УДК 544.576

ВЛИЯНИЕ УЛЬТРАЗВУКОВОЙ ОБРАБОТКИ НА МАГНИТНЫЕ НАНОЧАСТИЦЫ ФЕРРИГИДРИТА В СУСПЕНЗИОННОМ СОСТОЯНИИ

© 2017 г. С. В. Столяр^{1, 2}, О. А. Баюков², В. П. Ладыгина³, Р. С. Исхаков^{2, *}, Р. Н. Ярославцев¹

¹Сибирский федеральный университет, Красноярск ²Институт физики имени Л.В. Киренского, ФИЦ КНЦ СО РАН, Красноярск ³Международный научный центр исследований экстремальных состояний организма при Президиуме КНЦ СО РАН, Красноярск *E-mail: rauf@iph.krasn.ru

Методом мёссбауэровской спектроскопии изучены высушенные осадки магнитных наночастиц гидроксидов железа, подвергнутых ультразвуковой обработке в режиме кавитации. Обнаружено восстановление ионов Fe вплоть до металлического состояния. Во всех выполненных нами экспериментах, в ходе которых регистрировалось восстановление металла, в суспензиях присутствовала органическая составляющая.

DOI: 10.7868/S0367676517050258

В данном сообщении приведены результаты исследования методом мёссбауэровской спектроскопии высушенных суспензий магнитных наночастиц, подвергнутых в суспензионном состоянии ультразвуковой обработке. В работах [1, 2] ранее были изучены особенности структуры и магнитных свойств наночастиц ферригидрита, образовавшихся в результате культивирования бактерий Klebsiella oxitoca. Частицы имели размеры 2–3 нм. Указанное соединение антиферромагнитное, однако в нанодисперсной форме оказывается ферримагнитным из-за декомпенсации магнитных моментов ионов Fe³⁺ на поверхности и в объеме частиц. Благодаря этому, данные частицы могут составить конкуренцию ферро- и ферримагнитным частицам в различных практических приложениях, в том числе для целенаправленного переноса лекарственных препаратов в организмах [3]. На основе наночастиц биогенного происхождения нами был изготовлен устойчивый волный золь [4], было изучено с помощью ЯМР-томографии распределение магнитных наночастиц в организме лабораторных животных при различных способах введения [5].

Устойчивость полученного золя (отсутствие конгломерации) наночастиц ферригидрита обеспечивалась естественной органической оболочкой наночастиц. Функциональные группы органических молекул обладают характеристическими колебаниями, которым соответствуют полосы поглощения в определенных областях ИК-спектров, поэтому такие функциональные группы могут быть идентифицированы на основании их полос поглощения. ИК-спектры, представленные на рис. 1, для образцов биогенного ферригидрита были получены на вакуумном фурье-спектрометре Bruker-Vertex 80V на прессованных таблетках с бромидом калия диаметром 13 мм и толщиной ≈0.55 мм. Частицы ферригидрита тщательно растирали в порошок и смешивали с KBr, также тщательно перетертым в пропорциях 1 : 100 соответственно. Смесь прессовали под вакуумом гидравлическим прессом при давлении от 10 и

Рис. 1. ИК-фурье-анализ наночастиц ферригидрита, синтезированных Klebsiella охуtоса. Пики: 1 и 2 соответствуют алкенам =СН-связи; 3 – карбоновым и/или гидроксильным СО; 4 – указывает на наличие ОСН, СОН, ССН групп; 5 и 6 – характерные для амид I и II белков, 9 соответствует СН-колебаниям Сl, 10 – характерно для OH-валентных колебаний; 7, 8 – не идентифицированы.

до 104 Н \cdot см⁻². ИК-фурье-спектры, показали пик 3255.0–3216.2 см⁻¹, характерный для ОН-валентных колебаний (рис. 1) [6]. Пик при 2929.5–2926.8 см⁻¹ соответствует СН-колебаниям С; 1406.2 см⁻¹ указывает на наличие ОСН-, СОН- и ССН-групп. Эти пики четко указывают на наличие глюкозы. Кроме того, полоса 1311.1 см⁻¹ указывает на СО-связь полисахарида. Данные результаты указывают на то, что наночастицы биогенного ферригидрита встроены в железосвязывающие экзополисахариды. Кроме того, полосы 636.3 и 1546.6 см⁻¹ подтвердили наличие амина I и II белков.

Поскольку биогенные наночастицы ферригидрита характеризуются наличием органической оболочки, нами были изготовлены наночастицы ферригидрита таких же размеров что и биогенные наночастицы (~3 нм), но в результате химического осаждения [7]. Был использован хлорид железа(III). При доведении рН до нейтрального значения раствором щелочи выпадал осадок, собираемый на фильтре. Полученный осадок промывался и высушивался при комнатной температуре. После высушивания образующиеся порошки исследовались методом мёссбауэровской спектроскопии.

Золи биогенных наночастиц ферригидрита и наночастиц ферригидрита, полученных химическим способом были подвергнуты ультразвуковой обработки в режиме кавитации на аппарате серии "Волна" УЗТА-0.4/22-ОМ ООО "Центр ультразвуковых технологий", г. Бийск. Интенсивность ультразвукового воздействия >10 Вт · см⁻², частота 22 кГц. Время обработки составляло 4–24 минут.

На рис. 2 приведены спектры Мёссбауэра, полученные при комнатной температуре, наночастиц биогенного ферригидрита (кривая 2*б*) и наночастиц ферригидрита, полученных химическим способом (кривая 2*a*) после ультразвуковой обработки в режиме кавитации. Кривая 2*б* характеризуется секстетом. В таблице представлены результаты расшифровки спектров. Результаты расшифровки свидетельствуют о наличии металлических наночастиц ОЦК-Fе в осадках биогенных наночастиц после кавитационной обработки.

Спектры Мёссбауэра наночастиц ферригидрита, полученных химическим осаждением, подвергнутых ультразвуковой обработки в режиме кавитации остались неизменными (смотри кривые 2a и 2б на рис. 2). Таким образом, наличие ОЦК-фазы Fe после кавитационной обработки наночастиц ферригидрита определяется наличием органической составляющей. Для проверки данного утверждения нами был выполнен следующий эксперимент. Химические наночастицы ферригидрита и биогенные наночастицы ферригидрита были обработаны ультразвуком в режиме кавитации в растворе бычьего сывороточного

Рис. 2. Мёссбауэровские спектры ферригидрита химического (*a*) и биогенного (*б*) происхождения. Исходные наночастицы -1. После ультразвуковой обработки в воде -2 и в растворе альбумина -3. Обозначение спектров на рис. 2*б* такое же, как на рис. 2*a*.

белка альбумина (BSA – коммерческий продукт). На рис. 2 приведены спектры Мёссбауэра наночастиц ферригидрита, полученных химическим

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 81 № 5 2017

СТОЛЯР и др.

Мёссбауэровские параметры ферригидритов. *IS* – изомерный химический сдвиг относительно ОЦК-Fe, *QS* – квадрупольное расщепление, *W* – ширина линии поглощения, *H* – сверхтонкое поле на ядре железа, *A* – долевая заселенность позиции

		<i>IS</i> , мм/с ±0.005	<i>Н</i> , кЭ ±3	<i>QS</i> , мм/с ±0.02	<i>W</i> , мм/с ±0.02	$A \pm 0.03$	Позиция
Исходные наночастицы	ХИМ	0.351		0.51	0.35	0.53	Fe1
		0.355		0.86	0.31	0.37	Fe2
		0.359		1.21	0.26	0.10	Fe3
	био	0.349		0.49	0.34	0.43	Fe1
		0.349		0.77	0.32	0.36	Fe2
		0.343		1.10	0.37	0.21	Fe3
Ультразвуковая обработка в воде	ХИМ	0.349		0.49	0.33	0.42	Fe1
		0.352		0.79	0.30	0.38	Fe2
		0.355		1.16	0.33	0.20	Fe3
	био	0.024	318	0	0.32	0.18	ОЦК-Fe
		0.349		0.51	0.35	0.37	Fe1
		0.352		0.80	0.36	0.39	Fe2
		0.348		1.17	0.22	0.06	Fe3
Ультразвуковая обработка в альбумине	ХИМ	0.006	332	0	0.25	0.19	ОЦК-Fe
		0.350		0.53	0.35	0.35	Fe1
		0.351		0.84	0.36	0.37	Fe2
		0.357		1.22	0.30	0.10	Fe3
	био	0.019	318	0	0.28	0.32	ОЦК-Fe
		0.350		0.52	0.34	0.32	Fe1
		0.348		0.84	0.38	0.35	Fe2
		0.306		1.26	0.12	0.01	Fe3

способом, после ультразвуковой обработки в растворе альбумина (кривая 3(a)) и биогенных наночастиц ферригидрита, (кривая $3(\delta)$). Кривые 3(a)и $3(\delta)$ характеризуется секстетом. В таблице представлены результаты расшифровки спектров. Результаты расшифровки свидетельствуют о наличии металлических наночастиц ОЦК-Fe как в осадках химически полученных наночастиц, так и в биогенных наночастицах после кавитационной обработки в растворе альбумина.

Итак, мёссбауэровские спектры 26, 3а, 36 характеризуются секстетом с параметрами ОЦК-Fe и парамагнитным дублетом суперпарамагнитных наночастиц ферригидрита. В парамагнитной составляющей спектров 26, 3а, 36, а также в спектрах 1a, 16, 2a регистрируются три основные неэквивалентные позиции ионов Fe³⁺, имеющих октаэдрическую координацию. Эти позиции можно разделить на две группы: позиции Fe1 и Fe2 с относительно малой степенью искажения локальной симметрии, $QS(Fe1) \sim 0.4-0.5$ мм/с и QS(Fe2) ~ ~ 0.7–0.8 мм/с, и позиции Fe3 с большой степенью искажения, QS(Fe3) ~ 1–1.5. Кристаллическая структура ферригидрита обсуждалась в работе [8]. Регистрируемые при комнатной температуре мёссбауэровские секстеты с параметрами ОЦК-Fe указывают на то, что размер образующихся ферромагнитных частиц превышает 100 Å [9].

При акустической кавитации происходят образование, пульсация и схлопывание образующихся газовых пузырьков в обрабатываемой ультразвуком жидкости. Схлопывание газовых пузырьков сопровождается концентрированным выделением энергии, что приводит к целому ряду процессов: эмиссии света, эрозии поверхности, диспергированию твердых тел и т.д. [10]. Реализующиеся высокие значения локальной температуры и давления в сочетании с чрезвычайно быстрым охлаждением обеспечивают уникальные возможности для протекания химических реакций. В поле ультразвуковых волн происходит расщепление молекулы воды на свободные радикалы. В результате после-

662

дующих реакций образуются молекулярный водород (H_2), перекись водорода (H_2O_2), свободные радикалы • H, • OH, • OH₂, • O₂H, сольватированные электроны. Радикалы • OH₂, • O₂H, перекись водорода являются окислителями. Атомарный водород, сольватированный электрон восстановителями. С помощью ультразвукового воздействия ранее были получены наноструктурные металлы, сплавы, карбиды и сульфиды, устойчивые коллоиды, биоматериалы [11].

Во всех выполненных нами экспериментах, при которых регистрировалось восстановление металла, в суспензиях присутствовала органическая составляющая.

Преимущества способа заключаются в демонстрации процесса восстановления окисленных форм железа до металлического состояния в результате кавитационной обработки.

Работа поддержана Специальной программой Министерства Образования и Науки Российской Федерации для Сибирского Федерального университета. Поддержано Российским фондом фундаментальных исследований 16-03-00969 и РФФИ – ККФН р-сибирь-а проект № 15-42-04171.

СПИСОК ЛИТЕРАТУРЫ

1. Stolyar S.V., Bayukov O.A., Gurevich Y.L., Denisova E.A., Iskhakov R.S., Ladygina V.P., Puzyr' A.P., Pustoshilov P.P., Bitekhtina M.A. // Inorg. Mater. 2006. V. 42. № 7. P. 763.

- Stolyar S.V., Bayukov O.A., Gurevich Y.L., Ladygina V.P., Iskhakov R.S., Pustoshilov P.P. // Inorg. Mater. 2007. V. 43. № 6. P. 638.
- 3. *Dobretsov K., Stolyar S., Lopatin A.* // Acta Otorhinolaryngol. Ital. organo Uff. della Soc. Ital. di Otorinolaringol. e Chir. Cerv.-facc. 2015. V. 35. № 2. P. 97.
- 4. Патент № 2457074. Способ получения наночастиц ферригидрита. В.П. Ладыгина, К.В. Пуртов, С.В. Столяр, Р.С. Исхаков, О.А. Баюков, Ю.Л. Гуревич, К.Г. Добрецов, Л.А. Ищенко, Сибирский федеральный университет, 2012.
- Inzhevatkin E.V., Morozov E.V., Khilazheva E.D., Ladygina V.P., Stolyar S.V., Falaleev O.V. // Bull. Exp. Biol. Med. 2015. V. 158. № 6. P. 807.
- Anghel L., Balasoiu M., Ishchenko L.A., Stolyar S. V, Kurkin T.S., Rogachev A. V, Kuklin A.I., Kovalev Y.S., Raikher Y.L., Iskhakov R.S., Duca G. // J. Phys. Conf. Ser. 2012. V. 351. P. 12005.
- Michel F.M., Ehm L., Antao S.M., Lee P.L., Chupas P.J., Liu G., Strongin D.R., Schoonen M.A.A., Phillips B.L., Parise J.B. // Science (80). 2007. V. 316. № 5832. P. 1726.
- Stolyar S.V., Bayukov O.A., Gurevich Y.L., Ishkakov R.S., Ladygina V.P. // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. № 9. P. 1286.
- 9. Amulyavichus A.P., Suzdalev I.P. // JETP. 1973. V. 37. № 5. P. 859.
- 10. *Маргулис М.А.* Основы звукохимии. М.: Высш. шк., 1984. 272 с.
- Doktycz S.J., Suslick K.S. // Science. 1990. V. 247. № 4946. P. 1067.