
ADVANCED ELECTROMAGNETICS, VOL. 6, NO. 1, JANUARY 2017

Trapping of light with angular orbital momentum above the light cone in a
periodic array of dielectric spheres

Evgeny Bulgakov1,2 and Almas Sadreev1

1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia,
2Siberian State Aerospace University, Krasnoyarsk 660014, Russia

*corresponding author, E-mail: almas@tnp.krasn.ru

Abstract

We consider bound states in the radiation continuum (BSC)
above the light cone in an one-dimensional periodic array
of dielectric spheres in air. The BSCs are classified by or-
bital angular momentum m, Bloch wave vector β directed
along the array, and polarization. The most simple sym-
metry protected BSCs have m = 0, β = 0 and occur in a
wide range of the radius of spheres and dielectric constant.
More sophisticated BSCs with m ̸= 0, β = 0 exist only
for a selected radius of the spheres at a fixed dielectric con-
stant. We also show the existence of robust Bloch BSCs
with β ̸= 0,m = 0. The BSCs with m = 0 can be easily
detected by the collapse of Fano resonance in scattering of
a plane wave. In response to a plane wave with circular po-
larization the BSCs withm ̸= 0 give rise to Poynting vector
spiralling around the array.

1. Introduction

Recently guiding of electromagnetic waves by a linear ar-
ray of dielectric spheres below the diffraction limit attracted
considerable attention. There were two types of consider-
ations: finite arrays [1, 2, 3, 4] and infinite arrays which
were studied by means of the coupled-dipole approxima-
tion [5, 6, 7, 8, 9, 10]. A consummate analysis of electro-
magnetic waves propagating along linear arrays of dielec-
tric spheres below the light cone was provided by Linton et
al [11]. It is widely believed that only those modes whose
eigenfrequencies lie below the light cone, are confined and
the rest of the eigenmodes have finite life times. Recently
confined electromagnetic modes above the light cone were
shown to exist in various periodical arrays (i) of long di-
electric cylindrical rods [12, 13, 14, 15, 17, 18], (ii) pho-
tonic crystal slabs [19, 20, 21, 22] and (iii) two-dimensional
arrays of spheres [23]. Similarly, one may expect light trap-
ping in the one-dimensional array of spheres with the bound
frequencies above light cone. Such localized solutions of
the Maxwell equations are known as the bound states in
the continuum (BSC) and were first reported by von Neu-
mann and Wigner [24]. The BSCs are of immense interest
in optics thanks to experimental opportunity to confine light
despite that outgoing waves are allowed in the surrounding
medium [22, 25, 26, 27, 28, 29].

Figure 1: A periodic infinite array of dielectric spheres il-
luminated by a plane wave (blue arrow). The wave can
be transmitted and reflected to discrete diffraction continua
enumerated by integers m and n in accordance with Eqs.
(8) and (12) shown by red arrows.

2. Basic equations for EM wave scattering by
a linear array of spheres

We formulate the scattering theory for a periodic array of
dielectric spheres in the form of the Lippmann-Schwinger
equation similar to the approach developed for a periodic
array of dielectric cylinders [15]

L̂Ψ = Ψinc. (1)

Here the matrix L̂ is defined by the scattering matrix of the
isolated sphere and mutual scattering events between the
spheres, Ψinc is given by the incident wave, and the col-
umn Ψ is the solution of the scattering problem. It is the
multipole expansion with TE and TM amplitudes aml and
bml respectively where l = 0, 1, 2, . . . labels orbital momen-
tum and m = 0,±1,±2, . . . enumerates its projection onto
the z-axis which is the array axis as shown in Fig. 1. These
amplitudes define the EM field in the form of an expansion
over vector spherical harmonics Mm

n and Nm
n [11, 30]

E(r) =
∑
j,lm

eiβRj [aml Mm
l (r−Rj) + bml Nm

l (r−Rj)],

H(r) = −i
∑
j

eiβRj

∑
lm

[aml Nm
l (r−Rj) + bml Mm

l (r−Rj)].

Here β is the Bloch wave vector directed along the array
with ez as the unit vector, Rj = jez is the position of the



center of the j-th sphere, and the first/second terms presents
TE/TM spherical vector EM fields. The exact expression of
the matrix

L̂ =

(
A B
B A

)
(2)

was derived by Linton et al [11] for EM guided waves on a
periodic array of dielectric spheres. Mathematical expres-
sions of matrix elements Amm

lν and Bmmlν are rather cum-
bersome. The reader can find explicit expressions in Refs.
[11, 31].

The incident plane wave can be also expanded over vec-
tor spherical harmonics [30, 32]

Eσ(r) =
∑∞
l=1

∑l
−l[q

σ
lmMm

l (r) + pσlmNm
l (r)],

Hσ(r) = −i
∑
lm[pσlmMm

l (r) + qσlmNm
l (r)]. (3)

Here index σ stands for plane TE/TM wave.

pTElm = −Flmτlm(α), qTElm = Flmπlm(α),

pTMlm = −iFlmπlm(α), qTMlm = iFlmτlm(α), (4)

kx = −k0 sinα, ky = k0 cosα,

Flm = (−1)mil
√

4π(2l+1)(l−m)!
(l+m)! ,

τlm(α) = m
sinαP

m
l (cosα),

πlm(α) = − d
dαP

m
l (cosα). (5)

For a particular case of normal incidence kz = 0, α =
−π/2 we obtain from Eqs. (5)

τlm = −mPml (0), πlm = − d

dα
Pml (0). (6)

The general equation for the amplitudes aml , b
m
l which

describe the scattering by a linear array of spheres takes the
following form

Z−1
TE,la

m
l −

∑
ν(a

m
ν Amm

νl + bmν Bmmνl ) = qσlm,

Z−1
TM,lb

m
l −

∑
ν(a

m
ν Bmmνl + bmν Amm

νl ) = pσlm. (7)

3. The diffraction continua of vector
cylindrical modes

Thanks to the axial symmetry of the array we can exploit
the vector cylindrical modes for description of the diffrac-
tion continua which are doubly degenerate in TM and TE
polarizations σ. The modes can be expressed through a
scalar function ψ [30]

ψm,n(r, ϕ, z) = H(1)
m (χnr)e

imϕ+ikz,nz. (8)

Then for the TE modes we have [30]

Ez = 0, Hz = ψm,n,

Er =
ik0
χ2
n

1
r
∂ψm,n

∂ϕ , Hr =
ikz
χ2
n

∂ψm,n

∂r ,

Eϕ = −ik0
χ2
n

∂ψm,n

∂r , Hϕ = ikz
χ2
n

1
r
∂ψm,n

∂ϕ , (9)

and for the TM modes

Ez = ψm,n, Hz = 0,

Er =
ikz
χ2
n

∂ψm,n

∂r , Hr =
−ik0
χ2
n

1
r
∂ψm,n

∂ϕ ,

Eϕ = ikz
χ2
n

1
r
∂ψm,n

∂ϕ , Hϕ = ik0
χ2
n

∂ψm,n

∂r , (10)

where
χ2
n = k20 − k2z,n (11)

and
kz,n = β + 2πn, n = 0,±1,±2, . . . . (12)

General theory of scattering in terms of the amplitudes
Ψ = (aml , b

m
l ) is formulated in the form of Eq. (7) which

allows to find the amplitudes via the inverse of the matrix L̂

Ψ = L̂−1Ψinc. (13)

This equation is the Green equation in which a source pre-
sented by incident wave Ψinc unambiguously gives the so-
lution as the scattered wave Ψ. There is however a unique
case when the solution of linear equation (1) is not unam-
biguous [37] when the inverse of the matrix L̂ does not ex-
ists forDet(L̂) = 0 [38, 39]. That occurs if one of complex
eigenvalues of L̂ turns to zero giving rise to the BSC as a
null eigenvector of L̂

L̂ΨBSC = 0. (14)

The necessary and sufficient condition for the BSC is
orthogonality of ΨBSC to the right hand of Eq. (1) [39]. In
other words, the BSC occurs when the coupling of the solu-
tion of Eq. (1) with continuum turns to zero [40]. Then the
solution of Eq. (7) can be presented as linear superposition
of the BSC and the particular solution [38, 39]

Ψ = αΨBSC +Φ (15)

where α is an arbitrary constant.
In what follows we consider the BSCs in the diffraction

continua specified by two quantum numbersm and nwhere
the m is the result of the axial symmetry and n is the result
of translational symmetry of the infinite linear array of the
dielectric spheres. Note that each diffraction continuum is
doubly degenerate relative to the polarization σ. The inter-
play between the frequency k0 and the wave number kz,n
the continua can be open (χ is real) or closed (χ is imagi-
nary). In the present paper we restrict ourselves by the case
of one, two and three open continua.

One can ask themselves why BSCs can occur in pe-
riodic dielectric structures but not in homogeneous struc-
tures like a slab or a rod which can only support guided
EM modes below the light cone. Let us begin with the
simplest textbook system of dielectric slab infinitely long
in the x, y plane with the dielectric constant ϵ > 1. The
Maxwell equations can be solved by separation of vari-
ables for scalar function ψ(x, y, z) = eikxx+ikyyψ(z) to
result in bound states below the light cone k20 = k2x + k2y
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[41]. The situation can be cardinally changed if the contin-
ual translational symmetry is replaced by the discrete one
ϵ(x, y, z) = ϵ(x + ph, y, z) where p = 0,±1,±2, . . ., h is
the period of the structure. Then the radiation continua are
quantized kx,n = β + 2πn/h, n = 0,±1,±2, . . . and are
given by outgoing plane waves eikx,nx+ikyy+ikzz with the
frequency k20 = k2x,n+ k2y + k2z , where β is the Bloch wave
vector along the x-axis and the integer n refers to diffraction
continua [14].

Physical interpretation of this statement is related to that
the slab with discrete translational symmetry can be consid-
ered as one-dimensional diffraction lattice. Let us take for
simplicity β = 0, ky = 0. Assume there is a bound so-
lution with the eigenfrequency k0BSC > 0 which is cou-
pled with all diffraction continua enumerated by n. Let
k0BSC < 2π/h, i.e., the BSC resides in the first diffraction
continua but below the others. Because of the symmetry
or by variation of the material parameters of the modulated
slab we can achieve that the coupling of the solution with
first diffraction continuum equals zero [15, 17, 20, 21, 22].
However the solution is coupled with continua n = 1, 2, . . .
which are evanescent that give rise to exponential decay
of the solution over z-axis. The length of localization
L ∼ 1√

2π2/h2−k20BSC

. Therefore the evanescent diffraction

continua play a principal role in the space configuration of
the BSCs because they establish the EM fields in the near
zone of the array beyond the dielectric rods or spheres.

For the present case of the infinite periodical array of
dielectric spheres the diffraction continua are given by Eqs.
(11) and (12). For the lowest continuum n = 0 and for
m = 0, β = 0 (standing BSC) the corresponding cylindri-
cal mode of the continuum (8) is constant along the array
axis z. Then for given radius and permittivity of the spheres
one can find symmetrical solutions which have zero over-
lapping with this continuum mode because of the symme-
try of the solution. Examples of such a symmetry protected
BSCs of both pure polarizations are given in Fig. 2. The
BSCs exist in a wide range of material parameters as was
established by Lu and Yuan for the array of dielectric rods
[42]. However the cases of BSCs withm ̸= 0 or with mixed
polarizations need special numerical analysis and will be
presented below.

4. Symmetry classification of BSCs

There might be two kinds of the bound modes which are
the solutions of the homogeneous Eq. (14). The first type
of modes below the light cone have wave number β > k0
and describe guided waves along the array. These solu-
tions found by Linton et al exist in some interval of ma-
terial parameters of spheres, dielectric constant ϵ or radius
R and the Bloch wave number β [11]. The second type of
bound modes have wave numbers β < k0 embedded into
the diffraction continua above the light cone (BSCs). It is
much more difficult to establish the existence of the second
type of bound states because of tuning of material parame-
ters. However there are a class of symmetry protected BSC

Figure 2: Patterns of the symmetry protected TM BSC (up)
and TE BSC (down) with m = 0. Electric force lines are in
red and magnetic force lines are in blue. Green solid lines
show spheres.

which are free of tuning of the material parameters but exist
only for selected values of Bloch vector β [42]. These BSC
have been already considered in the linear array of infinitely
long dielectric rods [12, 14, 15, 16, 20, 22, 26].

First, axial symmetry of the array implies that the ma-
trixes A and B split over the irreducible representations
of magnetic quantum number m which therefore classifies
the BSCs. Second, discrete translational symmetry along
the z-axis implies that respective wave vector component β
specifies the BSC with discrete k0 too. At last, additional
optional symmetries arise due to the inversion symmetry
transformation K̂f(x, y, z) = f(x, y,−z) for β = 0, π.
The selection rules for the amplitudes aml , b

m
l were estab-

lished in Ref. [31] and listed in 1. In turn, the symme-

Table 1: Classification of the BSCs.

m β I type of BSC II type of BSC
̸= 0 0 (am2k, b

m
2k+1) (am2k+1, b

m
2k)

0 ̸= 0 (a0l , 0), Ez = 0 (0, b0l ),Hz = 0
0 0 (a02k, 0), Ez = 0 (0, b02k),Hz = 0
0 0 (0, b02k+1),Hz = 0 (a02k+1, 0), Ez = 0

try properties of the cartesian components of vector spheri-
cal functions under the inversion of z allow to establish the
symmetric properties of EM fields collected in Table II.

Light can be trapped above the light cone due to the
most simple symmetry mechanism in symmetry protected
BSCs with m = 0, β = 0. They constitute the majority of
the BSCs. The symmetry-protected BSCs are either pure
TE spherical vector modes (Type I in Table I) which are
pure TE spherical vector modes (the I type in Table I) with
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Table 2: Symmetry properties of the eigenmodes for β = 0.

I type II type
Ex,y(−z) = (−1)m+1Ex,y(z) Ex,y(−z) = (−1)mEx,y(z)
Ez(−z) = (−1)mEz(z) Ez(−z) = (−1)m+1Ez(z)

Hx,y(−z) = (−1)mHx,y(z) Hx,y(−z) = (−1)m+1Hx,y(z)
Hz(−z) = (−1)m+1Hz(z) Hz(−z) = (−1)mHz(z)

a02k ̸= 0, b0k = 0 and TM spherical vector modes (the II
type) with a0k = 0, b02k ̸= 0. Numerical results for the
coefficients al, bl are given in Ref. [31]. Here we show only
two examples of the symmetry protected BSCs, one the TE
BSC in Fig. 2 (a) and second the TM BSC in Fig. 2 (b).
Note the profiles are periodic over the chain. Hereinafter
we plot real parts of electromagnetic fields.

5. Robust Bloch BSCs with β ̸= 0,m = 0

Could the Bloch BSC occur at β ̸= 0 in the continuum of
free-space modes? This question was first answered pos-
itively by Porter and Evans [33] who considered acoustic
trapping in the array of rods of rectangular cross-section.
Marinica et al [13] demonstrated the existence of the Bloch
BSC with β ̸= 0 in two parallel dielectric gratings and
Ndangali and Shabanov [14] in two parallel arrays of di-
electric rods. In a single array of rods positioned on the sur-
face of bulk 2d photonic crystal multiple BSCs with β ≥ 0
were considered by Wei et al [20]. Also the Bloch BSCs
in a single array of cylindrical dielectric rods in air were
presented in Refs. [15, 42]. Only the solution with Bloch
vector βc is true Bloch BSC. As soon as β deviates from
this point the quasi Bloch BSC will decay losing the power
for propagating. Therefore narrow wave packets centered
around the the BSC frequency are capable to guide the EM
power rather long distances [43] with the group velocity
dRe(ω(k))/dk.

According to Table I the Bloch BSCs with β ̸= 0,m =
0 have only components a0l or b0l . Let us first consider the
type I of BSC with b0l = 0 which hasEz = 0 and, therefore,
is decoupled with the TM continuum but is coupled with the
TE n = 0,m = 0 continuum. By solving the equation for
complex eigenvalues of the matrix (7) and searching for the
case when one of them turns to zero we achieve a vanishing
coupling [40] under variation of β. Then the corresponding
eigenvector, column of amplitudes alm and blm gives us
the pattern of EM fields shown in Fig. 3 after substitution
them into Eq. (2). One can see that the solution has no
periodicity.

This BSC occurs under variation β but there is no neces-
sity to tune material parameters of the spheres and therefore
the BSC can be still defined as robust which is attractive
from the experimental point of view. We managed to find
only the type I of the BSCs for ϵ = 15 but not the type
II. Such a difference between types of the BSC is related
to different boundary conditions for electric and magnetic
fields at the dielectric sphere.

Figure 3: (Color online). EM field configurations of the
Bloch BSC with β = 1.2074.

6. Orbital angular momentum BSCs

The BSCs with orbital angular momentum (OAM) m ̸= 0
are of primary interest in the present paper. The mechanism
for partially symmetry protected BSCs allows us to under-
stand how to realize the BSCs with m ̸= 0, β = 0 which
are embedded into the diffraction continuum with the same
m and n = 0. Obviously, the system has the time reversal
symmetry that implies that such BSCs are degenerate with
the respect to the sign ±m. Let us start with the BSC of the
I type with m = 1 which has the odd Ez and the even Hz

according to Tables I and II. The diffraction TE and TM
modes m = 1, n = 0 are independent of z and therefore
as it follows from Eqs. (9) and (10) the solutions of type
I are mismatched with the TM continuum but are coupled
with the TE continuum. The coupling was cancelled by the
same numerical procedure as described in the previous sec-
tion now by tuning the radius of the spheres. The results of
computation of this partially symmetry protected BSC of
type I (a2k, b2k+1) are given in Ref. [31] and shown in Fig.
4 (a) for m = 1.

The next type of BSC (a2k+1, b2k) with m = 2 be-
longs to type II with even Ez and odd Hz . It is sym-
metry protected against decay into the TE continuum with
m = 2, n = 0. The decay into the TM continuum is can
be eliminated by tuning the sphere radius and shown in Fig.
4 (b). All components of electric and magnetic fields of
the BSCs are nonzero and localized around the array [31]
similar to that shown in Fig. 2. Here we show only force
lines of EM fields around one sphere because patterns are
periodic along the z-axis. The value of OAM m reflects
the structure of force lines in the xy-plane while number of
sufficient amplitudes in orbital momentum l reflects in the
structure along the z-axis.
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Figure 4: Electric force (red) and magnetic force (blue)
lines BSCs with OAM (a) m = ±1 and (b) m = ±2.

7. Emergence of the BSC in scattering
Scattering of plane waves by periodic two-dimensional ar-
rays of dielectric spheres has been in focus of researches
since pioneering papers by Ohtaka et al [34]. Scatter-
ing by aggregates of finite number of spheres was con-
sidered in the framework of multisphere Mie scattering
[32, 35, 36], however to our knowledge the scattering by
the one-dimensional infinite array of dielectric spheres has
not been considered yet. This section aims to present the re-
sults of numerical calculation of differential and total cross-
sections of the infinite array with the focus on the resonant
traces of the BSCs in the cross-sections similar to the scat-
tering by array of dielectric rods [15, 20, 22]. As soon
as one deviates from the BSC point the BSC manifests
in the form of collapsing Fano resonance for approaching
to the BSC point in parametric space. That phenomenon
was observed in scattering of EM waves by arrays of rods
[14, 15, 16, 20, 22, 23]. The Fano resonance for the present
system can be interpreted as interference of two paths, one
through the spheres and one between the spheres. In what
follows we present briefly a mathematical tool to highlight
these features of the BSCs using the biorthogonal basis of
eigenvectors of the non Hermitian matrix L̂ [15, 44]

L̂Xf = LfXf , L̂
+Yf = L∗

fYf , Y+
f Xf ′ = δff ′ . (16)

It immediately follows that

L̂−1 =
∑
f

Xf
1

Lf
Y+
f . (17)

Because of axial symmetry the matrix (7) has the block
structure

L
(m)
ll′ =

(
Z−1
TE,lδll′ −Amm

ll′ −Bmmll′
−Bmmll′ Z−1

TM,lδll′ −Amm
ll′

)
.

(18)
In the nearest vicinity of the BSC point one of the com-

plex eigenvalues Lc is very close to zero. That allows us
to substantially simplify Eq. (17) leaving in the sum only
the leading contribution related to the Lc. Respectively the
scattering state in Eq. (13) is simplified as follows

Ψσ ≈ 1

Lc
Xc(Y

+
c ·Ψσ

inc), σ = TE/TM. (19)

This equation manifests a remarkable property of the BSCs
to enhance the incident wave Ψinc by the factor 1/Lc. First
we present this effect for the symmetry protected BSCs
with m = 0 shown in Fig. 2 when a plane wave with the
wave vector in plane x, z and TE polarizations with electric
field along the y-axis illuminates the array. The small com-
plex eigenvalue Lc in the denominator of scattering wave
function (19) results in sharp resonant contribution in the
cross-section σTE,TE as shown in Fig. 5 (a). When the
plane wave is incident normally to the array of the spheres
kz = 0 (dash line) the BSC of type I is fully invisible in the
cross-section. Alternatively, the symmetry protected type II
of the symmetry protected BSCs with the only amplitudes
bk can be observed via the cross-section σTM→TM which
shows similar anomalies in the cross-section σTM,TM as
seen from Fig. 5 (b). Thus, although the BSCs have no ef-
fect for the normal incidence they are detected by collapse
of Fano resonances in total cross-sections for kz → 0.

8. Transfer of spin momentum of circularly
polarized wave into orbital momentum of the

BSC with m ̸= 0

Scattering of circularly polarized plane wave by the OAM
BSCs is the main issue of the this section. It is well known
that EM fields can carry not only energy but also angu-
lar momentum. The angular momentum is composed of
spin angular momentum (SAM) and OAM describing its
polarization state and the phase structure distribution, re-
spectively. The research on OAM of EM fields attracted
attention since Allen et al. investigated the mechanism of
OAM in laser modes [45, 46]. In contrast to SAM, which
has only two possible states of left-handed and right-handed
circular polarizations, the theoretical states of OAM are un-
limited owing to its unique characteristics of spiral flow of
propagating EM waves [47]. There were many proposals
to generate OAM beams by use of ferrite particles [48], by
chiral plasmonic nanostructures [49] and by designer meta-
surfaces [50]. Here we show that the BSCs with OAM are
capable to generate spinning currents in response to illumi-
nation of the array by circularly polarized plane wave.

Because of time-reversal symmetry BSCs with OAM
are degenerate in the sign of m. That modifies Eq. (19) as
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Figure 5: Total cross-section for scattering of TE (a)/TM
(b) plane wave incident under angle to the array of dielec-
tric spheres strongly effected by presence of the symmetry
protected type I/II BSC shown in Fig. 2 (a).

follows

Ψm
σ ≈ 1

Lc

∑
±

[Xc(±m)(Yc(±m)+ ·Ψ±m,σ
inc )] (20)

where the incident wave according to Eq. (7) is given

Ψm,σ
inc =

(
pσm

sgn(m)qσm

)
, (21)

and subvectors pm and qm are given by Eqs. (4). From Eq.
(18) and property B(m)

ll′ = −B(−m)
ll′ the eigenvectors can be

decomposed over the polarizations as follows

Xc(±m) =

(
xmTE
±xmTM

)
,Yc(±m) =

(
ymTE
±ymTM

)
.

(22)
As a result substitution of Eqs. (21) and (22) into Eq. (20)
gives

Ψσ ≈ 1

Lc
Dσ(X

+m
c ±X−m

c ) (23)

where the sign ± refers to the TE/TM polarizations and

Dσ = y+
TEp

σ
|m| + y+

TMqσ|m|. (24)

Asymptotically DTM → 0 for kz → 0. Assume that the
elliptically polarized plane wave ΨTE

inc +αΨ
TM
inc is incident

almost normally to the array with small kz . Instantly from
Eq. (23) we obtain that

Ψσ ≈ FX+m
c , F =

2DTE

Lc
(25)

Figure 6: The enhancement factor |F | vs frequency and
kz . The parameter α controls polarization of incident wave
ΨTE
inc+αΨ

TM
inc . Open circle marks point β = 0.0306, k0 =

3.1067.

for
DTE = αDTM (26)

the scattering wave function has only a contribution with
the positive OAM m > 0. Here we introduced the en-
hancement factor F which defines to what extent the in-
cident wave amplitude enhances near by the array. Respec-
tively for DTE = −αDTM the scattering wave function
has only a contribution with the negative OAM m < 0.
Fig. 6 illustrates the behavior of the enhancement factor in
the plane of the frequency k0 and β for elliptically polarized
plane waves with the polarization parameter α. In particu-
lar α = −0.3133 + i0.9496 corresponds to the circularly
polarized wave.

Let us examine the scattering wave function as we by-
pass the BSC point ωBSC = 3.086, R = 0.471, ϵ = 15
shown in Fig. 4 (b) where the radius of spheres is measured
in terms of the period of the array. The solution for the BSC
with m = 2 is the following [31]

(a2l , b
2
l ) =


0 0.6545 + 0.2013i

−0.2142 + 0.6964i 0
0 −0.0057− 0.0018i
0 0
0 0


(27)

where l ≥ 2. In what follows we takeR = 0.468 and sweep
the frequency of incident wave k0 in the nearest vicinity of
the BSC frequency 3.086. Then because of smallness of the
eigenvalue Lc in Eq. (23) EM fields given by the scatter-
ing wave function can reach high values near the spheres.
It is clearly a property of the extremely high quality of the
BSCs, that presents a possibility to enhance the incident
light [23, 16] that is illustrated in Fig. 7 (a). Besides car-
rying OAM the BSC with m ̸= 0 provide an opportunity
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Figure 7: (a) Values of the enhancement factor |F | vs kz
and k0 as dependent on radius of spheres. (b) Value of the
angular component of Poynting current for the r = 0.571
close to parameters of the BSC with OAM m = 2 (27).
kz = 0.0303.

to create giant spinning Poynting currents [51] as demon-
strated in Fig. 7 (b). Fig. 8 shows as the giant Poynting
current circulates around the array when the light with po-
larization α = −0.3133 + i0.9496 and angle of incidence
β = 0.0306 illuminates the array illustrating transforma-
tion of SAM into OAM.

9. Discussions and summary
Recently the BSCs above the light cone were shown to
exist in various systems of one-dimensional arrays of di-
electric rods and holes in the dielectric slab [12, 14, 13,
20, 22, 21, 15, 17] and of dielectric spheres [31]. In the
present paper we chose another strategy to quantize the ra-
diation continuum. We break a continual translational sym-
metry of infinitely long single rod along its axis z. In par-
ticular we have substituted the infinitely long circular rod
by periodic array of dielectric spheres that allowed us to
use the Mie scattering theory for a single sphere comple-
mented with multiple events of mutual scattering processes

Figure 8: Poynting current circulates around the sphere
when circularly polarized light illuminates the array. Cur-
rents around other spheres are repeating periodically.

0 0.5 1
β/π

0

k 0

4π/h

2π/h

|m| = 1
n = 0

n = −1

n = 1

n = −2

|m| = 2

Figure 9: (Color online). BSC frequencies and Bloch vector
β relative to the light line k0 = β. The area filled by gray
corresponds to below the light cone. Dash and dash-dot
lines show thresholds where the next continua n = ±1 and
n = −2 are opened. Fully symmetry protected BSCs are
marked by open circles, two OAM BSCs with m = ±1 and
m = ±2 are marked by closed circles, Bloch BSCs whose
Bloch vector and frequencies are given for ϵ = 9, 11, 15
and R = 0.49 are marked by ’+’, BSCs embedded into two
and three continua are marked by crosses.

between spheres. Such a theory was developed recently by
Linton et al [11] for guided electromagnetic modes below
the light cone which shown by gray color in Fig. 9. As soon
as the continual translational symmetry along the z-axis is
substituted by discrete one the continua is quantized spec-
ified by two quantum numbers, magnetic quantum number
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m and n. The last quantum number leads to discrete direc-
tions of outgoing cylindrical waves from the array given by
the wave vector kz,n = β +2πn/h in each sector m where
β is the Bloch vector along the array.

We have performed symmetry analysis of the BSCs
which are listed in tables I and II. The BSCs are labelled by
two quantum numbers m, azimuthal number of continuum
and β which defines Bloch wave vector of the BSC solution
along the array. (1) The symmetry protected BSCs consti-
tute the vast majority of BSCs which are symmetry mis-
matched with the first diffraction continuum m = 0, n = 0
of both polarizations. The EM field configurations of BSCs
presented in Fig. 4 show hybridizations of a few orbital
quantum numbers l = 2, 4, 6, . . . that specifies the BSCs
as multipoles of high order. The most remarkable property
in view of experimental visualization of the BSCs is their
robustness relative to choice of material parameters of the
dielectric spheres, the radius and dielectric constant.

(2) We demonstrated that the BSC can be established
not only by variation of the material parameters but also
by variation of Bloch wave vector β along the array axis.
Patterns of the Bloch BSCs are presented in Fig. 3.

(3) The advantages of dielectric structures are a high
quality factor and a wide range of BSC wavelengths from
microns (photonics) to centimeter (microwave range) as de-
pendent on the choice of the radius of the spheres. Although
the BSCs exist in selected points in the parametric space,
radius and dielectric constant there is a domain in the vicin-
ity of the BSC point where the BSC mostly contributes into
the cross-section and the EM field in the near field zone as
shown in Figs. 5. That leads to extremely efficient light
harvesting capabilities [52]. The BSCs with OAM m ̸= 0
demonstrate the most striking effect of transformation of in-
cident SAM beam with elliptic polarization into the OAM
solution with giant spinning Poynting current in the near
field zone of the array. It is worthy to note that the direction
of current circulation can be easily inverted by changing the
angle of incidence.

(4). There is a difference between the present theory
and possible experimental realization of the BSCs that is a
finite number of the spheres. There are also material losses
and the spheres have fluctuations in shape because of tech-
nological reasons. All these factor transform the BSCs into
quasi-BSCs with finite line width. For the fluctuations of
the radius ⟨∆R2/R2⟩ = 10−4 we have the inhomogeneous
line width of order 0.01. Our numerics give the line width
0.003 as shown in Fig. 10 by dash line. Also Fig. 10 shows
that for this case there is no necessity to include extremely
large number of spheres because the inhomogeneous line
width becomes more important factor compared to effect of
finite number of the spheres with increasing of the number
of the spheres.
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Tünnermann, S. Nolte, A.A. Sukhorukov, A. Szameit,
and Yu.S. Kivshar, ”Compact surface fano states em-
bedded in the continuum of waveguide arrays, Phys.
Rev. Lett., vol. 111, No. 24, p. 240403, 2013. DOI:
10.1103/PhysRevLett.111.240403.

[29] Chia Wei Hsu, Bo Zhen, A.D. Stone, J.D. Joannopou-
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