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Abstract

The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in the presence of the 120

degrees magnetic ordering. By analyzing the Z2 invariant, we determine the conditions of implementing nontrivial phases in the

model with regard to superconducting pairings between nearest and next nearest neighbors. It is often supposed in such system that

the pairing parameter between nearest neighbors should be equal to zero due to influence of the intersite Coulomb interaction. We

show that taking into account even weak pairings in the first coordination sphere leads to the disappearance of the gapless excitations

of the bulk spectrum in the wide region of the parameter space. Thus topological invariants can be defined in such region. Solving

the problem of open edges it is shown that the zero energy modes are realized basically in the topologically nontrivial phases. Such

zero modes are topologically protected Majorana modes. A connection between the Z2 invariant calculated at the symmetric points

of the Brillouin zone with respect to the electron-hole symmetry and the integer topological invariant of the ground state of the 2D

lattice expressed in terms of the Green functions is established in the presence of noncollinear magnetic ordering.
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1. Introduction

Recently, much attention has been paid to the topological su-

perconductors supporting Majorana zero modes. In pioneer-

ing works [1, 2], such quasiparticles were predicted in the p-

wave and effective p-wave superconductors. However, this

type of superconductivity is still rather exotic for real materi-

als. For the systems with s-wave pairing the several mecha-

nisms have been proposed for the formation of the Majorana

zero modes. One of the mechanisms is characterized by the

proximity-induced triplet px + ipy pairings on the surface layer

of a topological insulator in hybrid structures s-wave supercon-

ductor / topological insulator [3]. Another mechanism is con-

nected with the combined influence of strong spin-orbit interac-

tion, proximity-induced superconductivity, and magnetic field

[4, 5, 6]. In such case the Majorana zero modes arise when

the external (or exchange) magnetic field is greater than some

critical field.

At present, the new mechanism of the formation of the Ma-

jorana edge states in topological spin-singlet superconductors

due to the presence of long-range magnetic order is often con-

sidered [7, 8, 9, 10]. The symmetry of the superconducting state

is considered to be chiral dx2−y2 + idxy supporting the non-trivial

topology and edge states [11]. It should be noted that the time-

reversal symmetry is broken in such state. It is widely believed

that the chiral d-wave superconductivity may be realized in ma-

terials with a triangular lattice (for example, NaxCoO2 [8]) and

hexagonal lattice (graphene [10]).
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For the topological classification of the systems with many

degrees of freedom as well as systems with strong electron cor-

relations the topological invariant N3 expressed in terms of the

Green functions has been derived [12, 13]. Using this invariant

the quantum topological phase transitions have been studied in

liquid helium 3He-B [14], semiconducting nanowire [15], and

quantum Hall systems. It should be noticed, that in the systems

with 2+1-dimensions the N3 topological invariant is introduced

for the gapped ground state [13].

Non-zero values of N3 indicate the non-trivial topology of

the ground state supporting due to the bulk-boundary corre-

spondence the edge states. For 1D systems with the particle-

hole symmetry the well-known Z2 invariant (Majorana number)

has been proposed [2]. Such invariant expressed in terms of

the Pfaffian of the Bogoliubov-de Gennes (BdG) Hamiltonian

in the Majorana representation allows one to study the condi-

tions supporting the Majorana zero modes in systems with the

gapped bulk excitation spectrum. Later, the connection between

N3 and Z2 numbers has been established for the noncentrosym-

metric superconductors with the broken time-reversal symme-

try [15]. The main result is that the Majorana zero modes is

expected to appear in the states with odd N3 invariant.

On a triangular lattice the appearance of the Majorana zero

modes has been demonstrated in Ref. [8] for the coexistence

phase of dx2−y2 + idxy-wave superconductivity and stripe non-

collinear magnetic ordering. The superconducting pairings be-

tween nearest neighbors have been assumed to be suppressed by

the inter-site Coulomb interaction. Therefore the pairing inter-

action between the next nearest neighbors has been considered.
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In [16] on the basis of the self-consistent integral equations

in the coexistence phase for the t − J − V model it has been

shown that in the presence of stripe magnetic ordering the su-

perconducting order parameter does not have the chiral struc-

ture. Thus, the conditions for the realizations of the Majorana

zero modes on the triangular lattice have been analyzed for the

coexistence phase of chiral superconductivity and 120◦ mag-

netic ordering [17]. In Ref. [17], as well as in Ref. [8], the su-

perconducting pairings in the second coordination sphere were

only considered. It turned out that the analysis of the topolog-

ical phases in such model is complicated due to the fact that

there is a continual range of parameters for which the bulk ex-

citation spectrum is gapless. This is rather rare since usually

topological indices are introduced for a set of parameters in

which the bulk excitation spectrum is gapped. Therefore the

edge states with the zero excitation energy have been found in

the region with the gapped bulk spectrum.

In this paper we study the conditions supporting the Ma-

jorana zero modes on the triangular lattice in the coexistence

phase of chiral d-wave superconductivity and 120◦ spin order-

ing with regard to the superconducting pairing in the second and

first coordination spheres. It is shown that taking into account

the pairing between nearest neighbors with arbitrary small am-

plitude ∆21 leads to the disappearance of the continuous para-

metric region with the gapless bulk excitations. As the result

the Majorana number and N3 topological invariant for a 2D lat-

tice are calculated. The series of the topological phase transi-

tions upon changing the chemical potential and exchange field

is demonstrated. The connection between N3 and Z2 invariants

is determined in the presence of noncollinear magnetism. Topo-

logically non-trivial phases with the Majorana number equal

to -1 and odd N3 invariant coincide with each other as well as

with the parameter regions supporting the Majorana zero modes

which are found by solving the problem with open boundary

conditions.

2. Model and method

Let us consider the model describing the coexistence phase

of chiral superconductivity and noncollinear magnetic order in

the mean-field approximation on the triangular lattice. It is

assumed that proximity-induced superconducting pairings ap-

pear between nearest and next-nearest neighbors leading to the

dx2−y2+idxy-wave superconductivity. This assumption allows us

to study the topological phases of the system in the relatively

simple manner. However, it should be noted that the coexis-

tence phase is caused not only by the proximity effect but also

as a consequence of the internal electron interactions [16].

The long-range magnetic ordering is considered in the mean-

field approximation assuming that an average magnetic moment
〈

S f

〉

= M
(

cos(QR f ) − sin(QR f ), 0
)

is formed at the lattice site

f . Here Q is the magnetic structure vector, M is the average

on-site magnetization. Hereinafter we consider the 120◦ spin

ordering with Q = (Q,Q), Q = 2π/3 and define the coordinates

in the real and quasimomentum space as R f = na1 + ma2, k =

k1b1 + k2b2, where ai and bi are basic and reciprocal vectors

of the triangular lattice, accordingly. The Hamiltonian has the

form:

H = −µ
∑

fσ

c
†
fσ

c fσ +
∑

f mσ

t f mc
†
fσ

cmσ+

+ h (Q)
∑

f

(

exp(iQR f )c
†
f↑c f↓ + exp(−iQR f )c

†
f↓c f↑

)

+

+
∑

f m

(

∆ f mc f↑cm↓ + ∆
∗
f mc
†
m↓c
†
f↑

)

, (1)

where µ is the chemical potential, t f m and ∆ f m are the elec-

tron hopping and superconducting pairing amplitudes. The ex-

change field parameter is defined as follows:

h (Q) = M/2
∑

m

I f m exp(−iQ(R f − Rm)). (2)

I f m is the parameter of the exchange interaction, being consid-

ered within the two coordination spheres. An important differ-

ence of the system (1) from the model studied in [17] is the con-

sideration of superconducting pairings between nearest neigh-

bors. Hereinafter, the model is considered both in the case of

periodic boundary conditions along the direction a2 (the cylin-

der topology), and in the case of periodic boundary conditions

in two spatial directions (the torus topology). In both cases, the

operator part of the Hamiltonian (1) has the form:

H =
1

2

∑

k

C (k)+ · H (k) · C (k) ,

H(k) =































ξk h 0 ∆k

h+ ξk−Q −∆T
−k+Q

0
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−h+
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0 −h −ξ∗−k































, (3)

where C(k) =
(

ck↑, ck−Q↓, c
+
−k+Q↑, c

+
−k↓

)T
.

In the case of the cylinder topology the operator C has 4N1

components, where N1 is the number of sites along a1 direction.

Then, in the BdG Hamiltonian (3) N1 by N1 matrices ξ̂k, ∆̂k and

ĥ have the form (k ≡ k2):

ξ̂k2
=
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− µ Tk2

Γk2
0 0

T−k2

. . .
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0
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,

ĥ = h · diag
(

eiQ, e2iQ, . . . , eN1iQ
)

,

∆̂k2
= −





























































∆̃∗
k2

ψ∗−k2
∆∗

22
eik2 0 0

ψ∗
k2

. . .
. . .

. . . 0

∆∗
22

e−ik2
. . .

. . .
. . . ∆∗

22
eik2

0
. . .

. . .
. . . ψ∗−k2

0 0 ∆∗
22

e−ik2 ψ∗
k2

∆̃∗
k2





























































.

(4)
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Here

tk2
= 2t1 cos(k2) + 2t3 cos(2k2), ∆̃k2

= 2∆21 cos(k2),

Tk2
= t1

(

1 + exp(ik2)
)

+ t2
(

exp(−ik2) + exp(2ik2)
)

,

Γk2
= t2 exp(ik2) + t3

(

1 + exp(i2k2)
)

,

Ψk2
= ∆22 exp(i2π/3)

(

exp(i2k2) + exp(i2π/3 − ik2)
)

+

+ ∆21 exp(i2π/3)
(

1 + exp(i2π/3 + ik2)
)

,

and t1, t2, t3 are the hopping parameters for the first, second, and

third coordination spheres. Parameters ∆21, ∆22 denote the am-

plitudes of the superconducting pairings of the d-wave symme-

try (angular momentum l = 2) which are implemented between

the nearest and the next-nearest neighbors respectively.

The eigenvalues and eigenstates of the Hamiltonian (3) de-

termine the spectrum of elementary excitations as well as the

amplitudes of the Bogoliubov quasiparticles:

αk2 j =

N1
∑

n=1

(

A jn,k2
cnk2↑ + B jn,k2

cn,k2−Q2↓+

+C jn,k2
c
†
n,−k2↓ + D jn,k2

c
†
n,−k2+Q2↑

)

. (5)

When considering the lattice with the torus topology the

value of h is determined by the expression (2), ξk ≡ tk − µ,

∆k ≡ ∆k, and functions tk, ∆k are the Fourier transforms of the

hopping integral and the superconducting order parameter with

dx2−y2 + idxy symmetry type. In should be noted that the pair-

ing interaction in the first coordination sphere is considered to

be sufficiently suppressed by the inter-site Coulomb interaction,

so ∆21 << ∆22 [8, 18].

3. Hamiltonian symmetry and Z2 topological invariant

Regardless of the consideration of the system with the cylin-

der or torus topology the BdG Hamiltonian (3) has the symme-

try:

ΛH(k)Λ = −H∗(−k + Q), Λ =

(

0̂ Î

Î 0̂

)

, (6)

where 0̂ and Î are the zeros and identity matrices of correspond-

ing size (2×2 for the torus topology and 2N1×2N1 for the cylin-

der topology). Due to this symmetry eigenvalues of the Hamil-

tonian H(k) are grouped in pairs εn(k) and −εn(−k + Q). Fol-

lowing the paper [15], let us consider the particle-hole invari-

ant momenta K (PHIM points) of the Brillouin zone such that

K = −K+Q+G, where G is a reciprocal-lattice vector. At these

points the BdG Hamiltonian has the particle-hole symmetry. In

the case of the cylinder topology K2 = −2π/3; π/3, while in

the case of the torus topology we have four PHIM points K =

(−2π/3, − 2π/3); (−2π/3, π/3); (π/3, − 2π/3); (π/3, π/3).

Then we can define matrices

W(k) = H(k)Λ, W̃(k) = RT W(k)R,

R =
1
√

2

(

Î −iÎ

Î iÎ

)

,

which satisfy the relations W(k) = −WT (−k + Q), W̃(k) =

−W̃T (−k + Q). These matrices are the antisymmetric ones at

the PHIM points. It can be shown that the matrix W̃ coincides

with the BdG Hamiltonian (3) if we will use in the expression

(3) the Majorana representation:

ckσ = γAkσ + iγBkσ; c+kσ = γA−kσ − iγB−kσ. (7)

Thus, following Kitaev [2], one can introduce the Z2 Pfaffian

invariant M(K2) in the cylinder topology only for the PHIM

points K2 = −2π/3, π/3:

M(K2) = P(K2,K1 = −2π/3)P(K2,K1 = π/3), (8)

where P(K) is the fermionic parity of the ground state of the

system with the torus topology:

P(K) = sign
(

P f
(

W̃(K)
))

. (9)

If M(K2) = −1 the system is in the topologically nontriv-

ial phase supporting the Majorana zero modes. Otherwise, if

M(K2) = 1 the ground state is topologically trivial and there is

no topologically protected edge states with zero excitation en-

ergy. Note that the bulk spectrum should be gapped to define

the Majorana number. In general P(K) = sign
(

h2 − ξ2
K
− |∆K|2

)

and it can be shown by the direct calculations that P(K2 =

π/3,K1 = −2π/3) = P(K2 = π/3,K1 = π/3). It means that

at K2 = π/3 there is no the Majorana zero modes in the system

considering the cylinder topology.

µ/|t1|
-2 -1 0 1 2 3 4

h
/t

1

0  

0.5

1  

1.5

2  

-1

-1

+1

Figure 1: The conditions for the realization of the zero energy excitations ob-

tained with consideration of the periodic boundary conditions along a2 (blue

thin lines), h is the exchange field, µ is the chemical potential, t1 is the hopping

parameter between nearest neighbors. The parameters are t1 = −1, t2 = t3 = 0,

∆22 = 0.3|t1 |, ∆21 = 0.05|t1 |, N1 = 48. The red bold lines show a border be-

tween the phases with different values of the topological Z2 invariant M = ±1.

At K2 = −2π/3 the Majorana number is defined by the rela-

tion

M = sign
( (

h2 − (µ + 3t1 − 6t2 + 3t3)2
)

·

·
(

h2 − (t1 − t2 − 3t3 − µ)2 − 4 (∆21 − 2∆22)2
) )

.

(10)

In Figure 1 the parameters for which the Majorana number

(10) change sign are depicted by the bold lines. As it will be
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shown in the last paragraph for these parameters the bulk ex-

citation spectrum becomes gapless. The curves h(µ) for which

the gapless elementary excitations occur on the triangular lat-

tice with the cylinder topology and N1 = 48 are shown by

thin lines. It can be seen that the majority of the zero modes

lies in the topologically nontrivial phase. As N1 increases the

distribution of the zero energy curves becomes dense and all

of them are found in the topologically nontrivial phases with

M = −1. The more N1 decreases, the more zero modes exist in

the topologically trivial phase. These modes are not topologi-

cally protected. This indicates that the correspondence between

bulk and boundary is well established when considering a suf-

ficiently large number of sites. The set of parameters is chosen

as ∆21 = 0.05|t1|, ∆11 = 0.3|t1|, t2 = t3 = 0.

Figure 2: Spatial distribution of the sum of the Bogoliubov coefficients pn(h)

(color bar) vs exchange field h at µ/|t1 | = 2. The other parameters are the same

as in Figure 1. The darkest and lightest areas correspond to the largest and

smallest values of pn , respectively.

Figure 3: Spatial distribution of the sum of the Bogoliubov coefficients pn(h)

(color bar) vs exchange field h at µ/|t1 | = 4. The other parameters are the same

as in Figure 1. The darkest and lightest areas correspond to the largest and

smallest values of pn , respectively.

It should be noted that changing the parameters in the topo-

logically nontrivial phase leads to the oscillations of the mini-

mal excitation energy ε0 and its dropping to zero on the lines of

the zero modes (thin lines in Figure 1). At the points where

ε0 = 0 a transition is realized: the ground state containing

a superposition of states with an even number of fermions is

replaced by a state with an odd number of fermions and vice

versa. Such switching of the fermionic parity has been obtained

for the Kitaev model [19] and probably it is a general property

of the finite quasi-one-dimensional systems in the topologically

nontrivial phase.

It is sufficient that all of the zero modes shown in Figure 1

are the edge ones. This is an important difference from the

case ∆21 = 0 considered in [17] where the continual region

with the bulk gapless excitations is appeared in the space of the

parameters h and µ. As the result the zero energy modes of

the system with the cylinder topology which are found in this

region are not the edge ones and represent the bulk excitations

modified due to the boundary effects. With regard to the weak

nearest neighbors superconducting pairing ∆21 << ∆22 all of

the zero modes in the topologically nontrivial phases become

the edge ones.

Let us demonstrate the realization of the edge states for ∆21 ,

0 in the topological phase studying the dependence of the site-

dependent parameter

pn(h) = |A0n,K2
|2 + |B0n,K2

|2 + |C0n,K2
|2 + |D0n,K2

|2 (11)

on the exchange field h (vertical panel) and the number of site

n (horizontal panel). The Bogoliubov coefficients appearing in

(11) correspond to an elementary excitation with a minimal en-

ergy ε0 and K2 = −2π/3. In Figures 2, 3 such dependencies

are shown for µ = 2|t1| and µ = 4|t1|. The other parameters are

the same as in Figure 1. In these cases the transition between

the topologically trivial and nontrivial phases corresponds to

h = |t1|. It is seen in Figure 3 that the edge states including the

Majorana zero modes are realized in the phase with M = −1 of

the Z2 topological invariant (8). In Figure 2 the edge states and

zero modes are found even in the phase with M = 1. As it will

be shown in the next paragraph the edge states can exist in this

region but the zero modes are not topologically protected. Upon

increasing N1 the Majorana zero modes become more localized

at the edges.

The following two features deserve mention. First, the topo-

logically protected edge states with non-zero excitation energy

can be realized even if the value of the Z2 invariant corresponds

to the topologically trivial phase (M = 1, see Figure 2). This

result is in agreement with the calculation of the N3 invariant

for a 2D system considered below. Second, in the considered

system the edge states with zero energy can be realized with

quasimomenta k2 , −2π/3 but such states are not topologically

protected ones.

4. The topological invariant N3 of a 2D lattice and its con-

nection with the Z2 invariant. The analysis of the bulk

spectrum

It is known that topological transitions changing the topolog-

ical index occur when the gap closes in the bulk spectrum. For

the system under consideration, the bulk spectrum has the form:

E±k =

√

1

2

(

ξ2
k
+ ξ2

k−Q
+ 2h2 + |∆k|2 +

∣

∣

∣∆−k+Q

∣

∣

∣

2
)

± v2
k
, (12)
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where

ν2
k =

{

1

4

(

ξ2
k − ξ

2
k−Q + |∆k|2 − |∆−k+Q|2

)

+

+h2
[

(

ξk + ξk−Q

)2
+

∣

∣

∣∆k + ∆−k+Q

∣

∣

∣

2
]}1/2

. (13)

The conditions for zero energy in the bulk spectrum are de-

scribed by the equation:

|h2 − ξkξk−Q − ∆k∆
∗
−k+Q|

2 + |ξk∆−k+Q − ξk−Q∆k|2 = 0.

At the PHIM points K = −K +Q +G the second term in the

equation is identically equal to zero, and the first term is the

same as P f ( ˜W(K)). Thus, at the symmetric points of the Bril-

louin zone the change in the sign of the Majorana number (8),

as it should be, is accompanied by the existence of zero energy

in the bulk spectrum at these points.

In the case when k , −k +Q, the equations determining

the conditions for the realization of the gapless bulk excitations

have the form:

h2 − ξkξk−Q − ∆k∆
∗
−k+Q = 0,

|ξk∆−k+Q − ξk−Q∆k| = 0,

Im(∆k∆
∗
−k+Q) = 0. (14)

The formation of the gapless bulk excitations at the non-

PHIM points according to the solution of the Eqs. (14) also

leads to a topological phase transitions. However, at this transi-

tion the Z2 invariant (8) does not change. A characteristic that

allows to identify such transitions in two-dimensional systems

(including the systems with interaction) is the topological in-

variant of the ground state introduced in Ref. [12]:

N3 =
1

24π2
εµνλ

∫ ∞

−∞
dω

∫ π

−π

∫ π

−π
dk1dk2S p

(

G∂µG
−1 ·

· G∂νG
−1G∂λG

−1
)

, (15)

where µ, ν, λ = 1, 2, 3, εµνλ is antisymmetric Levi-Civita ten-

sor, ∂1 = ∂/∂k1
, ∂2 = ∂/∂k2

, ∂3 = ∂/∂ω. By repeated indices

we mean the summation. In the system of noninteracting elec-

trons the matrix Green function G is a matrix 4× 4 for the torus

topology and has the form G =
[

iωI − H(k)
]−1

.

Non-zero integer values of the invariant N3 (15) determine

the topologically nontrivial phases in which edge states can

form. In the Ref. [15] a connection between the Z2 invari-

ant (8) and the topological invariant N3 (15) was established in

the case of noncentrosymmetric systems with the broken time-

reversal symmetry but preserving the electron-hole symmetry.

It was shown that the product of the Majorana numbers (8) at

the points k = −k +G coincides with the parity of the topolog-

ical index N3. In a system with magnetic ordering this relation

is generalized:

(−1)N3 = sign
(

∏

K=−K+Q+G

P f
(

W̃(K)
) )

. (16)

The phase diagram with different topological phases in the

space of the chemical potential µ and the exchange field h is

shown in Figure 4. In each phase the values of the topological

Figure 4: The diagram of topological phases with different N3 (15) in the vari-

ables h, µ, where h is the exchange field, µ is the chemical potential. The

parameters are the same as in Figure 1. The phases with an odd N3 value corre-

spond to the phases with the Majorana zero modes in Figure 1 having M = −1

(8).

invariant N3 are marked. The solid lines defining the boundaries

between different topological phases are obtained as the solu-

tions of the system of equations (14) which are determined the

presence of the bulk gapless excitations. The parameters are the

same as in Figure 1. It should be noted that this invariant is ill-

defined at the topological transition point. In the vicinity of the

transition the calculation of the invariant requires an increase in

the accuracy. As can be seen from Figure 4 the increase of the

chemical potential leads to a series of topological transitions.

The topological trivial phase with N3 = 0 at µ < −2|t1| is im-

plemented when the chemical potential intersects the bottom of

the bare electron band (not shown in the Figure).

As is well known, the difference between the values of the

N3 invariant in neighboring phases determines the values of

the topological invariants of the Fermi points in which the bulk

spectrum has zero energy at the transition between phases. In

the model under consideration the invariants of the Fermi points

are equal to ±1. There is only one exception at the transition be-

tween phase with N3 = 0 to the phase with N3 = 4 at negative

µ (not shown in Figure 4) where the invariant of each from two

Fermi points is 2. Thus at other cases, the difference corre-

sponds to a number of the nodal points of the bulk spectrum at

the topological transition.

The excitation spectrum in the coexistence phase of super-

conductivity and noncollinear magnetic order differ from the

spectrum in a superconducting phase. Moreover, the spectrum

in the coexistence phase is determined by the two supercon-

ducting order parameters ∆k, ∆−k+Q, which have the different

systems of the nodal points. This leads to several significant

differences in the analysis of the zeros of the bulk spectrum.

The spectrum in superconductors has zero energy at the bound-

aries and in the middle of the Brillouin zone only when the

chemical potential intersects the bottom or top of the bare elec-

tron band. In the coexistence phase due to the exchange field

the spectrum has zero energy at these points, when the chem-
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ical potential lies inside the band. Such picture can be seen

from Figure 4 at the transition from the phase with N3 = −2

to the phase with N3 = −3 when the gap closes at the point

(−2π/3,−2π/3) under the condition h = |µ + 3t1 − 6t2 + 3t3|.
This point corresponds to the one of the nonequivalent points

lying at the intersection of the edges of the hexagonal Bril-

louin zone. In this case ∆k = ∆−k+Q = 0. The second analo-

gous transition is realized between the phases with N3 = 3 and

N3 = 1 when the spectrum becomes gapless at the points (0, 0

and (2π/3, 2π/3). At small values of ∆21 the phase with N3 = 3

is rather narrow and lies between the phases with N3 = −3 and

N3 = 1. This narrow phase is schematically shown in Figure 4.

For a superconductor without magnetic ordering the intersec-

tion of the nodal points of the superconducting order parameter

by the Fermi contour leads to the gapless excitations. When

noncollinear magnetism is taken into account this condition is

not satisfied due to the parameter ∆−k+Q. However, there are

conditions when the energy spectrum is equal to zero at the

points in which ∆k,∆−k+Q , 0. This picture corresponds to

the remaining transitions in Figure 4. It should be noted that

with disregard to ∆21 the relation ∆k = ∆−k+Q is satisfied, as

a result the energy spectrum is considerably simplified. When

∆21 is taken into account the condition ∆k = ∆−k+Q , 0 is valid

only at the points (−2π/3, π/3), (π/3,−2π/3), (π/3, π/3). The

zeros of the spectrum at these points are realized, for example,

at the transition from the phase with N3 = −8 to the phase with

N3 = −5 upon increasing h.

From Eq. (16) we conclude that the Majorana modes exist

in the phases with odd N3. The transition to such phases is ac-

companied by the closing the gap in the bulk spectrum in an odd

number of points in the Brillouin zone. In the phases with even

N3 the edge states can arise but the topologically protected zero

modes are not found. This agrees with the calculation results

shown in Figures 1-3. These conclusions indicate that the defi-

nition of the topological invariant (15) allows one to search for

possible conditions for the realization of the Majorana modes

in electron systems with interaction and magnetic order.

5. Conclusions

The topological properties of the coexistence phase of the

dx2−y2 + idxy-wave superconductivity and the noncollinear 120◦

magnetic ordering on a triangular lattice are studied. When the

superconducting pairings are taken into account only in the sec-

ond coordination sphere, the gap in the bulk excitation spectrum

is closed in the continuous region of the parameter space. This

feature means that the topological invariants cannot be intro-

duced in a standard way, in spite of the fact that the edge zero

modes are found in the system. In the present work it is shown

that taking into account the arbitrarily small superconducting

amplitude, induced by the pairing interaction in the first coordi-

nation sphere, leads to opening a gap in the bulk spectrum. The

bulk spectrum becomes gapless only on the boundaries between

topologically different phases. This allows us to introduce the

Z2 topological invariant M (the Majorana number) and analyt-

ically determine the conditions of realizing the topologically

nontrivial phases with M = −1.

Considering the triangular lattice with periodic boundary

conditions along the basic vector a2, the zero modes are found

to exist on the specific curves in the parameter space of the

chemical potential and exchange field. It is shown that for the

lattice with a finite number of sites N1 along the direction a1

the zero modes can arise in the topologically trivial phase. Such

zero modes are not topologically protected. However the major-

ity of the zero modes (the Majorana modes) lies with increasing

N1 in the topologically nontrivial phase with M = −1.

The topological invariant N3 of the 2D lattice expressed in

terms of the Green functions is calculated for the coexistence

phase. We find a series of the topological transitions in the

coexistence phase upon increasing the chemical potential. A

relationship between the two topological invariant M and N3

is determined with regard to the noncollinear magnetism. It is

shown that topologically nontrivial phases with the Majorana

number equal to −1 correspond to the phases with odd N3. In

the topologically nontrivial phases with even N3 the edge states

can exist but they cannot be the topologically protected Majo-

rana edge states with zero excitation energy.
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