
ar
X

iv
:1

71
0.

06
57

5v
1 

 [
ph

ys
ic

s.
op

tic
s]

  1
8 

O
ct

 2
01

7

Polarized bound state in the continuum

and resonances with tunable Q-factor in an anisotropic photonic crystal

Ivan V. Timofeev1,2,∗ Dmitrii N. Maksimov1,3, and Almas F. Sadreev1
1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia

2Siberian Federal University, 660041, Kransnoyarsk, Russia
3Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia

(Dated: October 19, 2017)

We consider a one-dimensional photonic crystal composed of alternating layers of isotropic and
anisotropic dielectric materials. Such a system has different band structures for different polariza-
tions of light. We demonstrate that if an anisotropic defect layer is inserted into the structure, the
crystal can support an optical bound state in the continuum. By tilting the principle dielectric axes
of the defect layer relative to those of the photonic crystal we observe a long-lived resonance in
the transmission spectrum. We derive an analytical expression for the decay rate of the resonance
that agrees well with the numerical data by the Berreman anisotropic transfer matrix approach.
An experimental set-up with a liquid crystal defect layer is proposed to tune the Q-factor of the
resonance through applying an external electric field. We speculate that the set-up provides a simple
and robust platform for observing optical bound states in the continuum in the form of resonances
with tunable Q-factor.

PACS numbers: 42.25.Fx,42.60.Da,42.70.Qs,42.79.Dj,42.79.Ci,78.67.Pt,42.70.Qs,42.70.Df

I. INTRODUCTION

The spectral properties of open systems are character-
ized by resonant eigenvalues, which are typically complex
numbers. It is generally perceived that the imaginary
part of a resonant eigenvalue is due to the coupling of
the resonant state to the continuum of propagating eigen-
modes corresponding to the scattering channels. It might
occurs, however, that under variation of some parameters
the imaginary part of a resonant eigenvalue tends to zero,
i.e. the resonant state becomes decoupled from the scat-
tering channels, whilst still embedded into the spectrum
of the extended states. Such continuum decoupled states
are source-free localized eigenmodes with infinite lifetime
known as bound states in the continuum (BICs)1.

The symmetry selection rules provide the simplest
mechanism for cancelling the coupling of a bound state to
the continuum. The symmetry protected BICs in quan-
tum waveguides were first proposed by Robnik in a sim-
ple separable system with antisymmetric BICs embedded
into the spectrum of symmetric propagating eigenstates2.
Later on the symmetry protected BICs were reported in
a cross-wire waveguide3 and a quantum dot subject to
magnetic field4.

Nowadays we witness a surge of interest to BICs in field
of photonics, where BICs were observed in various set-ups
with periodical dielectric permittivity5–10. In particular,
the studies on BICs are motivated by applications to res-
onant light enhancement11–13 and lasing14,15. Another
remarkable property of BICs is the emergence of a col-
lapsing Fano feature in its parametric vicinity16–19, that
can be potentially employed to narrow-band filters20,21.
To the best of our knowledge, optical resonances with
infinite lifetime in the Γ-point (i.e. symmetry pro-
tected BICs) were first predicted in22. Another opti-
cal set-up supporting symmetry protected BICs is a di-

rectional waveguide side-coupled with two off-channel
microcavities23 buried in the bulk of a two-dimensional
photonic crystal (PhC). That is the set-up experimen-
tally realized by Plotnik et al

5. Recently, BICs have
been studied in systems with dielectric anisotropy24,25

with the key idea to employ the anisotropy for manipu-
lating the frequency cut-offs for different polarizations of
light in the ambient medium.
In this paper we propose a simple set-up for a sym-

metry protected BIC localized in the vicinity of an
anisotropic defect layer (ADL) embedded into a one-
dimensional anisotropic PhC. The proposed set-up is sim-
ilar to that from24 with the only difference that the defect
layer in the above reference was taken isotropic. We will
show that the addition of an ADL allows us to provide
an exact analytical solution for a BIC and derive the
decay rate of the BIC related resonance in the transmis-
sion/reflection spectra. An experimental set-up with a
liquid crystal ADL is proposed to control the Q-factor
through applying an external electric field.
The paper is organized as follows: in Sec. II we re-

view the band structure of anisotropic PhCs, describe our
model, and numerically demonstrate the resonant feature
associated with a BIC. In Sec. III we present an exact
analytical solution for the BIC within the extraordinary
waves stop-band. In Sec. IV we derive the decay rate
of BIC-related resonance which emerges in the scattering
spectrum when the symmetry is broken by application of
ADL axes tilt. We confirm our findings with numerical
data in Sec. V. Finally, we conclude in Sec. VI.

II. MODEL

We consider a one-dimensional PhC composed of alter-
nating layers of isotropic and anisotropic dielectric mate-

http://arxiv.org/abs/1710.06575v1
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FIG. 1. One-dimensional PhC structure stacked of alternat-
ing layers of an isotropic dielectric material with permittivity
ǫo (gray) and an anisotropic material with the permittivity
components ǫo and ǫe (red). A defect layer with a tuneable
permittivity tensor is inserted in the center of the structure.

rials as shown in Fig. 1. The layers are stacked along the
z-axis with period Λ. The isotropic layers are made of
a dielectric material with permittivity ǫo and thickness
Λ − d, while the anisotropic layers have the principal
dielectric axes aligned with the x,y-axes with the corre-
sponding permittivity components ǫe, ǫo. The thickness
of each anisotropic layer is d.
We start with Maxwell’s equations for waves propagat-

ing along the z-axis. Assuming that the wave vector is
aligned with the z-axis the wave equations for the electric
vector E = [Ex, Ey, 0] are the following

∂2Ex

∂z2
+

ω2

c2
ǫoEx = 0,

∂2Ey

∂z2
+

ω2

c2
ǫ(z)Ey = 0, (1)

where ǫ(z) is either ǫo within the isotropic layer, or ǫe
within the anisotropic ones. The solution for the ordinary
y-polarized waves is obvious

Ey = E0 exp (inok0z − iωt), (2)

where k0 = ω/c is the wave vector in vacuum, while
no =

√
ǫo is the refractive index of the isotropic mate-

rial. For the extraordinary x-polarized waves we have
a piecewise continuus solution. By using the transfer
matrix approach the dispersion relation for the extraor-
dinary waves is found as26,27

cos kBΛ = cos ked cos k0(Λ− d)−
1

2

(

ne

no

+
no

ne

)

sin ked sin k0(Λ− d),

where ke = (ω/c)
√
ǫe, ne =

√
ǫe, and kB is the Bloch

vector. The band structure is shown in Fig.2(left).
According to Eq. (1) the waves of different polariza-

tion do not mix in the PhC structure. The picture be-
comes more involved if an anisotropic defect layer (ADL)
of thickness 2d is inserted into the center of the structure.

In what follows we assume that the ADL is made of a ma-
terial with the same principal dielectric constants ǫo, ǫe,
but the principal axes of the ADL are tilted with respect
of the principle axes of the bulk PhC by angle φ as shown
in Fig. 1. We mention in passing that the set-up could
be implemented with a liquid crystal defect layer with
the principal axes aligned with an external electric field.
The dielectric tensor of the ADL can be written as

ǫ̂ =

[

ǫe cos
2 φ+ ǫo sin

2 φ sin 2φ (ǫe − ǫo)/2
sin 2φ (ǫe − ǫo)/2 ǫe sin

2 φ+ ǫo cos
2 φ

]

, (3)

where the tilt angle φ is the polar angle in the x0y-plane.
For brevity here and later on we omit the z-components
the electromagnetic (EM) field, since ǫ̂ is a 2× 2 matrix.
The whole system can be now viewed as a one-

dimensional scattering set-up with the ADL playing the
role of the scattering center and the PhC arms acting as
semi-infinite waveguides. The resonant properties of the
system can be probed by an ordinary wave Eq. (2) in-
jected through the left arm. It is clear from Eq. (3) that
if φ = 0 the system remains transparent for the incident
wave Eq. (2). If, however, a tilt φ 6= 0 of the dielectric
axes is applied to the ADL we expect a scattering solu-
tion with a mixture of both polarizations in the vicinity of
the ADL. The above speculation is exemplified with nu-
merical results in Fig. 2 (right). The numerical data are
obtained with the Berreman transfer matrix method28

for the set of parameters collected in the caption to Fig.
2. Most remarkably, one can see from Fig. 2 that the
reflectance spectrum of the ordinary wave exhibits a res-
onant feature in the middle of the extraordinary waves
stop-band. In what follows we will demonstrate that this
feature is induced by an x-polarized BIC which is con-
verted to a long-lived resonance (quasi-BIC) by the ADL
axes tilt.

III. BOUND STATE IN THE CONTINUUM

Let us now construct a BIC solution for the ADL. By
definition the BIC is a source free solution localized in
the vicinity of the ADL. The solution must satisfy time-
stationary Maxwell’s equations

{

0 ∇×
−∇× 0

}{

E

H

}

= −ik0

{

ǫ̂E
H

}

, (4)

where k0 = ω/c. Let us take the layers of equal quarter-
wavelength optical thickness for both materials

dne = (Λ− d)no = λ0/4, (5)

with λ0 = 2π/k0 as the vacuum wavelength. Notice that
the above choice of parameters constraints both the an-
gular frequency of the BIC

ω =
cπ

2dne

, (6)
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FIG. 2. The band structure (left) and reflectance spectra
(right) of extraordinary (dash red) and ordinary waves (solid
green) in anisotropic PhC structure from Fig. 1 with ν as
the linear frequency of the incident wave. The BIC frequency
is marked by a red dash-dot line. The yellow strip is the
photonic band gap. Dielectric permittivities of layers are ǫe =
4; ǫo = 1. The widths d = 0.125 µm, (Λ − d) = 0.250µm
are optimized for normalized linear frequency ν/c = 1/λ =
1µm−1 in the band gap center. The defect layer has twice
the thickness of the anisotropic layers 2d = 0.250 µm. The
tilt angle φ = π/8.

and the period of the PhC

Λ =
d(ne + no)

no

. (7)

In what follows we show that the specific choice of pa-
rameters given by Eqs.(5,6,7) allows us to construct a
source-free solution that exponentially decays away from
the ADL. In the unperturbed case φ = 0 the BIC is po-
larized along the x-axis, hence for the EM field within
the ADL we can write

E
(0)
x (z) = 1

ne

A sin(nek0z),

H
(0)
y (z) = −iA cos(nek0z).

(8)

The above solution obviously satisfies Eq. (4) within the
ADL. Let us demonstrate that it can be extended into the
PhC arms by matching the EM fields on the boundaries
between the anisotropic and isotropic layers. We denote
the EM field components in the isotropic layers adjacent

to the ADL by Ē
(0)
x (z), and H̄

(0)
y (z). On the boundaries

of the ADL the following boundary conditions must be
satisfied

Ē(0)
x (±d) = E(0)

x (±d), H̄(0)
y (±d) = H(0)

y (±d). (9)

Here we describe the wave matching for z > 0 having in
mind that by construction the solution Eq. (8) is anti-

symmetric with respect to the z-axis. By using Eq. (8)
we can write

Ē
(0)
x (z) = 1

ne

A sin[nok0(Λ− z)],

H̄
(0)
y (z) = iqA cos[nok0(Λ − z)],

(10)

where

q =
no

ne

< 1.

Re-iterating the matching procedure into the depth of the
PhC arm we find the EM fields within the mth anisotropic
and isotropic layers

E
(m)
x (z) = 1

ne

(−1)mqmA sin[nek0(z −mΛ)],

H
(m)
y (z) = i(−1)m+1qmA cos[nek0(z −mΛ)],

(11)

and

Ē
(m)
x (z) = 1

ne

(−1)mqmA sin[nok0((m+ 1)Λ− z)],

H̄
(m)
y (z) = i(−1)mqm+1A cos[nok0((m+ 1)Λ− z)].

(12)
One can see that we have found a localized solution which
decays exponentially with m, Q.E.D.
Let us define the quantities Em, Ēm as the ener-

gies stored in the mth,m = 0, 1, 2, . . . anisotropic and
isotropic layers, correspondingly. Notice that for φ = 0
one half of the ADL m = 0 is identical to the next
anisotropic layers in the PhC arm m = 1, 2, . . .. The
energies can be expressed through the integrals

Em =
1

8π

mΛ+d
∫

mΛ

dz
[

E
(m) † ǫ̂(z)E(m) + H

(m) †
H

(m)
]

,

(13)
and

Ēm =
1

8π

(m+1)Λ
∫

mΛ+d

dz
[

Ē
(m) † ǫ̂(z)Ē(m) + H̄

(m) †
H̄

(m)
]

.

(14)
The integrals can be evaluated as

Em =
dA2q2m

8π
, Ēm =

(Λ− d)A2q2m+2

8π
=

dA2q2m+1

8π
,

(15)
where Eq. (5) was used in the last step of the derivation.
The total energy stored in the BIC is, then, expressed
through the following equation

E = 2

∞
∑

m=0

(Em + Ēm) =
dA2

4π(1− q)
. (16)

By equating the total energy to unity we have

A =

√

4π(1− q)

d
. (17)
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FIG. 3. BIC mode profile; The electric field Ex – solid green,
the magnetic field Hy – dash blue; tilt angle φ = π/18. The
other parameters are the same as in Fig. 2.

One can see that the BIC is now energy normalized in
the whole space for any value of the parameters d, ǫo, ǫe.

The BIC mode profile is plotted in Fig. 3. Notice,
that the structure is simmetric with respect to x0z- and
y0z-plane mirror reflections. The BIC polarization is or-
thogonal to the polarization of propagating waves Eq.
(2). This orthogonality can be thought of as a case of
symmetry protection.

IV. DECAY RATE

As it was demonstrated in Sec. II, in case the princi-
ple axes of the ADL are tilted by angle φ 6= 0 the BIC
becomes a leaky mode (quasi-BIC) emerging in the re-
flection spectrum as a sharp resonant feature. In this
section we derive an analytical expression for the energy
decay rate Γ which by definition is the ratio of the power
lost into the continuum of the ordinary waves, P to the
energy stored in the BIC, E

Γ =
P
E . (18)

Taking into account that the BIC is energy normalized
the only unknown quantity in Eq. (18) is P . Next we
will demonstrate how two different techniques could be
used for finding P .

A. Wave matching

We start with a heuristical wave-matching approach,
similar in spirit to that from29–31. Let us consider
the standing wave solution in the ADL inserted to the
isotropic medium of adjacent layers. In the considered
case the ADL produces no reflection for stationary in-
cident waves of arbitrary polarization. The ordinary

wave is not reflected because of matched impedances
with equal dielectric permittivity. For the extraordinary
wave the ADL is a half-wavelength layer according to
Eq. (5). The total reflection from both boundaries of a
half-wavelength layer is zero, see Eqs. (8) and (10) and
Fig. 3 with the electric field maximum at the ADL bound-
ary. So, the electric field amplitude inside the ADL and
in the adjacent layers is the same. Thus, the leakage is
due to transmission rather than reflection.

The standing wave can be decomposed into incident
and outgoing waves with respect to the ADL with electric
field amplitudes A(∓)

A(∓) =
1

ne

√

π(1 − q)

d
.

One can write the matching condition with ordinary and
extraordinary waves within the tilted ADL

Ee(−d) = A(+) cosφ
Eo(−d) = A(+) sinφ,

(19)

where Ee, and Eo are the amplitudes of ordinary and
extraordinary waves propagating to the right within the
ADL at the left interface z = −d. After propagating to
the right interface z = d those waves accumulate phase

Ee,o(d) = Ee,o(−d) exp(2idne,ok0). (20)

Projecting back onto the y-axis and combining the above
equations (19) and (20) we have for the amplitude of the
outgoing wave in the right PhC arm

|Ey| =
1

ne

√

π(1 − q)

d
sin(2φ) sin (dk0(ne − no)) . (21)

Then, the Poynting vector amplitude of the outgoing
wave can be written as

P = cno|E2
y |/4π. (22)

The total energy loss must be obviously doubled to ac-
count for leakage into the left PhC arm. Hence, by using
Eqs. (6,21) and (22) we have for the power lost in unit
of time

P =
c sin(2φ)2q2(1 − q)

2dno

cos2
(πq

2

)

. (23)

At this point we would like to emphasise the obvious vio-
lation of a half-wavelength condition Eq. (5) by the ADL
tilt. When the tilt is small the quasi-BIC frequency shift
is proportional to φ2, and the residual reflection ampli-
tude has the same order of smallness. Then the reflec-
tion amplitude projection onto the y-axis is proportional
to φ3. Thus, the expression Eq. (23) is accurate up to
O(φ4) ∼ φ3sin(2φ).
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B. Time-dependant perturbation theory

To obtain an analytical expression for P in a more
rigorous manner we will apply the time-dependant per-
turbation theory assuming that initially the EM energy
is loaded into the BIC with φ = 0. Then, at the moment
t = 0 an axes tilt is applied to the system, and the en-
ergy stored in the BIC leaks into the continuum of the
ordinary waves. Expanding the dielectric tensor in the
powers of φ one finds

ǫ̂(z, t) = ǫ̂0(z) + θ(t)θ(d − |z|)ǫ̂1 +O(φ2), (24)

where ǫ̂0(z) is the dielectric tensor of the unperturbed
system, θ(. . .) - the Heaviside step function, and ǫ̂1 can
be found from Eq. (3) as

ǫ̂1 = −φǫe

{

0 1− q2

1− q2 0

}

. (25)

Using the notation

Ĥ =

{

0 ∇×
−∇× 0

}

(26)

we can write temporal Maxwell’s equations

ĤΨ(t) =
∂

∂t
{[ǫ̂0(z) + θ(t)θ(d − |z|)ǫ̂1]Ψ(t)} , (27)

whereΨ is 4×1 vectorΨ = [Ex, Ey , Hx, Hy]. To proceed
we write the solutions of the continuous spectrum as

Ψ(k, z) = [0, Ey(k, z), Hx(k, z), 0] (28)

with

Ey(k, z) =
√

2
no

einokz ,

Hx(k, z) =
√
2noe

inokz .
(29)

The solutions are normalized to the Dirac delta

1

8π

∞
∫

−∞

Ψ(k, z)†ǫ̂0(z)Ψ(k′, z)dz = δ(k − k′).

Now we have all necessary ingredients for the time-
dependant perturbation theory32 at our disposal. Ac-
cording to the first order time-dependant perturbation
theory the solution is given by

Ψ(t, z) = Ψ0(z)e
−ick0t+

∞
∫

−∞

b(k, t)Ψ(k, z)e−ic|k|t+O(φ2),

(30)
where b(k, t) ∼ φ, and Ψ0(z) is the BIC mode profile.
After substituting the above into Eq. (27) we find

∂b(k, t)

∂t
= [δ(t)− ick0θ(t)]e

ic(|k|−k0)tV (k) (31)

with

V (k) =

d
∫

−d

dzΨ†(k, z)ǫ̂1Ψ(0)(z). (32)

Evaluating the above integral we have

V (k) = −(1− q2)neφ

√

1− q

8πn0d
f(k, k0), (33)

where

f(k, k0) =
sin[d(nok − nek0)]

nok − nek0
− sin[d(nok + nek0)]

nok + nek0
.

(34)
The energy lost to the continuum per unit of time can be
now found as

P(t) =
1

8π

∂

∂t

∞
∫

−∞

dz
[

Ψ
†(t)ǫ̂0Ψ(t)

]

. (35)

Notice that the P(t) is time-dependant. Hence, we define
time-averaged energy loss in the following manner

P = lim
T→∞

1

T

T
∫

0

dtP(t).

The above definition may appear superfluous, however,
by subsisting into it Eqs. (35) and (27) and applying the
normalization condition we find a useful expression that
will eventually simplify the further analysis

P = lim
T→∞

1

T

T
∫

0

dt

∞
∫

−∞

dk

(

b∗(k)
∂b(k)

∂t
+

∂b∗(k)

∂t
b(k)

)

+O(φ4),

(36)
where the terms O(φ3) are dropped off since P is sym-
metric with respect to the sign of φ. Substituting Eq.
(31) into Eq. (36) and using L’Hopital’s rule one obtains

P = [(1 − q2)ck0φ]
2n

2
e(1− q)

4πnod
×

lim
T→∞

T
∫

0

dt

∞
∫

−∞

dk cos[tc(k0 − |k|)]f(k, k0)2 +O(φ4).

(37)

By recollecting the identity

δ(x− x′) =
1

πc

∞
∫

0

dt cos[tc(x− x′)]

we obtain

P = [(1− q2)k0φ]
2 cn

2
e(1− q)

2nod
f(k0, k0)

2 +O(φ4). (38)
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FIG. 4. Reflectance |ρ|2 versus tilt angle φ and linear fre-
quency ν. The other parameters are the same as in Fig. 1.
The red cross in the center corresponds to the BIC.

Next by using Eq. (6) we have

f(k0, k0)
2 = 1

k2

0
n2
e

{

sin[(1−q) π

2 ]
1−q

− sin[(1+q)π

2 ]
1+q

}2

= 4q2

k2

0
n2
e
(1−q2)2

cos2
(

πq
2

)

(39)

and finally

P =
2cφ2q2(1− q)

dno

cos2
(πq

2

)

+O(φ4). (40)

One can see that Eqs. (23) and (40) differ by O(φ4).

V. NUMERICAL RESULTS

In this section we establish a link between the decay
rate Γ, Eq. (18) and the numerical data on the trans-
mission and reflection spectra. The scattering problem
under consideration poses a typical case of two pathways
transmission problem, where the direct path is identi-
fied with the incident ordinary wave penetrating through
the ADL from the left to the right PhC arm. The sec-
ond pathway is through the resonant excitation of the
quasi-BIC. Such scattering problem was thoroughly ana-
lyzed by Suh, Wang, and Fan33 in the framework of the
Coupled Mode Theory34. The general expression for the
reflection/transmission amplitudes was obtained as

ρ =
iγ

(ωr − ω) + iγ
, τ = 1− ρ, (41)

where ωr is the position of the resonance, and γ is the
imaginary part of the resonant frequency. Remarkably,
the transmission amplitude τ exhibits a transmission zero
at ω = ωr which could be understood as a consequence
of a full destructive interference between the two trans-
mission pathways. On the other hand, the reflection am-
plitude ρ is simply a Lorentzian of the width 2γ. Taking

-10 -5 0 5 10
φ, deg

0

1

2

3

4

5

∆
ν
/c

, µ
m

-1

×10-3

1 1.2 1.4 1.6 1.8 2
n

e

0

1

2

3

4

5

∆
 ν

/c
, µ

m
-1

×10-3

FIG. 5. Resonance width ∆ν vs. tilt angle φ for ne = 2
(top), and the refraction index ne for φ = π/18 (bottom).
The geometry of the system is the same as in Fig. 1. The
numerical data are shown by red circles, the analytical results
obtained from Eq. (23) are shown by blue solid line.

into account that the energy relaxation time of a resonant
state is given by

Γ = 2γ,

we find a link between Eqs. (18,23) and (40), and the
resonant width in the reflection spectrum as

∆ν =
γ

π
, (42)

where ν is the linear frequency.
In Fig. 4 we present the reflectance vs. the tilt angle φ

and linear frequency of the incident wave ν. In the BIC
point we observe a collapse of the resonance as its width
turns to zero. The numerical data from Fig. 4 were used
for comparing the resonance widths with our analytical
predictions. The results are shown in Fig. 5, where one
can see a good agreement between theory and numerical
experiment.

VI. CONCLUSION

Most of theoretical works on PhCs rely on various
numerical techniques23,25,35–37 for finding BIC frequen-
cies and mode profiles. So far, to the best of our
knowledge, the only model with analytical solution for
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optical BICs was photonic Lieb lattice8,38. Here we
have found an exact analytical solution for an optical
BIC in an anisotropic defect layer embedded into an
anisotropic PhC. Moreover, the decay rate of a qausi-
BIC resonance in the system with tilted principal axes
of the defect layer was computed with the use of the
time-dependant perturbation theory and the transmis-
sion/reflection spectra are explained through the cou-
pled mode approach. A simple experimental set-up with
a liquid crystal defect layer is proposed to tune the Q-
factor through applying an external low-frequency elec-
tric field. The question of BICs tunability has been
previously discussed in the literature39 with the opti-
cal properties of the system changing under variation of
the thickness of dielectric slabs. This approach, how-

ever, would require re-fabrication of the BIC supporting
structure. The idea of using the optoelectronic effect for
manipulating the Q-factor has already been applied to
liquid metacrystals40,41 and microring resonantors42–44.
We speculate that the analytical approaches proposed in
this work may find application to various set-ups with
optoelectronically controlled Q-factors.
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