонент тензора диэлектрической проницаемости при низких температурах [5]; 4) определять критические точки зоны Бриллюэна в полупроводниковых силицидах при исследовании электрон-фононного взаимодействия [8]; 5) получать информацию о влиянии интерфейса пленки с подложкой на спиновую поляризацию электронов проводимости, регистрируя амплитуды полос поглощения магнитного кругового дихроизма в зависимости от температуры [9].

Целью данной работы было создание и испытание сверхвысоковакуумной многофункциональной установки, позволяющей синтезировать и проводить in situ исследования низкоразмерных структур методом спектральной магнитоэллипсометрии в температурном диапазоне 85–900 К.

СВЕРХВЫСОКОВАКУУМНАЯ МНОГОФУНКЦИОНАЛЬНАЯ УСТАНОВКА

Сверхвысоковакуумная многофункциональная установка для синтеза и in situ исследований низкоразмерных структур методом спектральной магнитоэллипсометрии в температурном диапазоне 85-900 К была создана на основе измерительно-ростового комплекса для синтеза и исследования in situ материалов спинтроники [10]. В результате модернизации измерительно-ростовой комплекс был дополнительно оснащен специально разработанным и созданным линейным сильфонным транслятором, шлюзовой камерой перезагрузки, шиберным затвором и вакуумным сильфонным трехстепенным манипулятором 13 с закрепленным на нем штоком с держателем образца (рис. 1). На этом рисунке также приведена система подачи жидкого азота 18, обеспечивающая температурный диапазон измерений 85-500 K. Задание температуры образца осуществляется путем подачи жидкого азота в проточный испари-

Рис. 2. Держатель образца. 1 – винт; 2 – шайба; 3 – диэлектрические втулки; 4 – токопровод; 5 – контакты; 6 – ограничители; 7 – ограничительный элемент; 8 – платиновое термосопротивление ЧЭП-2888; 9 – крепление; 10 – держатель образца; 11 – шток; 12 – коаксиальная трубка; 13 – образец; 14 – диэлектрическая пластина.

тель-нагреватель 14 с последующим нагревом газообразного азота до заданной температуры. Подогретый газообразный азот по штоку 2 подается к держателю образца.

Держатель образца 10 (рис. 2а) представляет собой медное основание, на которое с помощью винтов 1 и контактов 5 через диэлектрические втулки З установлен образец 13. Держатель образца 10 соединен со штоком коаксиальной конструкции с помощью аргонодуговой сварки. Верхний конец штока с помощью аргонодуговой сварки соединен с вакуумным сильфонным вводом (13 на рис. 1). Образец устанавливается на диэлектрическую пластину из сапфира, которая служит электрическим изолятором и тепловым проводником при низких температурах. Держатель образца позволяет устанавливать подложки шириной 10, длиной 35 и толщиной не более 3 мм. Контроль температуры держателя образца при температурах 85–500 К обеспечивается платиновым термосопротивлением ЧЭП-2888 (8 на рис. 2а). Схема держателя образца в сборе с установленным на него образцом приведена на рис. 26.

Танталовые контакты 5 (рис. 2а) также служат электродами в системе нагрева образца, которая обеспечивает температурный диапазон 300—900 К. Для пропускания электрического тока и нагрева образца используются электрические токопроводы 4, которые крепятся к держателю образца в верхней и нижней его частях с помощью винтовых зажимов 1. Контроль температуры образца в диапазоне от 570 до 900 К обеспечивается однолучевым пирометром IMPAC IGA 5 (LumaSense Technologies) с фиксированным коэффициентом серости 0.5.

ИСПЫТАНИЕ СВЕРХВЫСОКОВАКУУМНОЙ МНОГОФУНКЦИОНАЛЬНОЙ УСТАНОВКИ

Для испытания сверхвысоковакуумной многофункциональной установки и созданной системы задания температуры образца в данной работе были проведены эксперименты по определению комплексной диэлектрической проницаемости Si при различных значениях температуры с помощью быстродействующего спектрального эллипсометра "Эллипс-1891" производства Института физики полупроводников им. А.В. Ржанова, г. Новосибирск [11]. Монокристаллический кремний был выбран нами в качестве экспериментального образца, так как для него представлено большое количество экспериментальных данных [8, 12–16].

Несмотря на возможность прямого измерения диэлектрической проницаемости кремния, используя его очищенную от оксидов поверхность при различных температурах в сверхвысоком вакууме, большинство работ посвящено измерениям оптических свойств поверхности Si с искусственно сформированным на ней тонким слоем SiO₂. Причиной этого является изменение морфологии поверхности чистого монокристаллического кремния при высокотемпературном нагреве образца [15]. Искусственный слой двуокиси кремния толщиной в несколько нанометров уменьшает вероятность образования островков на интерфейсе SiO₂-Si. Поэтому не требуется создавать сложные оптические модели переходного шероховатого слоя, который способен значительно исказить результаты эллипсометрических измерений.

Для оценки достоверности in situ спектральных эллипсометрических измерений в температурном диапазоне 85—900 К на данной установке был проведен эксперимент с подложкой монокристаллического кремния, покрытой буферным слоем SiO₂. Экспериментальный образец представлял собой пластину ($10 \times 30 \times 0.3$ мм) монокристаллического кремния КДБ 5-15 (100). На поверхности образца методом термического окисления в среде O₂ + HCl при температуре 1270 К был сформирован слой SiO₂ толщиной 26 нм. Для

Рис. 3. Температурные зависимости рассчитанной по результатам эллипсометрических измерений комплексной диэлектрической проницаемости Si на длине волны 632.8 нм (1.96 эВ).

уменьшения количества дефектов в созданном слое оксида проводился 15-минутный отжиг подложки в инертной атмосфере азота высокой чистоты. Для нагрева образца прямым пропусканием тока на его краях были вытравлены контактные площадки с тонким слоем SiO_2 толщиной около 1 нм. Травление проводилось кратковременным погружением образца в 10%-ный раствор НF при комнатной температуре с предварительным созданием маски из поливинилхлорида на центральной части образца. После травления образец промывался в деионизированной воде с удалением маски.

Перед загрузкой в установку образец подвергался дополнительной очистке в кипящем растворе NH_4OH (1 часть): H_2O_2 (1 часть): H_2O (1 часть) в течение 20 с с финальной промывкой в деионизированной воде и сушкой на воздухе.

Толщина SiO₂ непосредственно перед загрузкой измерялась на воздухе в центральной части образца с помощью быстродействующего спектрального эллипсометра "Эллипс-1891" в 4-зонном режиме [11, 17]. Оптическое моделирование системы "вакуум—слой SiO₂—подложка Si" показало присутствие слоя оксида толщиной 25.70 \pm \pm 0.06 нм.

После загрузки в сверхвысоковакуумную камеру положение образца относительно оптической схемы in situ спектрального эллипсометра настраивалось таким образом, чтобы измеренная толщина SiO_2 на образце совпала с ее ранее определенным значением на воздухе до загрузки. Таким образом, угол падения света относительно

Рис. 4. Температурные зависимости рассчитанной по результатам эллипсометрических измерений комплексной диэлектрической проницаемости Si на длине волны 459.3 нм (2.70 эВ).

нормали к поверхности образца составил 55.90° [3]. Далее проводилась дегазация поверхности образца в сверхвысоком вакууме при температуре 600 К. Прямым пропусканием тока (0.2 A) через образец производился отжиг с контролем по давлению остаточной атмосферы в технологической камере (не хуже 10^{-6} Па) в течение 1 ч.

Для определения комплексной диэлектрической проницаемости объемного кремния на подготовленном образце проводились спектральные эллипсометрические измерения при различных температурах от 85 до 900 К. Далее измеренные спектральные зависимости эллипсометрических параметров пересчитывались в спектры комплексной диэлектрической проницаемости подложки $\varepsilon = \varepsilon_1 + i\varepsilon_2$, расположенной под слоем SiO₂ толщиной 25.7 нм. Для расчета и подгонки є использовались однослойная эллипсометрическая модель [3] и метод симплекс-оптимизации Нелдера-Мида [18]. Температурные изменения диэлектрической проницаемости слоя SiO₂ не учитывались в расчете по причине их малости [13] по сравнению с погрешностью эллипсометрических измерений, которая не превышает 1% от измеряемой величины.

Для сравнения результатов измерений с данными других авторов был использован метод выборочного накопления эллипсометрических сигналов в точках на спектре 632.8 нм (1.96 эВ) и 459.3 нм (2.70 эВ). Температурные зависимости рассчитанных ε_1 и ε_2 кремния были сопоставлены с результатами измерений других авторов (рис. 3 и 4). В целом, в температурном диапазоне 85–900 К на длинах волн 632.8 и 459.3 нм с учетом экспериментальных погрешностей наблюдается хорошее соответствие найденных нами значений диэлектрической проницаемости кремния с результатами других авторов [8, 13–15, 19].

ЗАКЛЮЧЕНИЕ

Представленная в данной работе конструкция сверхвысоковакуумной многофункциональной установки со встроенным in situ спектральным магнитоэллипсометром, системой задания температуры образца в широком диапазоне и системой напыления на основе ячейки Кнудсена позволяет в едином технологическом цикле осуществлять высокотемпературный отжиг полупроводниковых и металлических подложек, синтезировать на их поверхности тонкие пленки и измерять зависимости оптических и магнитооптических свойств полученных структур при различных значениях температуры в диапазоне 85–900 К.

При испытании сверхвысоковакуумной многофункциональной установки были измерены температурные зависимости спектрограмм комплексной диэлектрической проницаемости объемного Si и проведено сравнение полученных значений с литературными данными. Таким образом показано, что созданная технологическая установка может найти широкое применение в материаловедении, в исследовании твердофазных реакций и различных фазовых переходов.

Работа выполнена при финансовой поддержке гранта ведущей научной школы (проект НШ-7559.2016.2), Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда поддержки научной и научно-технической деятельности в рамках научного проекта № 16-42-243058.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Li S.S.* Semiconductor Physical Electronics. Springer, New York, 2006. doi 10.1007/0-387-37766-2
- 2. Ферт А. // УФН. 2008. Т. 178. № 12. С. 1336.
- 3. *Fujiwara H*. Spectroscopic Ellipsometry. Principles and Application. New York: Wiley, 2007.

- Тарасов И.А., Попов З.И., Варнаков С.Н., Молокеев М.С., Федоров А.С., Яковлев И.А., Федоров Д.А., Овчинников С.Г. // Письма в ЖЭТФ. 2014. Т. 99. Вып. 10. С. 651. doi 10.7868/S0370274X14100026
- Лященко С.А., Попов З.И., Варнаков С.Н., Попов Е.А., Молокеев М.С., Яковлев И.А., Кузубов А.А., Овчинников С.Г., Шамирзаев Т.С., Латышев А.В., Саранин А.А. // ЖЭТФ. 2015. Т. 147. № 5. С. 1023. doi 10.7868/ S004445101505016X
- 6. *Kittel C.* Introduction to solid state physics. New York: Wiley, 1996.
- Wakagi M., Fujiwara H., Collins R.W. // Thin Solid Films. 1998. V. 313-314. P. 464. doi 10.1016/S0040-6090(97)00865-1
- Lautenschlager P., Garriga M., Vina L., Cardona M. // Phys. Rev. B. 1987. V. 36. № 9. P. 4821. https://doi.org/10.1103/PhysRevB.36.4821
- Гребенькова Ю.Э., Соколов А.Э., Еремин Е.В., Эдельман И.С., Марущенко Д.А., Зайковский В.И., Чичков В.И., Андреев Н.В., Муковский Я.М. // Физика твердого тела. 2013. Т. 55. Вып. 4. С. 771.
- Рыхлицкий С.В., Швец В.А., Спесивцев Е.В., Прокопьев В.Ю., Овчинников С.Г., Заблуда В.Н., Косырев Н.Н., Варнаков С.Н., Шевцов Д.В. // ПТЭ. 2012. № 2. С. 165.
- Быстродействующий спектральный эллипсометр. Техническое описание и инструкция по эксплуатации. Новосибирск: Наука, 1978.
- Dash W.C., Newman R. // Phys. Rev. 1955. V. 99. № 4. P. 1151. https://doi.org/10.1103/PhysRev.99.1151
- Van der Meulen Y.J., Hien N.C. // J. Optical Society of America. 1974. V. 64. № 6. P. 804. https://doi.org/ 10.1364/JOSA.64.000804
- Hopper M.A., Clarke R.A., Young L. // J. Electrochemical Society. 1975. V. 122. № 9. P. 1216. doi 10.1149/ 1.2134428
- Jellison G.E., Jr., Modine F.A. // Phys. Rev. B. 1983.
 V. 27. № 12. P.7466. https://doi.org/10.1103/Phys-RevB.27.7466
- Postava K., Aoyama M., Mistrik J., Yamaguchi T., Shio K. // Appl. Surface Science. 2007. V. 254. P. 416. doi 10.1016 /j.apsusc.2007.07.086
- 17. Швец В.А., Спесивцев Е.В., Рыхлицкий С.В. // Оптика и спектроскопия. 2004. Т. 97. № 3. С. 514.
- Nelder J.A., Mead R. // The computer journal. 1965. V. 7. № 4. P. 308.
- Algazin Y.B., Blyumkina Y.A., Grebnev N.I., Svitashev K.K., Semenenko L.V., Yablontseva T.M. // Optics and Spectroscopy. 1978. V. 45. P. 183.