_____ КООРДИНАЦИОННЫЕ ____ СОЕДИНЕНИЯ

УДК 541.49:548.73

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПОЛИМЕРНОГО ДИАКВАБАРБИТУРАТА ЛИТИЯ(I)

© 2017 г. Н. Н. Головнев^{*, *a*}, М. С. Молокеев^{**, ***}, М. К. Лесников^{*}, С. Н. Верещагин^{****}

*Сибирский федеральный университет, Россия, 660041 Красноярск, пр-т Свободный, 79 **Институт физики им. Л.В. Киренского СО РАН, Россия, 660036 Красноярск, Академгородок, 50, стр. 38 ***Дальневосточный государственный университет путей сообщения, Россия, 680021 Хабаровск, ул. Серышева, 47 ****Институт химии и химической технологии СО РАН, Россия, 660036 Красноярск, Академгородок, 50, стр. 24 ^aE-mail: ngolovnev@sfu-kras.ru Поступила в редакцию 15.02.2016 г.

Методом РСА определена структура (CIF file CCDC № 1447689), изучены термическое разложение и ИК-спектр комплекса *катена*-диаквабарбитурата лития(I) [Li(H₂O)₂(HBA–O,O')]_n (I), где H₂BA – барбитуровая кислота. Кристаллы I моноклинные: a = 6.4306(7), b = 16.720(1), c = 7.1732(8) Å, $\beta = 108.253(4)^\circ$, V = 732.5(1) Å³, пр. гр. $P2_1/c$, Z = 4. Один независимый μ_2 -мостиковый лиганд HBA⁻ координируется к двум ионам Li(I) через два атома кислорода карбонильных групп C₄₍₆₎=O. Каждый ион Li⁺ связан с двумя ионами μ_2 -HBA⁻ и двумя концевыми молекулами воды по вершинам тетраэдра. Ионы μ_2 -HBA⁻ объединяют тетраэдры в цепочку. Структура стабилизирована многочисленными водородными связями и π - π -взаимодействием между HBA⁻. Смещение полос колебаний v(C=O) в ИК-спектре I по сравнению с H₂BA в низкочастотную область согласуется с координацией HBA⁻ через атомы O. Дегидратация I протекает по двум ступеням: в области 100–150 и 150–240°C.

Ключевые слова: полимеры щелочных металлов с органическими лигандами, барбитураты, *катена*диаквабарбитурат лития(I), рентгеноструктурный анализ

DOI: 10.7868/S0044457X17060095

Химия координационных полимеров щелочных металлов с органическими лигандами в твердом состоянии мало изучена по сравнению с переходными металлами, хотя они могут обладать различными полезными свойствами [1, 2]. Интерес к координационной химии лития связан с его применением в научных исследованиях [3], медицине [4] и литиевых батареях [5]. Соли лития успешно используются для лечения маниакальной депрессии, различных заболеваний нервной системы и психики [4]. Важной задачей является получение соединений, которые могли бы медленно высвобождать ионы Li⁺ в организме [6].

Барбитуровая кислота (H_2BA) является родоначальницей большого класса антидепрессантов (барбитураты), которые положительно воздействуют на центральную нервную систему и проявляют другие полезные фармацевтические свойства. H_2BA применяется в производстве пластмасс и фармацевтических препаратов [7]. Она является мультидентатным лигандом, способным образовывать с ионами металлов комплексы, обладающие потенциальной биологической активностью, сольватохромизмом, фотолюминесценцией, каталитической активностью и т.д. [8]. Интересно, что в организме человека Li(I) и барбитуровые кислоты могут проявлять синергетический эффект. Так, одновременное введение LiCl и производных H_2BA приводит к более долгосрочному отвращению к сахарину, чем при введении такой же дозы LiCl [9].

В настоящей работе изучены кристаллическая структура, термическая устойчивость и ИК-спектр нового полимерного комплекса Li(I) с барбитуровой кислотой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез $[Li(H_2O)_2(HBA)]_n$ (I). К смеси 0.10 г (0.78 ммоль) H_2BA (Aldrich, >99%) и 2 мл воды добавляли 0.030 г (1.25 ммоль) твердого LiOH (х. ч.) и перемешивали смесь в течение 30 мин до пол-

Параметр	Значение		
Брутто-формула	C ₄ H ₇ LiN ₂ O ₅		
Μ	170.06		
Пр. гр., Z	$P2_{1}/c, 4$		
<i>a</i> , Å	6.4306(7)		
<i>b</i> , Å	16.720(1)		
<i>c</i> , Å	7.1732(8)		
β, град	108.253(4)		
$V, Å^3$	732.5(1)		
$ρ_{\rm выч}, r/cm^3$	1.542		
μ, мм ⁻¹	0.139		
2θ _{max} , град	55.13		
Всего отражений	6236		
Независимых отражений, N_1	6236		
Число отражений	5492		
$c F > 4\sigma(F), N_2$			
Диапазон индексов h, k, l	$-8 \le h \le 5, -21 \le k \le 19,$		
	$-8 \le l \le 9$		
Весовая схема по F^2	$w = 1/[\sigma^2(F_o^2) +$		
	$+ (0.0496P)^2 + 0.1448P],$		
	$P = \max(F_{\rm o}^2 + 2F_{\rm c}^2)/3$		
Число уточняемых параметров	121		
<i>R</i> (по <i>N</i> ₁)	0.0417		
<i>R</i> (по <i>N</i> ₂)	0.0363		
<i>wR</i> (<i>F</i> ²) (по <i>N</i> ₁)	0.0974		
<i>wR</i> (<i>F</i> ²) (по <i>N</i> ₂)	0.0935		
GOOF	1.027		
Коэффициент экстинкции	Не уточняли		
$(\Delta/\sigma)_{\rm max}$	< 0.001		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / \text{Å}^3$	0.290/-0.309		

Таблица 1. Параметры эксперимента и результаты уточнения структуры I

ли на воздухе. Выход 30%. Монокристалл I выбирали из общей массы полученного вещества.

ИК-спектр I (v, см⁻¹): 3366 v(O–H), 1682 v(C=O), 1616 v(C=O).

РСА. Исследован при 150 К прозрачный бесцветный кристалл I размером 0.48 × 0.32 × 0.26 мм. Интенсивности отражений измерены на монокристальном дифрактометре SMART APEX II с ССD детектором (Bruker AXS, Mo K_{α} -излучение). Кристалл представлял собой двойник, состоящий из двух доменов. Интенсивности отражений обоих доменов разделены на две группы в ходе интегрирования в программе АРЕХ II. Экспериментальные поправки на поглошение введены с помощью программы TWINABS методом мультисканирования. Модель структуры установлена прямыми методами и уточнена посредством комплекса программ SHELXTL [10]. Положения всех атомов водорода определены из разностных синтезов электронной плотности. Атомы водорода иона НВА- затем были идеализированы и уточнены в связанной с основными атомами форме. Параметры эксперимента и результаты уточнения структуры приведены в табл. 1.

Структура I депонирована в Кембриджском банке структурных данных (№ 1447689; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

ИК-спектры I и H_2BA в KBr в диапазоне 4000–400 см⁻¹ получены на спектрометре FTIR Nicolet 6700.

Синхронный термический анализ I проведен на приборе Netzsch STA Jupiter 449С, сопряженном с масс-спектральным анализатором Aeolos QMS 403С, в потоке смеси 20% O_2 —Ar в платиновом тигле с перфорированной крышкой (масса навес-ки 4.00 мг, скорость нагревания 10 град/мин).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В независимой части ячейки I содержатся один атом Li(I), один ион HBA^- и две молекулы воды в общих позициях (рис. 1, 2). Каждый атом Li(I) связан с двумя мостиковыми ионами HBA⁻ и двумя концевыми молекулами воды по вершинам тетраэдра LiO₄. Длины связей Li–O в I (1.912(3)-1.956(3) Å) типичны для комплексов Li(I) [11]. Другие значения межатомных расстояний в I (C4-O2 1.2602, C6-O3 1.266(2), C2-O1 1.248(2), C4-C5 1.396(2), C5-C6 1.388(1) Å) ближе к полученным для енольного таутомера H₂BA (форма IV) [12], чем кетонного [13]. Все расстояния C-O в I имеют промежуточные значения, характерные для двойной и одинарной связи, что указывает на делокализацию электронной плотности в пределах всего гетероцикла. Однако самая короткая — все-таки связь в карбонильной группе

ного растворения H₂BA. Затем 0.1 М раствором HCl (х. ч.) доводили pH раствора до 7. Образовавшиеся спустя неделю бледно-розовые кристаллы отфильтровывали, промывали ацетоном и суши-

Рис. 1. Строение комплекса [Li(H₂O)₂(HBA–O,O')]_n.

Рис. 2. Независимая часть ячейки І.

Рис. 3. Строение цепочки из тетраэдров вдоль направления *a* + *c*. Трансляционный фрагмент структуры C(12) выделен полосой.

C2–O1, не участвующей в координации лиганда HBA⁻ с литием. Таким образом, наиболее выражена делокализация электронной плотности в атомных группировках $O_2=C_4-C_5H-C_6=O_2$ (рис. 1). В кетонной форме молекулы H₂BA длины связей C–O во всех карбонильных группах составляют 1.21–1.22(1) Å, а расстояния C5–C4(6) ≈1.49 Å [13]. Такие же соотношения между длинами связей в

 H_2BA и HBA^- установлены и в ионных сокристаллах, образованных барбитуровой кислотой и барбитуратами Na(I), K(I) [14], Rb(I) [15] и Ca(II) [16, 17].

Тетраэдры LiO_4 в структуре I связаны мостиковыми лигандами μ_2 -HBA⁻ с образованием полимерных цепочек вдоль направления a + c(рис. 3). Атомы лития в барбитуратных комплек-

Таблина 2. Ге	еометрические	параметры	волоролных	связей в с	структуре I
1 aouniqu 20 1 v	Joine Ipn reenne	mapanerphi	водородным	ennoen n	, post post

Контакт D–Н…А	Расстояние, Å			VEOT DHA FROM	Преобразорание этома А
	D–H	Н…А	D…A	утол Бил, град	преобразование атома А
N(1)-H(1)···O(2)	0.86	2.02	2.839(2)	160	x - 1, $1/2 - y$, $z - 1/2$
N(3)-H(3)···O(1w)	0.86	2.06	2.916(2)	176	1 - x, 1 - y, 1 - z
O(1w)-H(11)O(2w)	0.89(2)	1.82(2)	2.704(2)	172(2)	1 - x, 1 - y, 1 - z
O(1w)-H(12)···O(1)	0.90(2)	1.83(2)	2.723(2)	170(2)	1 + x, y, 1 + z
O(2w)-H(21)…O(1)	0.84(2)	1.89(2)	2.726(2)	172(2)	1 + x, y, z
O(2w)-H(22)···O(1)	0.91(2)	1.75(2)	2.658(2)	174(2)	1 - x, $1/2 + y$, $1/2 - z$

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 62 № 6 2017

Рис. 4. Слой, образованный водородными связями в плоскости, перпендикулярной направлению a + c; супрамолекулярные мотивы выделены и обозначены (a, б).

сах Li₄(μ_2 -H₂O)(H₂O)₈(μ_2 -HTBA-O,O)(HTBA-O) (II) [18] и Li(μ_4 -DETBA-O,O,O',S) (III) [19] (H₂TBA – 2-тиобарбитуровая, HDETBA – 1,3диэтил-2-тиобарбитуровая кислоты) также имеют тетраэдрическую координацию. Однако, как следует из вышеприведенных формул и рис. 1, геометрическое окружение атомов Li(I) в комплексах I–III различно.

Анализ структуры I показал наличие шести водородных связей (**BC**) (табл. 2) N–H···O, O–H···O, в которых участвуют все ионы HBA⁻ и все молекулы воды. BC образуют трехмерный каркас, в котором можно выделить слой в плоскости, перпендикулярной направлению a + c, и супрамолекулярные мотивы $R_2^2(8)$, S(6), $R_4^4(12)$, $R_2^2(16)$, $R_4^4(14)$, $R_5^4(14)$, $C_2^1(6)$, C(12), $C_2^2(16)$ (рис. 4) [20]. Структура II также стабилизирована посредством BC, но в III межмолекулярные BC не образуются, хотя есть слабые внутримолекулярные BC. Значение межцентроидного расстояния [21] между циклами HBA⁻ (3.70 Å) указывает на π – π -взаимодействие. Такое взаимодействие есть в II, но отсутствует в III.

Отнесение полос в ИК-спектре H_2BA (v, см⁻¹) [22]: 1752 v(C₂=O), 1710 v_{as}(C₄₍₆₎=O), 1695 v_s(C₄₍₆₎=O). Вместо них в ИК-спектре I есть полосы v(C₂=O) при более низких частотах 1682 и 1616 см⁻¹, что согласуется с координацией HBA⁻ через атомы O. Широкая полоса с максимумом при 3366 см⁻¹ относится к колебанию v(O–H) координированных молекул воды.

Рис. 5. Кривые ТГ, ДСК и интенсивности в масс-спектре ионного тока молекулярных ионов воды (m/z = 18) и CO₂ (m/z = 44) при окислительном разложении комплекса I.

На кривых ТГ и ДСК до 250°С (рис. 5) наблюдаются две хорошо разрешенные эндотермические стадии в температурных интервалах 100– 150°С ($t_{\text{макс}} = 127$ °С) и 150–240°С ($t_{\text{макс}} = 215$ °С), которые можно объяснить следующей последовательностью отщепления молекул воды:

 $Li(HBA) \cdot 2H_2O = Li(HBA) \cdot 0.5H_2O + 1.5H_2O, (1)$

$$Li(HBA) \cdot 0.5H_2O = Li(HBA) + 0.5H_2O.$$
 (2)

Потери массы на стадиях (1) и (2) (рис. 5) совпадают с теоретически рассчитанными для I (соответственно 15.88 и 21.17%). Можно предположить, что на стадии (1) образуется соединение $Li_2(\mu_2-H_2O)(HBA)_2$. Полученный на стадии (2) безводный комплекс более устойчив к нагреванию, чем H_2BA . Так, окисление HBA^- в I с образованием CO_2 и воды начинается при ~300°C, а H_2BA – при 253.2°C [23].

Работа выполнена в СФУ в рамках госзадания Минобрнауки России на 2014—2016 годы (проект № 3049).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Fromm K.M.* // Coord. Chem. Rev. 2008. V. 252. № 8–9. P. 856.
- Kennedy A.R., Kirkhouse J.B.A., Whyte L. // Inorg. Chem. 2006. V. 45. № 7. P. 2965.
- Olsher U., Izatt R.M., Bradshaw J.S., Dalley N.K. // Chem. Rev. 1991. V. 91. P. 137.
- 4. Birch N.J. // Chem. Rev. 1999. V. 99. P. 2659.
- Li Y., Yang J., Song J. // Renew. Sustain. Energy Rev. 2016. V. 54. P. 1250.
- 6. Бертини И., Грей Г., Стифель Э., Валентине Дж. Биологическая неорганическая химия: структура и

реакционная способность. Т. 1. М.: БИНОМ. Лаборатория знаний, 2013. 456 с.

- Block J.H., Beale J.M. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry. 11th. ed. Philadelphia: Lippincott Williams & Wilkins, 2004. P. 493.
- 8. Mahmudov K.T., Kopylovich M.N., Maharramov A.M. et al. // Coord. Chem. Rev. 2014. V. 265. P. 1.
- 9. *Wayner E.A., Singer G., Wayner M., Barone F.* // Pharm. Biochem. Behav. 1980. V. 12. № 5. P. 803.
- 10. *Sheldrick G.M.* SHELXTL. Version 6.10. Madison (WI, USA): Bruker AXS Inc., 2004.
- 11. Cambridge Structural Database. Version 5.36. Cambridge (UK): Univ. of Cambridge, 2014.
- Schmidt M.U., Brüning J., Glinnemann J. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 7924.
- 13. Lewis T.C., Tocher D.A., Price S.L. // Cryst. Growth Des. 2004. V. 4. P. 979.
- 14. Chierotti M.R., Gaglioti K., Gobetto R. et al. // Cryst-EngComm. 2013. V. 15. P. 7598.
- 15. *Gryl M., Stadnicka K.* // Acta Crystallogr. 2011. V. 67E. P. m571.
- 16. Braga D., Grepioni F., Lampronti G.I. et al. // Cryst. Growth Des. 2011. V.11. P. 5621.
- Braga D., Grepioni F., Maini L. et al. // CrystEng-Comm. 2012. V. 14. P. 3521.
- Golovnev N.N., Molokeev M.S. // Acta Crystallogr. 2013. V. 69C. № 7. P. 704.
- Golovnev N.N., Molokeev M.S., Vereshchagin S.N. et al. // Polyhedron. 2015. V. 85. P. 493.
- 20. Стид. Дж.В., Этвуд Дж.Л. Супрамолекулярная химия. Ч. 1–2. М.: ИКЦ "Академкнига", 2007. 895 с.
- 21. PLATON. A Multipurpose Crystallographic Tool. Utrecht (The Netherlands): Utrecht Univ., 2008.
- 22. *Сморыго Н.А., Ивин Б.А. //* Химия гетероцикл. соед. 1975. Т. 10. С. 1402.
- 23. *Roux M.V., Temprado M., Notario R. et al.* // J. Phys. Chem. A. 2008. V. 112. P. 7455.