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Preface

Scattering of waves involves different phenomena, but the most common one is the
interference. It has different manifestations, including constructive interference,
corresponding to the field enhancement, and destructive interference, leading to the
field suppression. One of the interesting phenomena is resonant scattering when
coexistence of resonant transmission and resonant reflection can be reduced to the
interference of discrete resonant states with a continuum of nonresonant propagation
modes. It results in an asymmetric profile of the resonant lineshapes. These are known
as Fano resonances. It turns out to be a common situation in any complex system
describing wave propagation regardless of their nature, including classical and
quantum mechanical systems. These effects are intimately related to the presence of
quasibound states resonantly interacting with a continuum of scattering states. All this
makes the Fano resonance a very generic phenomenon. The Fano resonances have
been extensively studied in nanoparticles, plasmonic, dielectric, and magnonic
structures, and metamaterials as well. With their unique physical properties and
unusual combination of classical and quantum effects, Fano resonances have a
huge application potential in a wide range of fields, from telecommunication to
ultrasensitive biosensing, medical instrumentation, and data storage.

This book enables readers to acquire the multifaceted understanding required for
these multidisciplinary challenges. The book has 23 chapters in total covering
various aspects of the Fano resonances manifestation. The chapters were written by
international experts from 16 countries (Turkey, South Korea, India, Italy,
Switzerland, Japan, China, France, Russia, Morocco, USA, Belgium, Brazil,
Germany, Australia, and Israel), who have contributed to the advancement of sci-
ence and engineering of the Fano resonance in optical and microwave systems. The
spectrum of the problems presented in this book is very wide. It is shown that Fano
resonances manifesting novel phenomena both in linear and nonlinear response of
plasmonic nanomaterials can extend the lifetime of plasmonic excitations, enabling
the operation of nanolasers. A new pathway toward nonmagnetic excitation of an
optical spin angular momentum based on the spin-dependent excitation of Fano
resonances is introduced. A new concept based on polarization Mueller matrix
analysis for tuning the Fano interference effect and the resulting asymmetric
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spectral line shape in anisotropic optical system is discussed. A comprehensive
review of recent theoretical and experimental advances in the field of Fano reso-
nances and bound states in the continuum for light transport in evanescently cou-
pled optical structures is provided including arrays of dielectric optical waveguides
and coupled resonator optical waveguides. The review of different forms of coupled
oscillator models for Fano resonant optical and microwave systems is given. There
are studies of tunable metamaterials that realize the storage and retrieval of elec-
tromagnetic waves in the same way as the atomic electromagnetically- nduced
transparency system. The temporal coupled-mode theory formalism to describe the
coupling process and the interference effect involved with optical scattering and
absorption in nanostructures is shown. To unveil the origin of Fano lineshapes in
the scattering efficiency of a spherical nanoparticle, the analysis of the full-wave
scattering in terms of a set of eigenmodes independent of its permittivity is derived.
Based on symmetry considerations, with the theoretical and experimental evidence,
it is shown that electromagnetically induced-transparency and dark mode excitation
are not necessarily associated. The feasibility of realizing the light-tunable Fano
resonance in the metal-dielectric multilayer structures is demonstrated.

In the book, the reader can find a study of the core-level absorption of an
impurity in a one-dimensional semiconductor superlattice with the use of the
complex spectral analysis. One can see the results of investigation of the Fano
resonances in high-index dielectric nanowires for directional scattering. There are
chapters with studies of total wave refection in band networks due to impurities,
disorder, and quasiperiodic potentials; the theory of the multiple resonance inter-
ference in metallic nanohole array systems based on spatial and temporal
coupled-mode methods; and the theory describing the Fano asymmetry by
expanding the transmission amplitude with respect to states with point spectra,
including not only bound states, but also resonant states with complex eigenvalues.
It is shown that the Fano resonances can be effectively engineered with the use of
multilayered hyperbolic metamaterials with either metal-dielectric or
graphene-based multilayers. For Fano resonance generation, a new type of struc-
tures—3D folding metamaterials—is introduced. It is demonstrated that the concept
of Fano resonance can be of significant interest in the context of a new emerging
topic of topological photonics. Analytically, it is shown that the Purcell factor
related to a dipole emitter oriented orthogonal or tangential to the spherical surface
can exhibit the Fano or Lorentzian line shapes in the near-field. It is also discussed
that almost any resonant response, either in directional or total scattering light
scattering, can be efficiently described in terms of Fano resonances. Tuning of Fano
resonance by waveguide rotation is considered in a non-axisymmetric
acoustic-wave structure. It is shown that interaction of magnetic-dipolar-mode
ferrite particles with a microwave-field continuum is distinguished by broken dual
(electric–magnetic) symmetry. A unified vision of strong, weak, and critical cou-
pling is provided based on a simple coupled oscillator model with a nonresonant
background usually employed to describe Fano resonances in nanophotonic
structures.
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We hope that the book will be a valuable aid to understand the current research
of the Fano resonance phenomena in optical and microwave structures for scien-
tists, researchers, and graduate students working in the fields of electronic engi-
neering, materials science, and condense matter physics. We are thankful to all
authors who accepted our invitation to contribute the respective chapters. We would
like to express our gratitude to Dr. Claus Ascheron, Executive Editor, Springer, for
his initial support of the book proposal and collaboration with us during preparation
of the book. We are thankful to Adelheid Duhm, Jayanthi Krishnamoorthi, and Elke
Sauer from the Springer Production Department for their assistance at the book
production.

Beersheba, Israel Eugene Kamenetskii
Krasnoyarsk, Russia Almas Sadreev
Canberra, Australia Andrey Miroshnichenko
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Chapter 1
Fano Resonances in the Linear
and Nonlinear Plasmonic Response

Mehmet Emre Taşgın, Alpan Bek and Selen Postacı

Abstract Fano resonances manifest novel phenomena both in linear and nonlinear
response of plasmonic nanomaterials. They can extend the lifetime of plasmonic
excitations, enabling the operation of nanolasers, or they can increase the fluores-
cence of quantum emitters. They also provide control over nonlinear optical pro-
cesses such as second harmonic generation and surface enhanced Raman scattering.
Fano resonances can both enhance and suppress nonlinear response. Interference of
two or more absorption/conversion paths is responsible for the appearance of these
effects. In this Chapter, we demonstrate explicitly—on a single equation—how path
interference takes part in linear and nonlinear Fano resonances.

1.1 Plasmonics

Plasmons are collective oscillations of free electrons in metals and semiconductors.
Plasmonic oscillations can be induced in the bulk and surface of the metals [1]. In
order for surface plasmons to be excited, conservation of momentum has to be satis-
fied. When it is desired to excite plasmons on the surface of metal films using light,
the match between the momenta of photons and surface plasmons can be satisfied by
using a glass prism in Kretschman configuration [2]. In metal nanoparticles (MNPs)
such a constraint does not apply since MNPs provide a wide range of reciprocal
lattice vectors in Fourier domain due to their small sizes [3]. Interestingly, MNPs
can trap light from a spatial range much larger than the wavelength of the incident
light [4].

Localized surface plasmon (LSP)modes provide a strong enhancement of the inci-
dent field, as large as a factor of 105, at the nm-size hot spots [5]. Such a confinement
of light can be increased even further using self-repeating cascaded nanostructures
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[6, 7]. MNPs and semiconductor nanoparticles (NPs) have surface plasmon reso-
nances at optical and infrared regimes, respectively. Such a strong localization of the
electromagnetic (EM) field presents numerous advantages both in technological and
fundamental physics research [1].

Plasmonics contributed to the technological advance in the past two decades
significantly. Some applications have already been used in the industry, while more
implementations and new phenomena are studied intensively for industrial interest.
As a basic example, the smart drugs used in thermal therapy of cancer [8] rely on
localization and heating features of MNPs selectively attached on/in the cancer cells.
In the smart glass (window) applications, localized field of MNPs heat vanadium
oxide (VO) particles for obtaining VO phase transition at smaller temperatures [9].

Metal nanostructure (MNS)-decorated surfaces of thin film solar cells help the
incident sun light to be trapped (scattered) in (into) the active regions [10, 11].
Nanoholes on MNSs demonstrate a phenomenon called extraordinary transmission
[12] which can be used in ultra sensitive detectors [13]. Nanoscale detector size also
provides ultra fast (e.g. tens of picoseconds) response time which is limited by the
transmission of the excited carriers into the intrinsic region of the detector [1]. Such
fast detectors are important in observing ultra fast process such as chemical processes
in biological activities [14]. Nanohole arrays are also used in imaging devices [15].

The localized EM field can also be used to trap and manipulate the nanosize
objects. An interesting example to plasmonic tweezers [16] is the trapping of DNA
with the metallic hot spots [17]. Surface plasmon resonance (SPR) is also in use for
the detection of the specific types of viruses via change of refractive index. Ligands
over a thin metal film attach only to a specific type of analyte (virus). This changes
the propagation direction of the light [18]. Field localization near nanomechanical
oscillators results an optomechanical (plasmomechanical) system where plasmons
couple to the mechanical motion via a strong radiation-pressure-type interaction
[19, 20].

As much as plasmonics found applications in biology, biology has found applica-
tions in plasmonics. The optical properties of plasmons can be tuned by changing the
length of DNA arrays.When the DNA arrays of a certain length is mixed in a solution
of MNPs, tetramer, pentamer, hexamer structures of MNPs get self-assembled [21].
The structure is completely determined by the length of the DNA arrays used.

When an AFM tip is covered with nm-thick metal coating (e.g. 5–10 nm), the
sharp edge of the AFM tip localizes the field on the sample it scans. Measuring
the near field of the sample (apertureless scanning near field optical microscopy:
aSNOM) nm-resolution optical imaging becomes possible [22, 23]. It is appealing
that a similar dielectric response is observed from metal clusters of different sizes
[24–28]. Fortunately, this makes 3D Maxwell simulation of MNPs possible and
reliable.

In computers of the present day, data can be processed with a high speed. But
capacity of interconnects –responsible for carrying data to other parts of the device–
limits the process speed. Plasmons can carry data ∼1000 times faster as compared
to electronic communications [29]. A nanowire (NW) both can conduct electricity
and at the same time can route the light in form of surface plasmon polaritons (SPPs)
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in nanodimensions. Hence, plasmonics make the current technology scalable into
nanodimensions. When the dimensions of a MNS is tuned properly, it can act as a
nanresonator for SPPs [30], similar to an optical cavity. MNSs not only can guide
the light, but they can also emit it directionally: nanoantenna working at optical
frequencies [31]. When an electronically excited quantum dot is placed at the hot
spot of a metal nanoantenna, it transfers its energy to the radiating antenna. Radiation
pattern is determined by the plasmon eigenmode of the antenna into which quantum
dot transition frequency overlaps.

Nanodimensions of MNSs, as already mentioned, provides fast response time in
photo-detector applications. Small decay time of the plasmon excitations can also
be adopted for the manufacturing of fast response devices. Spasers (surface plasmon
amplification by stimulated emission of radiation [32]) are nanolasers which neces-
sitate a large pump threshold, but much smaller lasing onset times as an advantage
[33, 34]. Lasing (spacing) is based on the enhanced stimulated emission of large
number of quantum emitters within the presence of more and more plasmons in the
medium.

A spaser functions as follows: When quantum emitters (QEs) within a plasmonic
medium are illuminated, (i) plasmons on the MNS are excited resonantly by the
pump. Pump also (ii) couples to the QEs directly. Coupling of the incident light to
the MNS is order of magnitude larger compared to its coupling to the QE. (iii) The
strong plasmon field also excites the nearby QEs. (iv) Presence of plasmons also
stimulates the decay of QEs into the MNS. (v) Spontaneous emission rate of QEs
is also enhanced orders of magnitude [35] due to the increase in the photon density
of states (DOS) for plasmon excitations.1 This enhances the decay and stimulation
rates. Lasing onsets more quickly in a spaser, compared to standard lasers. Enhanced
decay rate is also related with Fano resonance [36] as discussed in the following
section.

A light source, of nanodimensions and with tens of THz onset and reset frequen-
cies, has vital importance in ultra fast processing. To achieve this goal, similar to
spasers, MNPs are doped in fibers for fast response (small reset-time) fiber lasers
[33, 34].

Field enhancement due to the localization of the light at the hot spots also
enhances the nonlinearities. Nonlinear response of frequency converting materials
(e.g. molecules) can be enhanced when they are placed near a MNS hot spot [37].
Localization also enhances the nonlinearity ofMNSs themselves. Second (third) har-
monic generation (SHG, THG) and four-wavemixing (FWM) of plasmonicmaterials
can be enhanced orders of magnitude at the hot spots [38]. One of the most important
applications of this nonlinearity enhancement is surface enhanced Raman scattering
(SERS)which finds applications over all fields of science [39–45]. The field enhance-
ment near metal surfaces (hot spots) enhances the Raman signal quadratically [46].
SERS can be used to reveal the presence of a molecule and types of chemical bonds

1One should note that the strong coupling of the incident light to MNSs is also related with the high
DOS, that is the Purcell effect.
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within. SERS not only gives way to make single-molecule detection possible but it
can also image the inner structure of a single molecule with 0.2nm resolution [40].

In the next sections, we show that all of these nonlinearities can be enhanced 3
orders ofmagnitude, on top of the localization enhancement. Path interference effects
in the nonlinear response, due to Fano resonances, make the extra enhancement
possible.

Strong field confinement and presence of nonlinearity are also important for light
modulation purposes. In electro-optical (plasmonic) modulators, electrical signal is
encoded into the optical signal [1, 47–49]. Small input voltage swings can produce
large electric field changes for the encoding, at the region where field localization
takes place [1]. All-optical modulation and switching of light is also possible via the
nonlinearity induced by the field localization. The presence of one of the pulses can
change the refractive index of the medium by inducing Kerr-type nonlinearity. This
is due to intensity concentration. The probe (second) pulse can be modified due to
the temporal change in the index [50, 51].

Plasmonics also made a great impact on the field of quantum optics, the science of
the new age [52–54]. Hot spots provide strong light-matter interaction. QEs placed
at these hot spots couple to the polarization field of the plasmon excitation. This
is several orders of magnitude larger compared to the coupling of the QE to the
incident light. This introduces the new field plasmon quantum optics (or simply
quantum plasmonics [55]). For instance, two QEs coupled to the two hot spots of the
same plasmon excitation can be strongly entangled [56]. A recent study [57] shows
that it is also possible to entangle many QEs: many-particle entanglement [58].

Despite their large damping rate, γ ∼ 1013 − 1014 Hz, plasmons can keep the non-
classical feature (entanglement, single-mode nonclassicality) for much longer times.
Experiments [59, 60] show that both quadrature-squeezing and sub-Poissonian statis-
tics (squeezing in the number uncertainty) remain for ∼10−11 − 10−10 s. For this
reason, propagating surface plasmon polaritons (SPPs) are studied to carry entangle-
ment between many QEs [61, 62]. The nm dimensions of the nanowires or nanoar-
rays possess the scaling properties for the nanodimensional information processing.
Enhancement in the nonlinearity of MNPs, due to localization, enables the produc-
tion of nonclassical features, such as entanglement and single-mode nonclassicality
[63], in the nm dimensions. Many-particle entanglement generated in these sys-
tems can increase the signal to noise ratio above the standard quantum level (SQL)
[64, 65].

Almost all of the phenomena, mentioned above, rely on the enhancement of the
electromagnetic (EM) field via localization into nm dimensions. In the following,
we show that coupling of auxiliary particles (e.g. quantum objects or dark plasmon
modes) introduces additional absorption or frequency conversion paths, i.e. Fano
resonances. Controlling the interference of these paths (e.g. via coupling strength,
f , or auxiliary particle’s level spacing, ωeg) one can enhance the localized field even
more. In addition, one can both enhance and suppress the nonlinear processeswithout
altering the hot spot fields.

We like to keep things simple. We obtain a single expression by setting up a
simple analytical model. We demonstrate why enhancement and suppression emerge
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out of this single equation. The understanding, provided by the simplicity, leads us
in obtaining better enhancement schemes by introducing more than two interfering
paths. We also demonstrate that exact solutions of 3-dimensional Maxwell equations
confirm the predictions of our simple analytical results.What ismore, we also discuss
these schemes on the experiments conducted by our group.

1.2 Fano Resonances in Linear Response

Fano resonance is the plasmonic analog of electromagnetically induced transparency
(EIT). Path interference effects play the key role in both phenomena: the excited state
becomes weakly hybridized into two, see Fig. 1.1. The two hybridized states rely in
the broadening of the excited state (γeg ∼ 109 Hz for QDs and γp ∼ 1013 − 1014 Hz
for plasmon excitation) and they cannot be resolved [36, 66]. The two paths operate
out of phase to each other. One of the paths absorbs the incident radiation while
the second one emits the radiation. Hence, a transparency window shows up where
absorption vanishes.

The major difference between EIT and Fano resonance is the former (latter) one
is an active (passive) medium. In EIT, the weak hybridization of the excited state is
induced by the strong microwave pump (driving), which couples the excited state
|e〉 to an auxiliary state |a〉 of the same atom, see Fig. 1.1a. The coupling is over
the magnetic field since the |e〉 → |a〉 transition is dipole forbidden. Fano resonance
does not necessitate a driving field. An auxiliary object with larger lifetime (e.g. a
quantumobject or a dark plasmon state) is placed at the hot spot of theMNP.Coupling
betweenMNPand the auxiliary particle is induced by the plasmon (polarization) field

(a) (b)

Fig. 1.1 Analogy between a EIT [100] and b Fano resonance [36, 66, 67]. In EIT, coupling to
an auxiliary level introduces the weak hybridization in |e〉. In a Fano resonance, coupling of the
plasmon excitation to an auxiliary object (e.g. QD) introduces the weak hybridization. In both cases,
hybridization is weak enough so that hybridized levels cannot be resolved in the excitation band



6 M. E. Taşgın et al.

ab
so

rb
an

ce

re
fle

ct
an

ce
Fig. 1.2 Experimental demonstration of Fano resonances a with split ring resonators in the THz
regime [68] and b with nanobars in the optical regime [69]. Resonance appears due to the coupling
of dipole-like oscillator with a long-live quadrupole-like oscillator in both cases

of the MNP itself. One does not need a driving field. So, Fano resonances can appear
in passive media.

Fano resonance is not a pure quantum effect. It also has a classical correspondence
which is clearly observed in the experiments. For instance, a plasmon mode of long
lifetime (e.g. a quadrupole-like dark mode) can do the job of a quantum object.
In Fig. 1.2a1 and a2, two split ring resonators (SRRs) are coupled to each other
capacitively [68]. The one on the right hand side is a dipole SRR and couples to the
incident radiation of ∼THz frequency. The one on the left hand side is a quadrupole
SRR which does not couple to (cannot be directly excited by) the incident radiation.
But it has a 10 times longer lifetime compared to the dipole one. Due to the capacitive
coupling between the two, we observe the Fano resonance dip in Fig. 1.2a2. The
same effect has also been observed in the optical frequency with a similar set up at
Fig. 1.2b1 [69]. Light-color nanobar behaves like a dipole resonator while the two
grey bars (below) display a quadrupole-like response. When the light-color nanobar
is excited, we observe the absorption dip at the eigen-frequency of the quadrupole
grey nanorods. One can also observe the Fano dip when a material of sharp dielectric
function is placed at the hot spot of a gold MNP, Fig. 1.3.

One of the major problems in communication with propagating SPPs is that they
decay very quickly due to the large damping rates of the metal.2 The phenomenon
of Fano resonance is not only the appearance of a dip in the absorption spectrum.
Fano resonances are clearly shown to increase the lifetime of plasmon oscillations
[71–73]. Fano resonancemay avoid the excitation of the plasmonic oscillations in the
steady-state (after long times), but, this is not the case for initial times. Fano-enhanced
lifetime of plasmons results in the further accumulation of the field strength at the hot

2Decay rate is determined by the dielectric response of the metal at the resonance frequency [70].
It is independent of the MNP shape.
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MNP
Auxiliary 
Particle

Fig. 1.3 The Fano dip forms when an auxiliary particle of sharp dielectric function is placed at the
hot spot of a gold MNP. The 3D simulation is performed with the MNPBEM toolbox [89, 90] with
actual dielectric function for gold

spots. This gives rise to much stronger field enhancements in the hot spots, dark-hot
resonances [74], which becomes maximum exactly at the center of the transparency
window. This phenomenon is adopted cleverly to further enhance the nonlinear pro-
cesses. Both hot spots –excited one and the one into which converted frequency
emerges– are tuned to coincide with two such dark-hot resonances in four-wave-
mixing (FWM) [75] and SERS [7, 76, 77] processes. Nonlinearity enhancement is
possible also without altering the field at the hot spots, hot spots (Sect. 1.3.3) via
path interference effects in the nonlinear response [78].

In fact, Fano resonances can further enhance the hot spot field not only in the
initial times. Below, we show that the hot spot field can also be enhanced in the
steady state via path interference effects. We describe the physics of the coupled
(MNP-QE) system, derive a Hamiltonian and obtain a single expression, (1.8), for
the linear response (plasmon amplitude) of the MNP.

AMNS is illuminated with an EM field of frequency ω. The plasmon mode of the
MNS, into which ω overlaps, is excited strongly. Plasmon resonance of the MNS,
�, need not be tuned with ω. A quantum emitter, QE (e.g. a color center in nanosize
diamond or a molecule), is placed into the hot spot of the MNS. The near-field of the
localized plasmon (polarization) interacts stronglywith the dipolemoment of theQE.
The localized plasmon field is incomparably intense (e.g. five orders of magnitude
[79]) compared to the incident one. So, one can neglect the coupling of the QE to
the incident light. Therefore, Hamiltonian contains the energy of the plasmon mode,
excitation energy of the QE, interaction of the QE with the plasmon mode and the
coupling of the ω field driving the MNS hot spot

Ĥ = ��â†â + �ωeg|e〉〈e| + �( f |e〉〈g|â + H.c.) + �(â†εpe
−iωt + H.c.), (1.1)

where â†â gives the number of excited plasmons and |e〉, |g〉 are the excited, ground
states of the QE. We set ground state energy of the QE to zero. In the interaction
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term, a plasmon is annihilated and the QE is pumped from ground state to the excited
one. Here, we work in terms of quantized field â for plasmon, because it is easier to
track and derive the equations of motion (EOM) using, e.g. i�ȧ = [â, Ĥ ], and they
are ready to be used in quantum optics calculations on non-classical features [35].
If we define ρ̂i, j = |i〉〈 j | for the density matrix operator of the QE, i, j = e, g, the
equation of motion (EOM) can be obtained as

˙̂a = (−i� − γ)â − i f ∗ρ̂ge + εpe
−iωt , (1.2)

˙̂ρee = −γeeρ̂ge − i f âρ̂†ge + i f ∗â†ρ̂ge, (1.3)

˙̂ρge = (−iωeg − γeg)ρ̂ge + i f ∗â(ρ̂ee − ρ̂gg), (1.4)

where we introduce γ ∼ 1013 − 1014 Hz for plasmon decay rate and γeg ∼ 109 Hz
for quantum dots (QDs), or 1012 Hz for molecules. We note that this treatment does
not take the Purcell and the retardation effects into account. One can take the Purcell
effect into account partially by considering a higher effective decay rate for the QE
[35]. The effect of the retardation is rather small due to the nm dimensions of the
MNSs. In the nonlinear response, retardation leads to a narrowing in the band where
enhancement appears due to the Fano resonances. In the steady-state, both QE and
the plasmon mode oscillates with the driving frequency ∼ e−iωt , α̂ = α̃e−iωt and
ρ̂ge = ρ̃gee−iωt . Equations for the steady-state amplitudes become

[i(� − ω) + γ]α̃ = −i f ∗ρ̃ge + εp, (1.5)

[i(ωeg − ω) + γeg]ρ̃ge = i f α̃(ρ̃ee − ρ̃gg), (1.6)

γeeρ̃ee = −i f α̃ρ̃∗
ge + i f ∗α̃∗ρ̃ge. (1.7)

When one plugs (1.6) in (1.5), the steady-state amplitudes for the plasmon exci-
tation can be obtained as

α̃ = εp

[i(� − ω) + γ] − | f |2y
[i(ωeg−ω)+γeg]

. (1.8)

Equation (1.8) is easy to interpret in this simple form. First thing to note: if QE-MNS
coupling is absent, f = 0, α̃ becomes the response of a field3 in a damped cavity
[20]. When the coupling is significant, the second term in the denominator modifies
the nonlinear response. Secondly, transparency for ω = ωeg can be seen explicitly
in (1.8). When ω = ωeg and f is significant, the second term of the denominator
becomes f 2�yγ−1

eg . When we scale all the frequencies by the optical drive, ω, γ−1
eg

becomes very large. We note that γeg is very small compared to ω. In this case, the

3There exists a small difference between the response of a field in the cavity and of a damped
harmonic oscillator. In the former, damping −γâ is introduced on the field amplitude [34, 35]. In
the latter, damping is introduced “only” on the momentum operator −γ p̂. Whereas, in the former
γ appears in both x̂ and p̂ operators. One can realize this best in an opto-chemical system [80]. As
already used in [34, 35], the former one is more appropriate for the plasmon (field) decay.



1 Fano Resonances in the Linear and Nonlinear Plasmonic Response 9

second term dominates the denominator and results a very small α̃ which yields
the observed transparency.4 One can note that transparency always appears at the
frequency of the QE’s level spacing ωeg .

Thirdly, we observe a contrary effect. We can choose ωeg such that the real part of
the second termof the denominator cancels the real part of the first (nonresonant) term
[i(� − ω) + γ]. Hence, resonant plasmon excitation (ω = �) can be achieved at an
off-resonant frequency (ω �= �), or even at a far-off-resonance frequency, when ωeg

introduces the correct interference of the paths. One can observe the similar effects
by coupling MNS with a non-quantum object, e.g. a quadrupole dark plasmon mode
of larger lifetime. Equations are similar to the one we obtain here [73].

One can also obtain information about the time evolution of the coupled system by
numerically iterating (1.2)–(1.4) in timewith â → α and ρ̂i j → ρi j [35].We observe
that plasmon decay can be slowed down by the long excitation lifetime of the QE
[71–73]. Similarly, plasmon lifetime enhancement effect can also be observed in an
all-plasmonic (classical) system. In [73], we also present this in 3-dimensions. A gold
MNP is coupled to a nanostructure with a longer decay time. When the gold MNP
is excited by a Gaussian pulse, solutions of the 3-dimensional Maxwell equations
indicate a 5 times slower decay of the plasmons in the MNP.

In [73], we observe something which is much more important than the enhance-
ment in the mean lifetime of plasmons: An ambient field remains in the coupled
system even after very long times. We also confirm the presence of the ambient field
by fitting two exponentials to the longer-time response of the coupled system. Pres-
ence of such an ambient field for long-times can be beneficial for applications such
as light harvesting and photovoltaic solar cells.

A reverse (in fact a complementary) effect occurs in the QE’s side. When the QE
is initially in the excited state ρee(0) = 1, within the absence of plasmonic excitation
α(0) = 0, it decays ∼10 times faster in the coupled system [36], see Fig. 1.4a. Such
an effect has been observed also in experiments [82], Fig. 1.4b. Fluorescence rate of a
QE increases for closer spacing to a MNS, till quenching appears due to very strong
coupling, Fig. 1.4b [83]. In some experiments thousands of times enhancement is
observed in the fluorescence rate [84]. In the calculation of the enhanced decay rate
for a QE, one needs to consider the combination (multiplication) of the following
two factors: First factor is the enhanced damping of the QE in the coupled system,
that is (1.2)–(1.4). The second factor is the change of density of states into which the
QE can spontaneously decay, in the presence of the nearby MNS, that is the Purcell
effect. One may also desire to compare the results of the simple model, (1.2)–(1.4),
with the 3-dimensional simulations. In this case, one also needs to take care of the
change in the modes trapped between the two particles.

Engineering the lifetime of plasmons and quantum emitters are important in tech-
nological applications. Controlling (turning on/off) the coupling between a QE and
a MNS, one can read, write and store a quantum bit with desired speeds and time.

4The most famous phenomenon with the EIT is the slow-light propagation. A similar phenomenon
also appears with Fano resonances [81].
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(a) (b)

Fig. 1.4 a Comparison of the durations for the excited quantum emitter to decay into the ground
state [36]. b Fluorescence rate as a function of particle-surface distance for a vertically oriented
molecule [83]

In quantum optics, this is studied in single-photon sub/superradiant systems [85]. In
such systems, however, preservation of coherence is a big challenge.

1.3 Fano Resonances in Nonlinear Response

There are three factors, multiplying each other, plasmonics can provide for the
enhancement of nonlinear processes. (i) Localization of the incident radiation into hot
spots can increase the local intensity 5 orders of magnitude. The enhanced intensity
also enhances the nonlinear processes which are proportional to the higher powers of
the local electric field [38]. This is the major contribution to the nonlinear enhance-
ment, e.g., enabling surface enhanced Raman scattering (SERS). This enhancement
factor can be 105 in SHG [86], 106 in FWM [87] and 1010 in SERS [88]. (ii) Fano
resonances in the linear response can enhance the localized field furthermore [74].
This further enhancement in the hot spot field enhances the nonlinear process more.
(iii) Finally, another factor, multiplying (i) and (ii), originates from the path inter-
ference effect in the nonlinear response. Nonlinear processes can be enhanced and
suppressed by constructive and destructive interferences of the frequency conversion
paths. This enhancement is called “silent”, since the enhancement takes place with
unmodified hot spot intensity [78].

Path interference effects in the nonlinear response appear both for coupling to a
classical and a quantum auxiliary object. Similar to the Fano resonances in the linear
response, coupling of the frequency converter with an auxiliary dark (long-live)
plasmon mode can enhance and suppress the nonlinear processes.
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In this section, we examine the enhancement and suppression phenomena due to
path interference in the nonlinear response, for SHG, FWMand SERS.We obtain the
plasmon amplitudes of the generated (converted) frequencies in the steady-state. The
form of the nonlinear amplitudes, see (1.23), (1.28), (1.29) and (1.30), is common to
all processes. Furthermore, it is also common to the linear response demonstrating
path interferences, see (1.8). That is, the reason for the enhancement and suppres-
sion to appear is common to linear and nonlinear responses. They can be explicitly
demonstrated via cancellations in the denominator of a simple equation.

We calculate amplitudes for the plasmons oscillating at the converted frequency,
i.e. 2ω, in SHG. Frequency-converted plasmons can radiate to the far-field (observed)
directly by radiation reaction or via a fluorescent molecule resonant to the generated
frequency. The intensity, observed in the experiments, is proportional to the number
of plasmons oscillating at the nonlinear frequency. Hence, by comparing the number
of plasmons one can also compare the far-field intensities.

In the following, we first study the SH response of a MNS coupled to a QE, in
Sects. 1.3.2.1 and 1.3.2.2. We desire to control the SH response of the MNS via
the presence of a QE. We use a basic model and obtain the steady-state amplitude
for the generated SH plasmons. We examine the denominator of this amplitude,
(1.23), and demonstrate why enhancement and suppression take place. Then, in
Sect. 1.3.2.3, we compare the predictions of our model with the exact solutions of
the 3-dimensional Maxwell equations. We confirm that enhancement of the SHG
process is observed in the predicted spectral position even when the retardation
effects are taken into account. Enhancement appears in a narrower spectrum due to
the retardation effect. In Sect. 1.3.2.4, we show that SHG enhancement emerges also
when a dark plasmon mode (of long lifetime) is coupled to the SHG converter in
place of the QE. We present our experiment on SHG with coupled metal nanowire
(MNW)-metal bipyramid system. We explore that, in the experiment, such a Fano
enhancement enables the observation of the SH signal with a continuous wave (CW)
laser source. Path interference is introduced by coupling of the MNW to the long-
live dark plasmon mode bipyramid supports. In Sect. 1.3.2.5, we discuss another
experiment of our group where we demonstrate the background-free excitation of
molecules via SHG.Molecules are placed in the vicinity of a plasmonic SH converter.
The molecules, of resonance close to the SH frequency, can both enhance the SHG
and report the quadrupolar SH plasmon oscillations to the far-field. In Sect. 1.3.3,
using the exact 3-dimensional solutions of the Maxwell equations, we demonstrate
that SERS can be enhanced silently via path interference in the nonlinear response.
This is the enhancement factor (iii). In Sect. 1.3.4, on FWM process, we discuss
utilizations of path interference effects. When multiple plasmonic conversion paths
interfere, nonlinearity can be enhanced 15 times more compared to interference of
two paths. That is, the enhancement factor (iii) can further be multiplied by 15. One
could also define the enhancement due to multiple interferences as a (iv)th factor.

Before all of this, in Sect. 1.3.1, we introduce the overlap integrals since they
play a key role in determining the strengths of the linear and nonlinear processes.
They yield the selection rules. We also study the physics of excitation and frequency
conversion processes via these overlap integrals.
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1.3.1 Overlap Integrals and Selection Rules

1.3.1.1 Excitation of a Plasmon Mode

In typical experiments and solar cell applications, source behaves like a plane wave
(PW) at the MNSs. PW excitation drives the localized surface plasmon (LSP) mode
into which its frequency matches. Interaction of the PW source with the polarization
field of the plasmon can be written as

Hdrive =
∫

d3rε(r)E1(r)E0e
ikze−iωt + H.c. (1.9)

where E1(r) is the spatial profile of the excited plasmon mode. For brevity, we
consider a single plasmon mode, but it is straight forward to generalize to a multi-
mode system. The profile E1(r) can be calculated using softwares for plasmonic
calculations, e.g. using the eigenstat command in the freeware toolbox MNPBEM
[89, 90]. ε(r) is the dielectric function of the MNS, which can be described with
a 3D step-function. It is constant in the MNS and zero elsewhere. We can move to
second-quantized scheme by E1(r) → E1(r)â1 where â†1 creates a plasmon in the
E1-mode [91]. Then, (1.9) becomes,

Hdrive =
(
E0

∫
d3(r)ε(r)E1(r).x̂eikz

)
â1e

−iωt + H.c. (1.10)

The integral in the parenthesis, in dimensions of energy, can also be written as

Hdrive = �

(
â†1εpe−iωt + H.c.

)
, where εp is proportional to the amplitude of the

driving field E0 and determined by the integral in the parenthesis. Equation (1.10)
shows that PW source cannot excite a quadrupole plasmon mode for a symmetric
MNS. Because, overlap integral εp vanishes for an odd integrand function. This
is the reason quadrupole modes are dark-plasmon modes. A quadrupole plasmon
mode can be excited via a near-field interaction, e.g. interaction with an excited
dipole-like plasmon mode. A quadrupole mode also has a longer lifetime since its
radiation (coupling) to the far-field (PW-modes) vanishes. This is again due to the
vanishing overlap integral with the vacuum modes. We observe this phenomenon in
our experiment [92] and use molecules to report quadrupole plasmon excitation to
the far-field. On the other hand, PW can excite a dipole-like plasmonmode. Because,
the integrand in (1.10) becomes even and integration does not vanish. Due to similar
considerations, dipole plasmon modes can radiate to far-field.

1.3.1.2 Second Harmonic Generation

It is experimentally demonstrated that localized plasmon modes are responsible for
the SHG process in MNSs [86, 93]. That is, two plasmons in â1-mode, oscillating
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ω 2ωω1 ω2

SHG 
process

(b)(a)

Fig. 1.5 a Coupling of MNS with a quantum emitter (QE) whose decay rate is small. QE is placed
at the hot spot of the MNP dimer. b Schematic representation of the SHG process [99]

with ω, combine to yield a single plasmon in â2-mode oscillating with 2ω (we depict
this in Fig. 1.5). Actually, involvement of plasmons are apparent considering the
following observation. Both the excited (ω) and the converted (2ω) field intensities
are enhanced at two (input and output) hot spots. This yields a quadratic enhancement
of nonlinear processes [46]. The Hamiltonian for such a process can be written as

HSH =
∫

d3rÊ.P̂ =
∫

d3rE(−)
2 (r)χ2(r)E

(+)
1 (r)E(+)

1 (r) + H.c. (1.11)

where χ2(r) is the second order polarization in dimensions of [ε0]/[E-field]. One can
also consider χ2(r) as a 3D step function.

The process in (1.11) is: annihilate two ω plasmons in the â1-mode and create a
2ω plasmon in the â2-mode [91]. Using E(+)

i (r) = Ei (r)âi and E(−)
i (r) = E∗

i (r)â
†
i ,

one obtains

ĤSH =
(∫

d3rE∗
2 (r)E

2
1(r)χ2(r)

)
â†2 â1â1 + H.c., (1.12)

where the overlap integral �χ(2) = ∫
d3(r)E∗

2 (r)E
2
1(r)χ2(r) determines the strength

of the SHG process. χ2(r) is constant over the MNS and zero outside.
χ(2) integral demonstrates us a well-known selection rule for the SHG process;

SHG is not observed in the far-field for a centro-symmetric MNS. The reason for this
observation is as follows. Since we externally drive the â1-mode, E1(r) is dipole-
like. So, E2

1(r) is an even function. If E2(r) is an odd function, integration in (1.12)
vanishes since χ2(r) is even for a centro-symmetric MNS. Therefore, SHG (2ω
oscillations) takes place into an even â2-mode only. However, an even plasmonmode
does not couple to the far-field as discussed in (1.10). Its coupling with the vacuum
modes vanishes. Consequently, in a centro-symmetric MNS, one cannot observe the
SH generated plasmons in the far-field. This is why, in the experiment [92] we place
molecules in the vicinity of MNSs. They report the 2ω plasmons to the far-field. On
the other hand, when χ2(r) is not centro-symmetric, χ(2) integral does not vanish
completely.

In third harmonic generation (THG) process, overlap integral is χ(3) ∼ ∫
d3(r)

χ3(r)E∗
2 (r)E

3
1(r). E2(r)-mode supports the 3ω oscillations. When the E2(r) is
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dipole-like, χ(3) does not vanish even the MNS is centro-symmetric. THG can be
observed since E2(r) can couple to the far-field.

Integral in (1.12) also explains why plasmons are involved in the SHG process
[93]. Lets suppose that 2ω oscillations did not emerge into the â2-mode, but directly
coupled into the free space. In this case, E2(r)would be a PW, or another unlocalized
wave. This would yield a much smaller χ(2) integral. Thus, SHG with two localized
modes dominates over the one where frequency converted directly to the free-space,
as unlocalized photons.

1.3.1.3 Four Wave Mixing

Four wave mixing (FWM) is governed by the third order susceptibility, χ3. Two
plasmon modes are pumped with ω1 and ω2 frequencies and a different frequency,
e.g. ω3 = 2ω1 − ω2, emerges in another mode, see Fig. 1.13. Two ω1 plasmons in â1-
mode is annihilated and two plasmons of different frequencies ω2 and ω3 are created
in â2 and â3-modes. Creation of â2-mode plasmons are stimulated by the pump laser.
Similar to SHG, Hamiltonian can be written as

ĤFWM =
(∫

d3(r)E∗
3 (r)χ3(r)E∗

2 (r)E
2
1(r)

)
â†3 â

†
2 â

2
1 + H.c., (1.13)

where the integration in parenthesis can be defined as �χFWM. We note that χFWM

does not vanish even if all 3 plasmon modes have dipole symmetry. Better overlap
of the profiles of the three plasmon modes implies a strong FWM process.

1.3.1.4 Surface Enhanced Raman Scattering

Field localized at the hot spots also enhance the Raman process. Localized plasmon
polarization interacts with the vibrational modes of a molecule. In the Stokes shift,
a plasmon (ω) is absorbed by the molecule, on return exciting a vibrational mode
(ν) and another plasmon of lower energy (ωR). It is experimentally demonstrated
[94] that emergence of the generated frequency into a second plasmon mode yields a
much larger Raman intensity. One canwrite theHamiltonian for the process similarly
as

ĤR =
(∫

d3(r)ρ(r)E∗
1 (r)E2(r)

)
b̂†â†1 â2 + H.c., (1.14)

where b̂† creates a phonon in the vibrational mode of the molecule. Molecule den-
sity ρ(r) can be considered as a 3D step function. The overlap integral in (1.14)
defines the selection rules for Raman process [95]. The same form of the Hamil-
tonian can be derived from an opto-mechanical type coupling between the oscilla-
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tions of the molecule and the plasmon field [19, 20]. One merely need to consider
Ê(r) = Ê1(r)â1 + Ê2(r)â2 in Ĥ = �g(b̂† + b̂)Ê†(r)Ê(r) [78].

A control and knowledge on the overlap integrals has crucial importance in tech-
nical applications. A better overlap between Ê1(r) and Ê2(r) may result a stronger
Raman intensity. Equation (1.14), however, tells us that; if the two plasmon modes
are engineered to overlap at small (sharp) spatial regions, a better spatial resolution
in Raman imaging can be achieved [40, 78].

1.3.2 Enhancement and Suppression of SHG

In this part, (a) we present a basic model for the SHG in a MNS. We examine the
effect of the presence of a QE, at the hot spot, on the SHG process. We obtain a
steady-state amplitude, (1.23), which demonstrates us why enhancement and sup-
pression is observed in the experiments [82]. This is simply due to the interplay of
the two terms in the denominator. (b) We perform exact solutions of the 3DMaxwell
equations and confirm the predictions of the simple model in the presence of retar-
dation effects. (c) We present our experiment [96], and an accompanying theoretical
model, demonstrating that SHG enhancement takes place also in an all-plasmonic
system. (d) A second experiment [92] of our group shows that molecules can be used
both for the SHG enhancement as well as for reporting the SH signal to the far-field.

1.3.2.1 Basic Model

The physics of a MNS, performing SHG process, can be described as follows. A
strong incident laser field of frequency ω strongly couples to the first (low-energy)
plasmon mode (â1) and excites plasmon oscillations ∼ e−iωt , see Fig. 1.5. The two
of the plasmons in the â1-mode combine, due to the strong overlap integral, (1.12),
and creates a single 2ω plasmon in the â2-mode, oscillating as e−i2ωt . The resonances
of the modes, ω1 and ω2 respectively, need not be resonant to ω and 2ω. If a QE is
present at the hot spot (of the â2-mode), the generated 2ω plasmon strongly couple to
that QE.We observe that presence of the QE canmodify the SH process dramatically,
depending on its level spacing, ωeg .

Hamiltonian of the system can be written as the sum of the terms Ĥp =
i�(â†1εpe−iωt − â1ε∗

pe
iωt ), ĤMNS = �ω1â

†
1 â1 + �ω2â

†
2 â2, ĤQE = �ωeg|e〉〈e|, ĤSH =

�χ(2)(â†2 â1â1 + â†1 â
†
1 â2), Ĥint = �( f1â

†
1 |g〉〈e| + f ∗

1 |e〉〈g|â1 + f2â
†
2 |g〉〈e| + f ∗

2 |e〉
〈g|â2), where Ĥp is the interaction of the pump laser with the â1-mode, ĤMNS and
ĤQE are the energies of the two plasmon modes and the QE, ĤSH is the SHG process
of origin described in (1.12), Ĥint is the interaction of the SH generated plasmons
in the â2-mode, with the QE placed at the hot spot. We choose ωeg around 2ω, far
off-resonant to the â1-mode. So, we neglect f1 interaction.
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In thiswork,we are not interested in the quantumoptical features of themodes.We
replace the âi operators by complex amplitudes αi [35]. Before doing that, however,
we use the advantage of Heisenberg equation,5 e.g. i� ˙̂ai = [âi , Ĥ ], to determine the
equations of motion (EOM) for âi . Then, we perform the replacement â1 → αi and
obtain [99]

α̇1 = (−iω1 − γ1)α1 − i2χ(2)α∗
1α2 − i f1ρge + εpe

−iωt (1.15)

α̇2 = (−iω2 − γ2)α2 − iχ(2)α2
1 − i f2ρge (1.16)

ρ̇ge = (−iωeg − γeg)ρge + i( f1α1 + f2α2)(ρee − ρgg) (1.17)

ρ̇ee = −γeeρee + i[( f1α∗
1 + f2α

∗
2)ρge − (α1 + α2)ρ

∗
ge] (1.18)

for the plasmon amplitudesα1,2 and the densitymatrix of the QE [100].We introduce
the decay rates γ1,2 ∼ 1014 Hz and γe ∼ 109 Hz for theMNP and theQE respectively,
with γeg = γe/2. The typical decay rates for molecules are γee ∼ 1012 Hz [83] and
γee ∼ 109 Hz for quantum dots [31]. We also have ρee + ρgg = 1.

We seek for the steady-state solutionswhereα1 andα2 oscillate as e−iωt and e−i2ωt .
When we use α1(t) = α̃1e−iωt , α2(t) = α̃2e−i2ωt , ρge(t) = ρ̃gee−i2ωt , ρee(t) = ρ̃ee,
we obtain the equations for amplitudes [99]

[i(ω1 − ω) + γ1]α1 + i2χ(2)α∗
1α2 = εp, (1.19)

[i(ω2 − 2ω) + γ2]α2 + iχ(2)α2
1 = −i f2ρge, (1.20)

[i(ωeg − 2ω) + γeg]ρge = i f2α2(ρee − ρgg), (1.21)

γeeρee = i f2(α
∗
2ρge − α2ρ

∗
ge). (1.22)

One does not need to solve (1.19)–(1.22) in order to gain understanding on the path
interference effect. Eliminating ρ̃eg in (1.20) and (1.21), we obtain

α̃2 = iχ(2)

| f2|2y
i(ωeg−2ω)+γeg

− [i(ω2 − 2ω) + γ2]
α̃2
1. (1.23)

Once noting that the number of SH generated plasmons are exceedingly small, one
can realize that α̃1 is not altered much by the strength of the SHG process. So, (i)
α̃1 can be considered as almost fixed throughout the SHG process. (ii) QE interacts
with the plasmons in the â2-mode. Thus, the population inversion y = ρee − ρgg is
very close to y � −1.

5Use of Heisenberg EOM possesses some serious advantages especially in performing separation
of variables in nonlinear differential equations [97, 98].
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(a) (b)

Fig. 1.6 a Enhancement and b suppression of SHG in a MNS [99]. ωeg is the level-spacing of the
quantum emitter (QE) attached to the MNS

1.3.2.2 Enhancement and Suppression

Equation (1.23) tells us thewhole story on the origin of the enhancement and suppres-
sion phenomena for the SHG process. (1) In the denominator of (1.23), imaginary
part of the first term, | f |2y/[i(ωeg − 2ω) + γeg], can be tuned to cancel the imag-
inary part of the second, the nonresonant [i(ω2 − 2ω) + γ2] term. That is, for the
choice of the level spacing

ωeg = 2ω + | f |2y
ω2 − 2ω

+
√

| f2|4|y|2
(ω2 − 2ω)2

− 4γ2
eg, (1.24)

SHG can be enhanced about 30 times, see Fig. 1.6a. This enhancement factor (EF)
is for the choice γ2/ω ∼ 0.1. EF can be as large as 4 orders of magnitude when a
high quality MNS, e.g. γ2/ω ∼ 10−3 in [101] is considered. In (1.23), one can also
observe that EFs like ∼5 does not necessitate a small γeg .

(2) Suppression of the SHG process can be read also from the denominator of
(1.23) as follows. When the QE level spacing is chosen close to the SH frequency
ωeg ≈ 2ω, the first term becomes | f2|2y/γ2

eg . Since γeg ∼ 10−6ω for a QD and γeg ∼
10−3ω for a molecule, with f2 ≈ 0.1ω and y ≈ −1, | f2|2y/γ2

eg term becomes very
large. Then SHG is suppressed 2–7 orders of magnitude, Fig. 1.6b. Suppression
phenomenon is also observed experimentally [82].

It is worth noting that results in Fig. 1.6 are obtained by the time evolution of
(1.15)–(1.18), rather than using (1.23).
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Fig. 1.7 Comparison of the a, b exact solutions of the Maxwell equation with the c, d results of
our analytical model, (1.15)–(1.18). We compare the SH response [99]. The simple model predicts
both the presence of Fano enhancement and the spectral position of the Fano resonance correctly.
MNPBEM [89, 90] is used in the simulations

1.3.2.3 Comparison with 3D Solutions

The simple model we study treats the system as if interaction and frequency conver-
sion take place at a single point (position). It does not account the finite time for the
oscillations of the plasmon field over the MNS. So, we test if the predicted enhance-
ment effect would indeed appear, by performing 3-dimensional exact solutions of
the Maxwell equations. We simulate SHG signal from a gold NP of 70nm diameter
in the (i) absence and (ii) presence of a 12nm auxiliary object with a sharp spectral
width. In the Maxwell simulations, for the ε(ω) of the gold NP, we use the Drude
model with experimental parameters in MNPBEM [89, 90]. We model the auxiliary
object by a Lorentzian, ε(ω) = 1 + ω2

p/(ω
2
eg − ω2 − iγegω), where ωp determines

the strength of the polarization. 12 nm is the typical dimensions of a quantum dot
(QD). Although the damping rate of a QD can be as low as 109 Hz, we consider a
moderate rate at 1011 Hz in the Lorentzian.

Figure1.7a, b demonstrate the SHG response of the gold NP with and without
the presence of the auxiliary particle. We plot the spectrum of the generated SH
field. We choose the polarization of the incident field along the x-direction, along the
axis connecting the two particles, in order to obtain a hot spot of the gold NP near
the auxiliary particle. In Fig. 1.7, we make a comparison with our simple analytical
model using similar parameters with the 3D simulations. Comparing Fig. 1.7a, c, we
observe a similar spectral width for the produced SH field. When an auxiliary object
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(e.g. a QD) is present, in Fig. 1.7b, d, we observe the enhanced SH response (about
100 times) in a spectral region around λsh = 253 nm in both 3D and analytical
simulations. Spectral width for the Fano enhancement, however, is narrower in the
3D simulations. This is due to the presence of retardation effects in the interaction
between the two particles. Analytical model treats the interaction as if it happens at a
single point. A similar phenomenon is observed also in the SERS process, in a more
apparent way, since the auxiliary particle is not close to the molecule producing the
Raman process, see Fig. 1 in [78].

As a conclusion, one can appreciate that the analytical model is very success-
ful in predicting the spectral position, here λsh = 253 nm, where maximum SHG
enhancement takes place.

1.3.2.4 Experiment 1: All-Plasmonic Fano Resonance

As already mentioned, Fano resonances in the linear response show up also in an
all-plasmonic system. When the lifetime of a plasmonic mode (either belonging to
the same MNP or to an auxiliary MNP) is larger than the excited plasmon mode,
Fano resonances appear. This is due to the near-field coupling between the two
modes, i.e. via f ∼ ∫

d3rE∗
b (r)E2(r) overlap integral, with E2,b(r) are the mode

profiles for the short/long lifetime LSP modes, respectively. We show that, a similar
phenomenon appears also in the nonlinear response due to the path interferences in
the all-plasmonic system [96].

In our experiment [96], we measure the SH signal from (i) a silver nanowire
(AgNW), (ii) silver bipyramid (AgBP), and (iii) a coupled AgNW-AgBP structure.
While SH signal from a (i) AgNW is 1 (unity) and (ii) a AgBP is only 1/6, the coupled
system (iii) produces a SH signal of 30 units. A bipyramid structure may not be a
good SH converter, but it can support many long-live dark modes due to its size and
symmetry. We measure the plasmon spectrum of the AuNW, see Fig. 1.8a. We depict
the linear response of the AgNW and show the two plasmon modes, which the CW
pump excites and the one into which SH oscillations emerge. We calculate the SH
response of AgNW in the presence of coupling to AgBP. We show that a ∼30 times
enhancement can take place due to the path interference, if the bipyramid supports
a dark mode of lifetime only 10 times larger than that of AgNW, see Fig. 1.9b. We
discuss that such a Fano enhancement makes the observation of SH signal possible
with a CW light source in the experiment.

A simple analytical model can be derived also for the path interferences in an
all-plasmonic system. In the Hamiltonian, given in Sect. 1.3.2.1, one need to per-
form the replacements ĤQE = �(ωe|e〉〈e| + ωg|g〉〈g|) → Ĥb = �ωbb̂†b̂ and Ĥint =
�( f2|e〉〈g|â2 + f ∗

2 â
†
2 |g〉〈e|) → Ĥint = �( f2b̂†â2 + f ∗

2 â
†
2 b̂) + �( f1b̂†â1 + f ∗

1 â
†
1 b̂).

Here, secondLSPmode of the converterMNP, â2, intowhich SHoscillations emerge,
couples with a dark plasmonmode b̂, e.g. a quadrupolar plasmonmode. b̂-mode may
belong to the SHconverterMNPor, aswell, itmay belong to an auxiliaryMNPplaced
near to the SH converter MNP.
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Fig. 1.8 a Linear response of silver nanowire. The excited plasmon mode (282 THz) and the one
into which SH signal (564 THz) emerges, are depicted [96]. b The SHG integral signal intensity as
a colour bar. The enhancement originates from coupling of the AgNW with the silver bipyramid

Fig. 1.9 a SHG intensity and the enhancement factor (EF) obtained at different positions along
the body of the AgNW, see Fig. 1.8b. b EF from the analytical model for different choices of the
resonance (ωb) of the auxiliary mode [96]. Enhancement appears due to Fano resonance

In difference to path interference via a QE, in Sect. 1.3.2.1, here we also consider
the interaction of the quadrupolar (long-live) mode with the low energy plasmon
mode (â1) of the SH converter MNP, see Fig. 1.5. This is because, spectral width of
the auxiliary plasmon mode is not as sharp as linear response of a QE. Its spectrum
can overlap with the one of â1-mode.

Similar to Sect. 1.3.2.1, one can obtain [96]

α̇1 = (−iω1 − γ1)α1 − f1αb + εpe
−iωt − 2iχ(2)α∗

1α2, (1.25)

α̇2 = (−iω2 − γ2)α2 − f2αb − iχ(2)α2
1, (1.26)

α̇b = (−iωb − γb)αb − f1α1 − i f2α2, (1.27)

using the Heisenberg EOM and making the replacement âi → αi [35]. Once again,
nonclassical features of the states are out of interest.

In this case, coupling of the auxiliary mode b̂ to the â1-mode allows the transfer of
2ω oscillations into the â1-mode, and, ω oscillations into the b̂-mode and into the â2-
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mode indirectly. So, we need to consider αi (t) = α̃(1)
i e−iωt + α̃(2)

i e−i2ωt for all i =
1, 2, bmodes. Thus, we time evolve (1.25)–(1.27) and obtain the SH components α̃(2)

i
from the Fourier transform of αi (t). We consider the long time behaviour. The total
number of 2ω plasmons is N = |α̃(2)

1 |2 + |α̃(2)
2 |2 + |α̃(2)

b |2, is depicted in Fig. 1.9b.
We can also obtain an analytical form for the SH plasmon amplitude

α̃2 = iχ(2)

| f |2
i(ωb−2ω)+γb

− i(ω2 − 2ω) + γ2
α̃2
1, (1.28)

when the coupling of b̂ and â1 mode is neglected. This is similar to the QE case,
(1.23).

In Fig. 1.8a we depict the measured cross section (linear response) of the AgNW.
The ω = 282 THz and 2ω = 564 THz lines show the λ = 1064 nm pump and the
λsh = 532 nm SH generated fields. The plasmon modes, these lines overlap, ω1 and
ω2, are the excited (driven) plasmon mode and the one into which 2ω oscillations
emerge. When we use parameters similar with the experiment, we can obtain a ∼30
times enhancement in the SH field compared with the AgNW alone. In the analytical
model we assign only a 10 times higher lifetime to the dark mode supported by
the Ag bipyramid. We note that, in Fig. 1.9b the spectral width of the enhancement
is wider compared to the one with a QE. Larger spectral width of a dark plasmon
state makes Fano resonance appear in a wider band. So, they are easier to observe in
experiments.

One may raise the following question. Could the enhancement in the SH signal be
due to the formation of a hot spot region between the AgNW and AgBP? In our SHG
simulation with the 3-dimensional Maxwell equations, we observe that SHG signal
starts to decrease if the auxiliary particle is placed closer to the converter MNP, see
Fig. 6 in [99]. We observe the similar behaviour in our simulations with 3DMaxwell
equations for the SERS enhancement [78]. This is because, Fano resonance appears
for weak hybridization between the two particles. When the interaction is very large,
that is two MNPs are very close to each other, our simple analytical treatment fails.
Because, one cannot treat the plasmon mode and the mode of the auxiliary particle
as two different modes. It is noteworthy that the experiment (even though it is just
a single data point between 1 and 2 µm) displays a behaviour in line with this
discussion.

1.3.2.5 Experiment 2: Molecule(s) Enhancement and Reporter Agents

Activation of a single molecule (or a group of molecules) is important for switching
and data storage applications. One can activate the molecules plasmonically when
they are placed at the hot spots of the MNS. Such a method is not quite controllable,
since the backgroundfield can also excitemolecules undesirably.One can circumvent
this difficulty as follows. We excite the MNS with a CW source of frequency ω, but
choose the energy level spacing of the molecule about ωeg ∼ 2ω. SH response of the
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Fig. 1.10 a, b 12 nm size gold NPs decorated with EYFP molecules. No SH signal is observed.
We do not observe SHG also from the cluster of AuNPs of dispersed sizes 70–120 nm. c, d When
the two clusters brought together, we observe SH signal at the interface [92]

Fig. 1.11 a The extinction cross-section of three hybridized AuNPs. Even though, SHG at λ/2 =
532 nm is off-resonant with the second plasmon mode, insertion of a molecule with an absorption
peak at λeg = 514 nm enhances the SHG substantially. b Distribution of the electric field. An
EYFP molecule attached to the 12 nm AuNP interacts with the 532nm oscillations created in the
quadrupole mode. This interaction leads to the Fano resonance and results in the 2–3 orders of
magnitude enhancement of the SH conversion process [92]

MNS generates plasmons of 2ω frequency whose near-field excites the ωeg ∼ 2ω
molecule. This way, only the peak of the activation pulse (ω) achieves to activate
the molecule(s). However, SH response of MNSs is small even after accounting the
effect of the localized field.

In our experiment [92], molecules both (i) Fano-enhance the SH signal about
3 orders of magnitude and (ii) report the excited 2ω quadrupolar plasmons to the
far-field.

(a) We decorate 12nm gold NPs (AuNPs) with enhanced yellow fluorescent
(EYFP) molecules. When we illuminate the cluster of these NPs, see Fig. 1.10a, b,
we can observe no SH signal. (b) We prepare a cluster of AuNPs of sizes dispersed
between 70 and 120 nm. This is to break up the centro-symmetry and to obtain a
better excitation for λ = 1064 nm, see the tail in Fig. 1.11a. When we illuminate the
cluster, we still do not observe SH signal. That is, a non-vanishing (but probably
small) χ(2) overlap integral, (1.11), is not enough for an observable SHG.We remind
that for the direct observation of SH generated plasmons, E2(r)-mode needs to be
a dipole-like one. Driven mode E1(r) is also dipole-like. This yields a small χ(2) in
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(1.11) even for a broken centro-symmetry. (c) However, when the two clusters are
brought together, see Fig. 1.10c and d, we observe SH signal at the interface of the
two clusters.

In Fig. 1.11a, we plot the plasmonic excitation spectrum (linear response) of three
AuNPs of 110, 60 and 12nm in sizes. The tail extends to longer wavelengths due to
the hybridization compared to a 12 nm AuNP alone. When we calculate the eigen
plasmon modes of the 3 coupled AuNPs, using eigenstat in MNPBEM [89, 90], we
observe the following. The plasmon eigenmode at λ2 ∼ 400 nm, into which 2ω (532
nm) signal emerges, display a quadrupole nature on the 12 nm MNP, see Fig. 1.11b.
We also check the nature of the 1064nm excitation. We observe that it has a dipole
shape on the 12 nm AuNP. That is, (i) the overlap integral χ(2), (1.11), attains a
larger value on the 12 nm AuNP since E1(r) is dipole and E2(r) is quadrupole. A
χ(2) due to centro-symmetry breaking, when both E1,2(r) have dipole characteristic,
has contributions only from small regions. However, overlap integral on 12 nmAuNP
non-vanishes over all of the particle. The non centro-symmetric larger size AuNPs
work as bedding for the SHG of 12 nm AuNP.

(ii) Localization of the E-field on the 12 nm AuNP, Fig. 1.11b, results a strong
interaction between the â2-mode (E2(r)) and the EYFP molecules. This creates
the path interference and enhances the SHG. Using the parameters in Fig. 1.11a, our
analyticalmodel predicts a SHGenhancement in the order of∼1000. (iii)Quadrupole
â2 plasmonmode cannot radiate far-field due to the vanishing coupling of quadrupole
mode to vacuum modes, see Sect. 3.1.1. However, the SH signal created in the
plasmons of the â2-mode [93] transfers also to other EYFP molecules on the 12 nm
AuNP. This (these) molecule(s) radiate to far-field enabling the observation of SH
signal in our experiment. That is, EYFP molecules can both enhance the SHG and
behave as far-field reporters.6

Finally we note that, the nonlinearity enhancement achievable by facilitating a
quantum emitter is one order larger compared to Fano resonances with long-live dark
plasmon modes.

1.3.3 Silent Enhancement of SERS

Similar to other nonlinearities, Raman signal can also be enhanced by field localiza-
tion, when Raman-active molecule is placed into the hot spots. This is called surface
enhanced Raman scattering (SERS). For instance, 6–8 orders of magnitude enhanced
Raman signal can be retrieved from a molecule when it is placed into the nm-size
gap between a gold surface and a gold AFM tip, see Fig. 1.12. The hot spot field
can be enhanced using a double resonant scheme where excitation (ω) and generated
from (ωR) frequencies overlap two plasmon modes [94]. This way, the fields at both
input and output hot spots are enhanced. Input and output hot spots can be further

6EYFP molecules do not have a two photon absorption response at 1064 nm.

http://dx.doi.org/10.1007/978-3-319-99731-5_3
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Raman-active 
molecule Quantum Dot

Fig. 1.12 A Raman-active molecule is placed inside the hot spot gap which appears between a
gold coated AFM tip and a gold surface. Molecule is placed slightly to the left of that particle. The
Raman signal can be enhanced due to localization. On top of this, SERS can be enhanced 3-orders
or more when a QD is present, e.g. on the right of the tip [78]. The second enhancement is silent.
It does not change the hot spot field

enhanced by increasing the hot spot fields by linear Fano resonances [7, 76], dark-hot
resonances [74].

These enhancement schemes are useful up to a hot spot intensity above which
the molecule is damaged or the vibrational modes get modified. In this situation,
path interference in the nonlinear response (Raman signal) helps us. Similar to other
plasmonic non-linearities, we can obtain [78]

α̃R = −iχε∗
ph

βph

(
[i(�R − ωR) + γR] − | f |2y

[i(ωeg−ωR)+γeg]
)

− |χ|2|α̃|2
α̃ (1.29)

for the steady-state Raman amplitude with βph = [−i(�ph − ωph) + γph]. Here y =
ρee − ρgg is the population inversion and f denotes the interaction between theMNS
and the QE. �R is the second plasmon mode of the MNP converter, while γR and
γeg are the damping rates of the �R-mode and the QE, respectively.7 Again similar
to other non-linearities, the denominator of (1.29) can be reduced by cancellations.
We note that the cancellation only increases the value of α̃R . The driven plasmon
mode (α̃) need not be modified. That is, one can increase the Raman signal silently,
without increasing the hot spot field.

One more time, we test our analytical model with the exact solutions of 3-
dimensional Maxwell equations. We again use the freeware program MNPBEM
[89, 90]. We clearly observe that Raman signal is enhanced 3 orders of magnitude
when an auxiliary particle is placed at the other side of the hot spot, see Fig. 1, 2 in
[78]. That is, the Raman-active molecule and the auxiliary particle do not interact.
We also confirm that the field on the Raman-active molecule does not increase in the
presence of the auxiliary particle, compared to the absence of the auxiliary particle.

Imaging of the vibrational modes reveals the band types in unknown molecules
and nanostructures like carbon nanotubes. It is invaluable in determining the finger
prints of molecules for detection purposes. This makes SERS an important tool for

7Detailed description of the process can be found in [78].
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all the fields of science. Under these considerations, one can appreciate the impact
of 3 orders of magnitude enhancement without modulating the modes of the sample.

1.3.4 Interference of Multiple Conversion Paths and FWM

Four wave mixing (FWM) process in plasmonic structures can also be enhanced and
suppressed similar to SHG, THG and SERS processes. One can obtain the plasmon
amplitude for the converted ω3 = 2ω1 − ω2 frequency [102] as

α̃3 = iχFWM

| f2|2y
[i(ωeg+ω2−2ω1)+γeg] − [i(�3 + ω2 − 2ω1) + γ3]

α̃∗
2α̃

2
1, (1.30)

which is in the common form with other processes. Here, α1,2 are the plasmon
amplitudes of the pumped â1,2 plasmon modes. α3 is the plasmon mode into which
generated frequencyω3 emerges, see Fig. 1.13.α3 is coupled to aQE.Using theωeg of
the QE, one can obtain 80 times enhancement in the FWM signal, see Fig. 1.14a. We
note thatα1,2 in (1.30) are plasmon amplitudes which are not affected by the interfer-
ence in the denominator. Hence, the hot spots are not modified in this enhancement
process, too.

The basic understanding, provided through out this chapter, now drives us to raise
the following question. Can we perform better cancellations in the denominator of
α̃3 by introducing the interference of more than two conversion paths? We find that
using 2 QEs, instead of a single QE, one can obtain ∼1200 times enhancement
in the FWM signal, see Fig. 1.14b. For the 2 QEs case we need to add two new
terms. When one considers the interaction of the second QE with the â3-mode,

(a)

spectrum of the plasmonic converter

(b)

Fig. 1.13 Fano-enhancement of a plasmonic FWM process. QE is coupled to the �3-mode into
which converted frequency ω3 = 2ω1 − ω2 emerges. a A quantum emitter (QE) is placed on the hot
spot of a plasmonic converter. Field localization provides a strong plasmon-QE interaction. b Two
lasers of frequencies ω1 and ω2 drive the plasmon modes of resonances �1 and �2. Two plasmons
oscillating with ω1, combine and decay into two plasmons with different frequencies, ω2 and ω3
[102]
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(a) (b)

Fig. 1.14 a Relative enhancement of the FWM process in the presence of coupling to the QE,
compared to a bare plasmonic converter. b When the plasmonic converter is coupled to two QEs,
additional terms are introduced. A 1200 times larger enhancement can be achieved on top of the
localization enhancement [102]

Ĥint = �(g|e2〉〈g2| × |g1〉〈e1| + H.c.), and the interaction between the two QEs,
ĤQE−QE = �( f1â

†
3 |g1〉〈e1| + f2â

†
3 |g2〉〈e2| + H.c.), steady-state FWM amplitude

becomes

α̃3 = iχFWM (β1β2+y1y2|g|2)
(y1| f1|2β2+y2| f2|2β1)+iy1y2( f1 f ∗

2 g∗+ f ∗
1 f2g)−ξ3(β1β2+y1y2|g|2) α̃

∗
2α̃

2
1 (1.31)

where ξ3 = i(�3 + ω2 − 2ω1) + γ3 and β j = i(ω( j)
eg + ω2 − 2ω1) + γ

( j)
eg . Here,

(1.31) has more terms in the denominator and hence has more parameters for
the cancellations. Better cancellations yield a ∼1200 times FWM enhancement,
in Fig. 1.14b. Once again, this enhancement is silent.

1.4 Summary

We demonstrate that enhancement and suppression both in the linear and nonlin-
ear responses have the same origin. Amplitude of the excited plasmon in the linear
response and the amplitude of the frequency converted plasmons in the nonlinear
response have a common structure, see (1.8), (1.23), (1.28), (1.29) and (1.30). Cou-
pling to an auxiliary object (a QE or a dark plasmon mode) introduces an extra
term in the denominator. (i) When ωeg of the auxiliary particle is tuned properly,
the new term can cancel the non-resonant term in the conversion. This creates the
enhancement. (ii) When the denominator is enriched with coupling to more than
one auxiliary particle, the cancellation can be made better. This yields even a better
enhancement in the nonlinear signal. (iii) When the auxiliary particle has a longer
lifetime (i.e. >100 times) and one chooses ωeg = ωconverted, the extra term grows
dramatically. This results the suppression. (iv) In the nonlinear processes, the auxil-
iary particle must be coupled to the plasmon mode into which converted frequency
emerges. (v) All of the nonlinearity enhancement obtained in this way are silent in
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the sense that hot spot fields are not enhanced. (vi) The enhancement does not always
increase with a stronger interaction between the frequency converted plasmon mode
and the auxiliary particle. For stronger hybridization, one cannot talk about two dif-
ferent modes and the simple model fails. (vii) For the suppression phenomenon to
appear, coupling to a long-live auxiliary particle is necessary. On the other hand,
enhancement, cancellation in the denominator, can take place also for coupling to
an auxiliary particle with an ordinary lifetime. However, enhancement is larger with
a long lifetime auxiliary object. (viii) Retardation effects cause the enhancement to
appear in a narrower ωeg band.
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Chapter 2
Fano-resonant Excitations of Generalized
Optical Spin Waves

Xianji Piao, Sunkyu Yu and Namkyoo Park

Abstract While chiral materials possess spin-form wave functions as their eigen-
modes, optical spin excitations cannot be obtained solely in chiral materials due to a
lack of spin impedances. To date, spin excitation has generally been induced through
non-conservative methods, such as circular dichroism or magneto-optical effects. In
this chapter, we describe a conservative approach to optical spin excitation and con-
trol based on the spin-dependent appearance of Fano resonance. Starting from the
development of the spin-form temporal coupled mode theory for 2D and 3D chiral
resonances, the origin of the spin-Fano interactions is demonstrated in terms of the
link between the spin eigenmodes in the polarization domain and anti-symmetric
Fano resonances in the spectral domain. By comparing this spin-dependent Fano-
resonant system with other optical spin materials, such as chiral, circular dichroic,
and birefringent media, we discuss the impact of our results toward the realization
of optical spintronics, such as applications of highly selective spin switching and
unpolarized spinning operations.

2.1 Introduction

Due to the ultrafast and low-loss nature of light, photonics has provided revolu-
tionary contributions to communication, information, and energy technologies. To
continue this photonic revolution, serious efforts have been devoted to the fields of
nanophotonics [1], plasmonics [2], and metamaterials [3] during the last decade. In
these fields, optical phenomena in the subwavelength regime and their applications
allow for the realization of “spatially” integrated optical devices that can overcome
the conventional diffraction limit. Although this approach provides a useful tool
for the design of future photonic devices, it is still difficult to overcome the funda-
mental limiting length scale of photons [4–6], even with state-of-the-art photonics.
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Next-generation photonics requires an alternative to the “sub-wavelength” approach
that has become widespread over the last decade.

As a logical starting point, it is necessary to revisit the physical quantities of pho-
tons and their interactions.While previous approaches toward the integration of opti-
cal information have focused on “spatial integration”, recent works have paid more
attention to other physical axes: spin [7–13] and orbital [14, 15] angular momenta
of light and their interactions toward topological photonics [16–19], temporal evolu-
tion of light-matter interactions [20–22], and disordered formation of materials for
controlling light spreading [23–27]. By utilizing these uncultivated degrees of free-
dom, light information can now be better stacked inside the same spatial footprint,
maximizing the capability of photons as information carriers.

Among the various physical parameters utilized for optical information integra-
tion, in this chapter, we focus on the spinning of light, which is one of the fundamen-
tal motions in physics. Spin angular momentum (SAM) of light, which corresponds
to the handedness of photons [28], is an active research field that studies circular
polarizations in classical optics [29], an optical analogy of quantum phenomena [9,
28], and the application of molecular sensing [30]. In general, to access the SAM
“eigenmode” in optics, coupling between electric and magnetic fields is necessary,
which can be achieved in 3D chiral structures [31–36] or gyrotropic media [37–39].
As another route, 2D chiral structures [40–42], including parity-time symmetric sys-
tems [12, 43, 44], also allow the realization of SAMeigenmodes.Although the effects
of these SAM platforms on properties such as spectral quality and field enhancement
can be significantly enhanced by utilizing optical resonance structures, an intuitive
analytical method for SAM resonances is still missing.

For the realization of spin-controlled photonic processing, we focus on “selective”
manipulation of optical spin, especially in the spectral domain. For this goal, in
this chapter, we will review our studies on the link between Fano resonance and
polarization space and show an intriguing phenomenon: optical spin-dependent Fano
resonances. We will show that the realization of spin-dependent Fano resonances
allows highly sensitive control of the optical spin state for the building block of optical
spin switching. Due to the steep response in the spectral domain, Fano resonance
will provide a new perspective on various spin-based applications, including sensors,
modulators, switches, and lasers, in the context of optical spintronics [45].

In Sect. 2.2, we introduce a theoretical model for the generalized spin wave exci-
tations in 2D and 3D optical chirality, using a temporal coupled mode theory. Using
the developed temporal coupled mode theory, the origin of spin-dependent Fano res-
onance and its control are discussed in Sect. 2.3. Metamaterial-based applications of
spin-dependent Fano resonances are discussed in Sect. 2.4.

2.2 Coupled Mode Theory for Optical Spin Waves

Coupled mode theory (CMT) provides platform-transparent analysis of universal
coupled oscillatory systems, including guided optical systems [46], transmission
lines [47], electronic circuits [48], and acoustic systems [49]. From its intuitive
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and generalized representation, CMT allows for a phenomenological understanding
of various wave phenomena, such as directional coupling [46], Fano resonances
[50–52], isospectral energy spectra [53, 54], disordered optics [27, 55], slow light
[56], optical switching [57, 58], andwireless power transfer [59]. In spite of its simple
form, CMT also leads to quantitatively acceptable results within the weakly coupled
regime compared with those from full wave analysis.

By assigning the coupling-induced perturbation to a simplified model, the basic
formof the coupledmode equation includes (i) the on-site energy that defines the self-
oscillation of each element and (ii) interaction energy that represents the magnitude
of the perturbation driven by the coupling. The equation for a general N-oscillator
system is

d

dξ
a j � iρ j a j + i

N∑

k�1

δ jkak + γ j S j , (2.1)

where aj and ρ j represent the field amplitude and self-oscillation terms of the j-
th element, respectively; γ j and Sj represent the excitation coefficient and external
source of the j-th element, respectively; δjk is the coupling coefficient between the
j-th and k-th elements; and ξ is the physical axis for the self-oscillation, which can
be a spatial or temporal axis. In harmonic systems (∂ξ → iρ), (2.1) becomes the
matrix equation i · [ρ · I−diag(ρ) − K

]
a � S, where I is the identity matrix,

[
ρ
]
j �

ρ j , [K] jk � δ jk , and [S] j � γ j S j . Using this simple matrix equation, eigenmode
problems (no excitation with S �O) or excitation behaviours from external sources
(S ��O) can be analysed. The Hermiticity of the matrix determines whether the
coupled system is conservative.

While spatial CMT (the wave vector ρ and ξ � z) historically provides a com-
prehensible description of the directional coupling in guided optics [46], temporal
coupled mode theory (TCMT, the resonant frequency ρ and ξ � t) [60] has attracted
particular attention in the field of nanophotonics for the interpretation of coupled
resonant structures. Because the results from the TCMT provide a reasonable fit in
the weakly coupled regime with a quality (Q-) factor of over~10, various optical
resonant systems, including dielectric [52, 58, 61] or metallic resonators [50, 51,
62, 63], meet the requirement of TCMT. By obtaining the quantified parameters of
coupling coefficients, resonance frequencies, and resonatorQ-factors, the temporally
varying flows of light, such as the field excitation and storage of resonators as well
as scattering to external waveguides, are successfully predicted in general platforms,
e.g., guided optics [60], photonic crystals [52, 56, 58, 61], and plasmonic structures
[50, 51, 62, 63].

It should be noted thatmost previous studies have not fully exploited the generality
of TCMTand solely focused on the “spatial” opticalmodewith a specific polarization
(TE or TM), rather than a “polarization” mode with an optical spin. Considering
spin-related localized resonances in nanophotonics, which can be obtained in chiral
nanostructures [33], metamaterial films [40–42], and parity-time (PT) symmetric
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resonances [12, 44], the development of TCMT for spin resonant systems is strongly
required.

In this section, as a tool for the later discussion of Fano-resonant spin waves
(Sects. 2.3 and 2.4), we introduce TCMT analysis for different types of optical spin
waves: (i) from 2D non-Hermitian structures and (ii) 3D chiral structures. In both
works, we consider the polarization space of the planewave propagation, constructing
two-coupled-oscillator TCMT models.

2.2.1 TCMT Analysis of 2D non-Hermitian Chirality

A representative optical spin phenomenon in 2D structures is circular dichroism
[40–42], which exhibits different dissipation for each spin wave. Considering that
any 2D structure can be expressed as a two-level non-Hermitian system with gain
or loss, we extend the physics of circular dichroism by exploring the condition of
spin-form eigenmodes in a universal two-level non-Hermitian system, which allows
2D non-Hermitian chirality.

First, consider a nonmagnetic two-level resonant system in polarization space.
When each resonant mode has a linear polarization orthogonal to each other (h:
horizontal, v: vertical) and coupling from the perturbation is assumed, the “non-
Hermitian” TCMT equation becomes

d

dt

[
ah
av

]
� i

[
ωh + iλh κ

κ ωv + iλv

][
ah
av

]
, (2.2)

whereωh,v and λh,v are the resonant frequency and non-Hermitian component of each
polarization mode (λh,v <0 for amplification and λh,v >0 for dissipation), κ is the
coupling coefficient, and all of the parameters are real-valued. The corresponding
eigenfrequency and eigenmode are

(2.3)

ωeig1,2 � ωh + ωv + i(λh + λv)

2

±
√
(ωh − ωv)2 + 4κ2 − (λh − λv)2 + 2i(ωh − ωv)(λh − λv)

2
,

(2.4)veig1,2 �
⎡

⎣ ωh−ωv+i(λh−λv)
2 ±

√
(ωh−ωv)2+4κ2−(λh−λv)2+2i(ωh−ωv)(λh−λv)

2

κ

⎤

⎦ .

When considering the form of the spin states [1,±i]T, it is observed that the emer-
gence of the spin-form eigenmode originates from different non-Hermitian compo-
nents λh �� λv. If λh � λv � λo, the eigenfrequency and eigenmode become
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ωeig1,2 � ωh + ωv

2
+ iλo ±

√
(ωh − ωv)2 + 4κ2

2
, (2.5)

veig1,2 �
⎡

⎣ ωh−ωv
2 ±

√
(ωh−ωv)2+4κ2

2

κ

⎤

⎦, (2.6)

which leads to the “phase-matched” resonance between horizontal and vertical lin-
ear polarizations in veig1,2, constructing the oblique linearly polarized resonance.
In addition, each eigenmode supports a different resonant frequency. However, if
ωh � ωv � ωo the eigenfrequency and eigenmode become

ωeig1,2 � ωo +
i(λh + λv)

2
±

√
4κ2 − (λh − λv)2

2
, (2.7)

veig1,2 �
⎡

⎣ i(λh−λv)
2 ±

√
4κ2−(λh−λv)2

2

κ

⎤

⎦, (2.8)

which derives a uniquely existing spin eigenmode, veig1,2 � [1, i]T and ωeig �
ωo + i(λv−κ) with the condition of λh−λv � −2κ . Therefore, the non-Hermitian
resonant system realizes chirality from the unique existence of a pure spin eigenmode
at a certain condition, which corresponds to the exceptional point in polarization
space [12, 43, 44]. The cases of ωh �� ωv or λh−λv �� −2κ result in elliptic eigen-
modes with different amplifications and dissipations, encompassing the systemswith
circular dichroism.

Figure 2.1 represents TCMT eigenmode analysis of 2D non-hermitian chirality:
the evolutions of the spin densities of the eigenmodes (Fig. 2.1a, b), as well as
their eigenfrequencies (Fig. 2.1c, d) and amplification or dissipation (Fig. 2.1e, f),
for eigenmodes 1 (Fig. 2.1a, c, e) and 2 (Fig. 2.1b, d, f). On the parameter space
of ω
 � (ωh−ωv)/2 and λ
 � (λh−λv)/2, we calculate the spin density for
each eigenmode C1,2 � (|a+|2− |a−|2)/(|a+|2 + |a−|2) from the spin amplitudes of
a+ � (ah−iav)/21/2 and a− � (ah + iav)/21/2. The approach to the pure spin state
is apparent in the EP+ (λ
 � −κ) and EP− (λ
 � κ) points, while other regimes
allow for elliptic eigenmodes with level splitting (Fig. 2.1c, d) and different non-
conservative evolutions of gain or loss features (Fig. 2.1e, f), covering the case of
circular dichroism [40–42].

2.2.2 TCMT Analysis of 3D Bulk Chirality with Circular
Birefringent Mirrors

We now investigate the application of TCMT for 3D chiral resonant structures [11]
maintaining the “Hermitian” condition (or energy conservation). A chiral structure
[31–36], distinguishable from its mirror image, has attracted much attention in optics
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Fig. 2.1 TCMT analysis of 2D non-hermitian chirality: a, b spin density of eigenmodes, c, d
eigenfrequencies, and e, f amplification or dissipation coefficients for eigenmodes 1 a, c, e and 2
b, d, f . ωo �1, λo �0, and K �0.1. EP+ (or EP−) presents the exceptional point with the+ (or −)
spin eigenmode

Fig. 2.2 Natural optical rotation in the resonant linear polarization basis

for the sensing of natural chirality in chemical and biological molecules [30, 64, 65]
and for novel phenomena in artificial chiral materials, such as negative refraction
[34, 35]. The representative feature of 3D chiral structures is the chiral “velocity”
of light [66], i.e., different phase velocities of each circular polarization. The spatio-
temporally varying interference between right and left circular polarizations from
their different velocities generates the “natural optical rotation” of linear polarizations
[66] (Fig. 2.2).

To model 3D chiral phenomena with the TCMT, the resonance mode in the 3D
chiral structure has to be defined on the spatially “rotated” coordinates (h- and v-axes
in Fig. 2.2) for a chiralmedium. For planewave propagation, because two polarization
axes are considered, the TCMT resonance mode can have two degrees of freedom
from the linear combination of the resonator field amplitudes ah (horizontal linear
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Fig. 2.3 Two-port scattering of 3D chiral resonance. Each incoming and outgoing wave has its
polarization aligned to the horizontal and vertical resonant mode with the spatially rotated polar-
ization axis

polarization at the resonator centre) andav (vertical linear polarization at the resonator
centre) of the resonance modes, with the same directional rotation (Fig. 2.2).

The TCMT equation for Hermitian h- and v-resonances then becomes

d

dt

[
ah
av

]
�

[
iωh0 0

0 iωv0

]
·
[
ah
av

]
, (2.9)

where ωh0 and ωv0 are the resonant frequencies of the ah and av modes, respectively,
and then, the rotational modes of ah and av become the eigenmodes of the system. It
is worth mentioning that the resonant frequencies ωh0 and ωv0 have the same value
when the permittivity of the chiral material is isotropic.

While the 3D chiral structure has simple linearly polarized eigenmodes, the scat-
tering from external light sources requires special consideration. Consider the two-
port system for the planewave, as shown in Fig. 2.3. For the case of the incoming(
S1,2h+, S1,2v+

)
and outgoing

(
S1,2h−, S1,2v−

)
waves through ports 1 and 2, which

each have an “aligned” polarization to the horizontal and vertical resonant mode
with the spatially rotated polarization axis, the scattering TCMT has the following
form:

d

dt

[
ah
av

]
�

⎡

⎣
iωh − 1

τ1h
− 1

τ2h
0

0 iωv − 1
τ1v

− 1
τ2v

⎤

⎦ ·
[
ah
av

]

+

⎡

⎢⎢⎣

√
2

τ1h
0

0
√

2
τ1v

⎤

⎥⎥⎦ ·
[
S1h+
S1v+

]
+

⎡

⎢⎢⎣

√
2

τ2h
0

0
√

2
τ2v

⎤

⎥⎥⎦ ·
[
S2h+
S2v+

]
(2.10)
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[
S1h−
S1v−

]
� −I ·

[
S1h+
S1v+

]
+

⎡

⎢⎢⎣

√
2

τ1h
0

0
√

2
τ1v

⎤

⎥⎥⎦ ·
[
ah
av

]

[
S2h−
S2v−

]
� −I ·

[
S2h+
S2v+

]
+

⎡

⎢⎢⎣

√
2

τ2h
0

0
√

2
τ2v

⎤

⎥⎥⎦ ·
[
ah
av

]
(2.11)

where τ 1,2h and τ 1,2v are the resonant-modal decay times determined by the radiation
Q-factor for ports 1 and 2.

We now reformulate (2.10) and (2.11) using the spinor representation, with the
resonator structural parameters defined on the universal axes x and y. First, if we
consider the natural optical rotation of 2θ inside the resonator (θ � ωχLeff/2c,
where χ is normalized chirality, Leff is the effective path of the resonator, and c is the
speed of light) [67, 68], we can rewrite the scattering fields from the representations
on the rotated axes h and v to those of the universal axes x and y, as
[
S1h±
S1v±

]
� U ·

[
S1x±
S1y±

]
,

[
S2h±
S2v±

]
� U−1 ·

[
S2x±
S2y±

]
, where U �

[
cos θ sin θ

− sin θ cos θ

]
, (2.12)

if the rotated axis h (or v) is parallel to the x (or y) axis at the resonator centre. On this
coordinate representation, by considering the evanescent power flow to the resonator,
we can obtain the decay times along the rotated axes from those along the universal
axes, as 1/τ1,2h � cos2 θ/τx + sin2 θ/τy and 1/τ1,2v � sin2 θ/τx + cos2 θ/τy ,
where τ x and τ y are the decay times along the x- and y-axis. This representation
allows consideration of the chiral resonator “boundary”, which usually possesses the
birefringence effect (εx ��εy).

Second, we transform the resonator and scattering fields from the linear polariza-
tion to the spinor representation

[
a+
a−

]
� 1√

2

[
1 i
1 −i

]
·
[
ah
av

]
� CSL ·

[
ah
av

]
� C−1

LS ·
[
ah
av

]

[
S1x+
S1y+

]
� CLS ·

[
S1L+
S1R+

]
,

[
S2x+
S2y+

]
� C∗

LS ·
[
S2L+
S2R+

]

[
S1x−
S1y−

]
� C∗

LS ·
[
S1L−
S1R−

]
,

[
S2x−
S2y−

]
� CLS ·

[
S2L−
S2R−

]
(2.13)

whereCSL (orCLS) is the linear-to-spin (or spin-to-linear) transformation matrix and
the * sign denotes the complex conjugate. By applying (2.12) and (2.13) to (2.11),
we now derive the TCMT equation for the scattering as
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d

dt

[
a+
a−

]
� CSL ·

⎡

⎢⎣
iωh − 1

τ1h
− 1

τ2h
0

0 iωv − 1
τ1v

− 1
τ2v

⎤

⎥⎦ · CLS ·
[
a+
a−

]

+ CSL ·

⎡

⎢⎢⎣

√
2

τ1h
0

0
√

2
τ1v

⎤

⎥⎥⎦ ·U1 · CLS ·
[
S1L+

S1R+

]
+ CSL ·

⎡

⎢⎢⎣

√
2

τ2h
0

0
√

2
τ2v

⎤

⎥⎥⎦ ·U2 · C∗
LS ·

[
S2L+

S2R+

]
,

(2.14)

which can handle the resonance mode on a chiral medium between birefringent
mirrors.

For further insight, we introduce reasonable assumptions for simplicity: (1) spatial
symmetry between ports 1 and 2 (τ1h � τ2h � τh and τ1v � τ2v � τv), (2) single port
excitation (S2L+ � S2R+ � 0), and (3) an isotropic chiralmaterial (ωh0 � ωv0 � ω0).
Equation (2.14) then becomes

d

dt

[
a+
a−

]
�

⎡

⎣
iω0 − ( 1

τh
+ 1

τv
) −( 1

τh
− 1

τv
)

−( 1
τh

− 1
τv
) iω0 − ( 1

τh
+ 1

τv
)

⎤

⎦ ·
[
a+
a−

]

+
1

2

⎡

⎢⎢⎣
(
√

2
τh
+

√
2
τv
)e−iθ (

√
2
τh

−
√

2
τv
)eiθ

(
√

2
τh

−
√

2
τv
)e−iθ (

√
2
τh
+

√
2
τv
)eiθ

⎤

⎥⎥⎦ ·
[
S1L+
S1R+

]
. (2.15)

For a more clear representation, we introduce the coupling coefficient κh,v �(
2/τh,v

)1/2
, where κ0 � (κh + κv)/2 and 
κ � (κh − κv)/2, and then, (2.16) is

simplified as

d

dt

[
a+
a−

]
�

⎡

⎣
iω0 − ( 1

τh
+ 1

τv
) −( 1

τh
− 1

τv
)

−( 1
τh

− 1
τv
) iω0 − ( 1

τh
+ 1

τv
)

⎤

⎦ ·
[
a+
a−

]

+

[
κ0e−iθ 
κeiθ


κe−iθ κ0eiθ

]
·
[
S1L+
S1R+

]
. (2.16)

Equation (2.16) represents the “birefringent” boundary effect, which is the origin
of the interfered mixing between spin modes. If there is no birefringence boundary
(τ h �τ v) for chiral resonances, every off-diagonal term in (2.16) vanishes, and thus,
each spin mode is independently excited, leading to the simple Lorentzian resonant
response. However, when the birefringent boundary effect occurs (τ h ��τ v, or τ x

��τ y from 1/τ h � cos2θ /τ x + sin2θ /τ y and 1/τ v � sin2θ /τ x + cos2θ /τ y), the mixing
between the (+) and (−) spin modes is obtained in both (1) the resonance mode from
−(1/τ h − 1/τ v) and (2) the scattering fromΔκ · exp(±iθ) � [

(2/τh)
1/2−(2/τv)

1/2
]·

exp(±iθ)/2. We also note that this spin mixing effect accompanies the frequency-
dependent interference from the value of the natural optical rotation θ =ωχLeff/2c,
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leading to the possibility of spectral interferencephenomena, such asFano resonances
[51] and electromagnetically induced transparency [50].

Based on this phase-dependent mixing of spin modes, in Sect. 2.3, we explore the
emergence of spin-dependent Fano resonances in 3D chiral resonators with birefrin-
gent mirrors.

2.3 Fano-resonant Excitation of Optical Spin

A Fano resonance [69] is a universal phenomenon that occurs in coupling between
resonances of different bandwidths. From the different phase evolutions of each res-
onance on the spectral axis, the coupling between these resonances results in spectral
“interference”, which transforms the traditional Lorentzian resonance with a sym-
metric line shape to an “asymmetric” line shape. In addition to the classical emer-
gence of Fano resonances for inelastic electron scattering [69], the universality of
Fano-resonant phenomena has been observed in various fields, including condensed
matter physics, microwave engineering, and optics.

Due to its spectral response and universal nature, Fano resonance provides a
valuable tool for achieving superior spectral sensitivity in general wave devices.
In optics, to achieve more sensitive spectral dispersion within the inherent Q-factor,
which is usually limited by the utilized opticalmaterials, the design of Fano resonance
systems has been broadly studied for several applications, such as selective sensors
[51, 70, 71], power-efficient modulators [11, 50, 72, 73], narrowband absorbers [52],
controlled lasing [74], and wave transport in disordered systems [75].

In this section, we utilize Fano resonances to achieve spin separation in the spec-
tral domain by focusing on the Fano resonance in polarization space. In Sect. 2.3.1,
we show that by realizing an antisymmetric Fano resonance upon each spin compo-
nent, i.e., spin-dependent Fano spectral asymmetry, the spectral separation of optical
spin can be achieved as a route toward spin manipulation. In Sect. 2.3.2, the basic
mechanism and origin of this phenomenon will be discussed based on the TCMT
model of Sect. 2.2.2. For quantitative analysis, the definition and application of a
spin-density Fano parameter are introduced in Sect. 2.3.3.

2.3.1 Fano Line Shapes Toward Spectral Spin Separation

The distinctive feature of Fano resonances is the spectral asymmetry in its line shape,
usually described by the following formula [45, 74, 76, 77],

I (ω) ∝ (qγ + ω − ω0)2

(ω − ω0)2 + γ 2
, (2.17)
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Fig. 2.4 Normalized
scattering cross section
defined by the Fano formula
(2.17) for opposite signs of
Fano parameters: (left) q �
1, (right) q �−1

where q is the famous Fano parameter representing the strength of the Fano spectral
asymmetry; ω0 and γ denote the resonance frequency and bandwidth of the system,
respectively; and I is the scattering cross section. Along with its spectral asymmetry,
Fano resonances also lead to the spectral shift governed by the Fano parameter q as

ωmin � ω0 − qγ, (2.18)

where I(ωmin)�0.Because themagnitude and signof theFanoparameterq determine
the strength and direction of both spectral asymmetry and the minimum scattering
frequency ωmin (Fig. 2.4), the introduction of “spin dependence” on the Fano param-
eter allows spectral separation of each spin mode, e.g., the high frequency scattering
of the positive spin and low frequency scattering of the negative spin.

The comparison of Fano-resonant spin separation with conventional spin materi-
als in optics demonstrates the novelty of the proposed Fano system (Fig. 2.5). First,
optical chiral materials (Fig. 2.5a, b) allow circular birefringence for light from the
spin-form eigenmodes with different phase velocities. Although the circular bire-
fringence derives the natural optical rotation for linear polarizations, it does not
provide mixing of optical spins during scattering due to the lack of a spin-dependent
impedance. Therefore, the chiral material cannot derive the “net” achievement of
optical spins by itself (Fig. 2.5a, b).

A conventional method for the excitation of optical spin is circular dichroism, by
imposing different absorptions on each optical spin mode (Fig. 2.5c, d). Although
the use of circular dichroic materials, or more broadly non-Hermitian materials
(Sect. 2.2.1), enables a scattering difference between each spin mode, the inher-
ent dissipation from circular dichroism not only degrades the intrinsic Q-factor of
the system but also decreases the signal strength of the target spin mode (Fig. 2.5c,
d).

By contrast, because Fano-resonant spin separation (Fig. 2.5e, f) is achieved in a
conservative manner, the original intrinsicQ-factor and signal strength of the optical
spin mode can be maintained. Moreover, the Fano-induced spectral asymmetry pro-
vides additional spectral sensitivity (Fig. 2.5e, f). Therefore, spin-dependent Fano-
resonance provides the optimum platform for achieving conservative and precise
control of optical spin.
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Fig. 2.5 Schematics of the spectra for the a, c, e scatterings and b, d, f optical spin densities
induced by a, b a chiral material, c, d circular dichroic material, and e, f Fano-induced spin
separation structure [11]

2.3.2 Spin-Dependent Antisymmetric Fano Resonances

In this section, we develop the proposed Fano-resonant system for spin separation by
utilizing the theoretical analysis fromSect. 2.2.2. For spin-dependent Fano resonance,
each spin mode ê± � (x ± iy)/21/2 has to experience Fano interference with the
opposite direction of spectral asymmetry and resonance shift. If we rewrite (2.16)
for each spin as

da+
dt �

[
iω0 −

(
1
τh
+ 1

τv

)]
a+ −

(
1
τh

− 1
τv

)
a− +

(
κ0e−iθ S1L+ + 
κe+iθ S1R+

)

da−
dt �

[
iω0 −

(
1
τh
+ 1

τv

)]
a− −

(
1
τh

− 1
τv

)
a+ +

(
κ0e+iθ S1R+ + 
κe−iθ S1L+

) ,

(2.19)

the frequency-dependent “phase interference” inside the external source [the third
terms of the right side in (2.19)] is obtained from the natural optical rotation
θ =ωχLeff/2c, and from its spin-dependent phase information, we can expect the
opposite phase interference for each spin resonance mode a±.

To demonstrate this antisymmetricmixing between (+) and (−) spinmodes,which
occurs in the chiral resonator with birefringent boundaries (Sect. 2.2.2), we construct
a Fabry–Pérot resonator composed of a chiral medium between a pair of birefringent
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Fig. 2.6 Demonstration of the spin-dependent Fano resonance [11]. aAschematic of a Fabry–Pérot
chiral resonator with indefinite mirrors. b The corresponding reflectance spectra Rê± and c spin
density σ. The chirality and permittivity of the chiral material isχ =0.05 and εchiral �9, respectively.
The resonator structure parameters are L �0.29λ0 and D �λ0/60, where λ0 �2πc/ω0 and ω0 is
the normalization frequency

mirrors. Because the relative magnitude of the mixing 
κ � [(2/τ h)1/2 − (2/τ v)1/2]
increases with the strength of the birefringence, we utilize an “indefinite” material
[78] mirror, which has a metallic permittivity value in one axis (εx �εmetal <0) and
a dielectric permittivity value in the other axis (εy �εdilec >0) (Fig. 2.6a). Thus,
this FP resonator provides two different resonances, a narrow- (or broad-) band
resonance of x- (or y-) polarized light from the highly reflected metallic (or from
highly transparent dielectric) mirror. These two resonances of different bandwidths
lead to Fano interference. Based on the derived TCMT model in (2.16), the spectral
response of the scattering spin density σ(ω) � (Rê−−Rê+) / (Rê− + Rê+) is obtained
as

σ � sin(2θ )[κ2
h/(ω − ωh) − κ2

v /(ω − ωv)]

1 + κ4
h [cos θ/(ω − ωh)]2 + κ4

v [cos θ/(ω − ωv)]2
. (2.20)

where Rê± is the reflectance of each spin from the system.
Figure 2.6b and c show the reflectance spectra and scattering spin density for εx �

–80 and εy �2.25, where σ =±1 denotes the pure spin state. For a clear comparison
with circular dichroism, we assume real values for the material parameters (see
Sect. 2.4.1 for the influence ofmaterial loss). As expected from (2.19), introduction of
an indefinitemirror for the birefringent boundary condition of a chiral resonator leads
to the emergence of spin-dependent “antisymmetric” Fano resonance, satisfying the
condition for spectral separation and net achievement of optical spin (Fig. 2.6c vs.
Fig. 2.5f). From the sharp and antisymmetric Fano reflectance spectra Rê±, the state
of the spin changes very rapidly between pure spin states close to σ =0.998.

The temporal interpretation of the Fano dynamics [74] also provides a compre-
hensible understanding of its spectral nature. Figure 2.7 shows the temporal analysis
of the spin-dependent Fano resonance based on the TCMT model in (2.16) with
impulse excitation S1x

in � δ(t). While no temporal shift is observed with isotropic
mirror realization (Fig. 2.7a), the indefinite mirror for the spin-dependent Fano reso-
nance stimulates the time leading and lagging phenomena for each spin state. These
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Fig. 2.7 Impulse responses of chiral resonators sandwiched between a pair of a isotropic mirrors
and b birefringent indefinite mirrors [11]

opposite temporal shifts correspond to spectral shifts toward the opposite direction,
resulting in antisymmetric Fano resonance line shapes.

2.3.3 Spin Fano Parameters

The proper definition of a Fano parameter [69] provides excellent quantification of
Fano resonances in terms of the degree of spectral asymmetry and resonance shift.
Following the definition of the Fano parameter in [69], we define the “spin” Fano
parameter qs as the ratio of indirect to direct excitation of the chiral resonator. From
the external source term in (2.19), because the coefficient of the indirect coupling is
κdeiθ while the direct one is κse−iθ , the spin Fano parameter becomes

qs � κd

κs
ei2θ . (2.21)

As shown in (2.21), this complex Fano parameter has two degrees of freedom:
the argument arg(qs)�2θ from the strength of natural optical rotation (or optical
chirality) and modulus |qs | � κd/κs from the strength of the birefringence. We
examine the dependence of the spin density spectra on qs (Fig. 2.8). Figure 2.8a, b
show spin density spectra for different values of arg(qs) and |qs|, respectively. First,
smaller values of the material chirality (Fig. 2.8a) lead to a narrower bandwidth of
the spin density spectra, directly associated with smaller spectral separation between
optical spins (seeSect. 2.4.1 for its application to a spin switching device). Figure 2.8b
also shows that larger values of |qs| lead to a narrower bandwidth of the spin density
spectrum. From this quantitative analysis, the tuning approach toward spin switching
can be achieved, as demonstrated in the next section.



2 Fano-resonant Excitations of Generalized Optical Spin Waves 47

Fig. 2.8 Control of the optical spin density spectra (σ ) in terms of the spin Fano parameter qs
[11]. The control parameters are a chirality for arg(qs)�0.44–0.11 and b birefringence for |qs |�
0.2–0.32

2.4 Applications and Metamaterial Realizations

In this section, we show the applications of the spin-dependent Fano resonance for
Sect. 2.3, focusing on (i) its spectral sensitivity toward a spin switching implementa-
tion (Sect. 2.4.1) and (ii) its robust spinning nature to unpolarized light, in contrast to
a conventional birefringent material (Sect. 2.4.2).We also provide the detailed design
criteria for the birefringent metamaterial mirror of the chiral resonator (Sect. 2.4.3),
the core control part of the spin-dependent Fano resonance.

2.4.1 Fano-resonant Optical Spin Switching

On the road to optical spintronics, achieving precise control of the optical spin states
is essential. The flow andmagnitude of each spin state needs to be freelymanipulated
using devices such as spin filters, splitters, absorbers, and amplifiers. Among these
devices, realization of highly efficient spin switching [79–81] between the (+) and
(−) states will be the fundamental building block for light-based spintronics circuits
and applications of circular polarized light. The spectral sensitivity of antisymmetric
Fano resonances for optical spin modes (Figs. 2.6 and 2.8 in Sect. 2.3) provides the
optimum platform for the implementation of spin switching.

Figure 2.9 shows the Fano-resonant optical spin switching operation, derived by
the refractive index change of the chiral material (Fig. 2.9a). As shown in Fig. 2.9b,
the sharp transition of the spin density σ from +1 to −1 occurs within the spectral
difference 
ω ~0.004 ωc. Because the σ spectrum is strongly dependent on the
phase of the Fano parameter arg(qs) � 2θ � ωχLeff/c (Fig. 2.8 in Sect. 2.3.3),
i.e., natural optical rotation, we change the amount of natural optical rotation by
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Fig. 2.9 Fano-resonant optical spin switching [11]. a A schematic of switching with on/off states,
as determined by refractive index modulation. b Spin reversal from the positive (σ =+0.998) to
negative (σ =−0.993) spin state, derived by refractive index modulation with the assumed electrical
bias (Von for 
n=10−3)

applying a refractive index change of the chiral material, which can be obtained
through electrical or optical modulation of the material carrier density or optical
nonlinearity, such as the optical Kerr effect. For the small refractive index change
of 
n=10−3, which is an acceptable value guaranteed from previous literature (e.g.,

n ~8×10−3 can be achieved with the bias voltage of~1 V [82–84]), the obtained
shift of the spin density spectra leads to a sharp transition of σ (Fig. 2.9b): from σ =+
0.998 (bias off) to σ =−0.993 (bias on) at the working frequency ω=0.987 ωc and
chirality value χ =5×10−3.

Figure 2.10 shows the detailed performance analysis of Fano-resonant spin switch-
ing, demonstrating its superior features in terms of spin purity and operating power.
Interestingly, much smaller values of the material chirality χ (=10−1 to 10−4) allow
for significantly decreased index modulation 
n (10−2 to 10−5, Fig. 2.10a) for high
purity spin switching, with the sacrifice of signal strength (0.4 to 10−4, Fig. 2.10b).
Such a counterintuitive feature (small chirality for efficient spin switching) greatly
increases the design degrees of freedom for optical spin switching devices when
considering the material chirality values in nature [66, 68] as well as the required
electric or optical bias. We also note that chiral metamaterials of lager χ (χ ~1) [32,
33, 36, 85] enable larger signal strengths with the index tuning of 
n >10−3, which
can be achieved in liquid crystals.

For practical implementation, we also analyse the influence of material loss
(Fig. 2.10c, d), which degrades the intrinsic Q-factor of the system. The intrinsic
Q-factor of each mode (Qint � Re[ωh,v0] / (2 · Im[ωh,v0])) is included as the com-
plex values ofωh0 andωv0 in the TCMTmodel (Sect. 2.2.2). Owing to the broadening
in the signal spectrum and deviation from the critical coupling condition by material
loss, the purity in the spin switching operation is degraded (Fig. 2.10c). However,
the broadened spectrum provides enhancement of the signal strength for switching
states (Fig. 2.10d).



2 Fano-resonant Excitations of Generalized Optical Spin Waves 49

Fig. 2.10 Performance analysis of Fano-resonant optical spin switching [11]. a, c The spin density
σ as a function of the refractive index modulation 
n and b, d reflectance spectra for different a,
b material chirality values χ and c, d intrinsic quality factors Qint

2.4.2 Fano-resonant ‘Net’ Spin Excitation for Unpolarized
Light

While birefringent media conventionally enable the excitation of optical spin (or
circular polarization), the spin-dependent Fano-resonant system provides unique
features compared with the conventional one in the context of spin switching
(Sect. 2.4.1): exhibiting a “robust spinning nature” to unpolarized light. Figure 2.11a,
b shows the polarization-angle-dependency of the optical spin excitation in the
platforms using the birefringent medium (Fig. 2.11a) and Fano-resonant system
(Fig. 2.11b). The Fano-resonant chiral system realizes an asymmetric line shape
for any polarization angle (Fig. 2.11b vs. 2.11a). Most interestingly, in the Fano-
resonant system, there exists the “net” excitation of optical spin for the incidence of
unpolarized light (Fig. 2.11d vs. Fig. 2.11c). Such a robust spinning nature originates
from the participation of the natural optical rotation from a chiral material, leading to
Fano-interfered mixing of the narrowband (x-axis) and broadband (y-axis) birefrin-
gent scattering paths. This result enables “universal” operation of circular polarizers,
which can be applied to chiral filters, lasers, and absorbers.
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Fig. 2.11 The ‘net’ excitation of the optical spin through spin-dependent Fano-resonance. a, b
Angular dependence of the spin density spectra, and c, d excitation of optical spin from unpolarized
light excitation for a, c a birefringent medium and b, d the spin-dependent Fano-resonant system
(supplementary information in [11])

2.4.3 Metamaterial Realizations

As demonstrated in the TCMT analysis (Sect. 2.2.2), the physical origin of the spin
mixing in spin-dependent Fano-resonance is the birefringent boundaries of the chiral
resonator. Therefore, significant and tunable birefringence over the natural material
response is the core design parameter for the applications in optical spintronics.

Specifically, birefringent mirrors should satisfy the following criteria; (1) a ‘flat’-
type mirror for the serial deposition of a core and claddings; (2) an indefinite (εx <0
and εy >0) non-resonant mirror for significant spin mixing; and (3) precise control of
effectivematerial parameters for controlling Fano interferences. These criteria can be
satisfied by using metamaterials. Figure 2.12 shows an implementation example of
metamaterial mirrors. While a natural chiral medium is enough for the core medium
of the resonator, due to the chirality-sensitive operation of the spin-dependent Fano
resonance (Sect. 2.4.1), we utilize an indefinite (εx <0 and εy >0) birefringent mirror
for significant spin mixing, which is composed of a gold (Au) grating embedded in
a polyimide film (Fig. 2.12a). Figure 2.12b shows the effective material parameters
of this artificial film operating in the infrared regime (hpoly �100 nm, hAu �40 nm,
w �40 nm, and P �400 nm). We note that the change of the structural parameters
(filling ratio ofmetalw/P, metal widthw, material thicknesses hpoly or hAu) allows for
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Fig. 2.12 Realization of metamaterial mirrors for Fano-resonant spin excitation. a A schematic
for the chiral resonator, embedded between indefinite metamaterial mirrors. bAnisotropic effective
permittivity of the metamaterial mirror, calculated from the 3D finite element method. c Spin
density spectra for different χ , with practical material values in the infrared regime (supplementary
information in [11])

Fig. 2.13 A schematic for the fabrication process of an indefinite birefringent mirror (supplemen-
tary information in [11])

precise control of the effective material parameters. The desired “sharp” transition
between the positive and negative spins is successfully achieved even if the practi-
cal degradation factors, such as material loss and spectral dispersion, are involved
(Fig. 2.12c). The spectral broadening can also be manipulated by changing the value
of chirality.

Figure 2.13 shows the detailed fabrication process of the indefinite mirror. Con-
ventional fabrication technologies, such as spin coating, chemical vapour deposition
(CVD), electron-beam or thermal evaporation, lithography or imprinting, chemical-
mechanical polishing (CMP), allow tunable realization of the indefinite mirror.
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2.5 Conclusions

In this chapter, we introduced a new pathway toward nonmagnetic excitation of
optical SAM based on the spin-dependent excitation of Fano resonances. We first
developed the analyticalmethod of spin-formTCMTfor 2Dand 3Dchiral resonances
to achieve a comprehensible understanding of the optical spin eigenmodes and their
scattering with external light sources. This theoretical approach reveals the origin
of the “anti”-symmetric line shapes of the spin-dependent Fano resonance to be the
opposite temporal phase shift of each spin, in perfect agreement with the full-wave
scattering matrix calculations. We also showed that a spin-density Fano parameter
derived by the TCMT plays a critical role in identifying the quantitative control of the
spin excitation. This result enables energy-conservative separation of optical spins
without any need for magneto-optical or circular dichroic materials, allowing pure
spin density superior to conventional approaches. Along to the access to 3D optical
spin components [13], spin-dependent Fano resonances for confined light will be an
avenue for the spectral manipulation of 3D spin components.
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Chapter 3
Mueller Matrix Approach
for Engineering Asymmetric
Fano-resonance Line Shape
in Anisotropic Optical System

A. K. Singh, S. Chandel, S. K. Ray, P. Mitra and N. Ghosh

Abstract The Fano resonances observed in diverse micro and nano optical sys-
tems have received particular attention due to their numerous potential applications
like sensing, switching, lasing, filters and robust color display, nonlinear and slow-
light devices, invisibility cloaking, and so forth. For most of these applications,
it is highly desirable that the asymmetric spectral line shape of Fano resonance
can be controlled or modulated by some experimentally accessible parameters. In
this chapter, we discuss a new concept based on polarization Mueller matrix anal-
ysis for tuning the Fano interference effect and the resulting asymmetric spectral
line shape in anisotropic optical system. The approach is founded on a general-
ized model of anisotropic Fano resonance and exploits the differential polarization
response (anisotropy) of the two interfering modes to achieve unprecedented control
over Fano resonance. Illustrative results on the use of the model for tuning Fano reso-
nance in coupled plasmonic systems are presented. In this context, the fundamentals
of polarized light, the mathematical framework of Stokes-Mueller formalism and the
basic polarimetry parameters encoded inMueller matrix are discussed. The specifics
of a novel dark field Mueller matrix spectroscopy system and its use for studying
the polarization response of Fano resonance in plasmonic systems is illustrated with
selected examples. The chapter concludes with an outlook on the prospects of the
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polarization-optimized anisotropic Fano resonant systems for applications involving
control and manipulation of electromagnetic waves at the nano scale.

3.1 Introduction

Resonance phenomenon has been known to mankind for very long as it is present
widely in all sort of vibrations or waves e.g. Electromagnetic resonance, Acoustic
resonance, Mechanical resonance, resonance of quantum wave function and many
more. When a system stores and transfers energy easily between two or more differ-
ent modes, resonance is obtained. All these resonant system resonates or oscillates
at some natural frequency, and in the presence of losses or damping it follows a
Lorentzian profile. For a long time, the Lorentzian profile was considered to be the
fundamental line shape for a resonance. U. Fano discovered a new type of resonance
(line shape) in the atomic auto-ionization of Helium [1], which now bears his name,
Fano resonance. In resonances other than Fano resonance the spectral line shape is the
sum of intensity of individual resonances, it also implies that the resonance spectral
line shape lacks the interference of individual resonances, whereas Fano resonance
is result of an interference effect. Fano resonances differ from other resonances in
two major distinct ways, (a) Interference induced resonance, (b) Asymmetric Spec-
tral line shape. The asymmetric profile of the Fano resonance is achieved due to the
constructive and destructive interference of broad mode or continuumwith a discrete
mode. The inherent nature of interference has made Fano resonance being observed
in both quantum and classical domain [1–9]. Plasmonics is one among themajor con-
tributors in the area of Fano resonance and here in this chapter we will focus on the
aspects of Fano resonance in Plasmonics [6, 10]. Fano resonance in plasmonics has
attained a lot of attraction due to the real life potential applications [11–21]. Various
plasmonic structures have been fabricated to show the Fano resonance in different
wavelength domain and varying asymmetricity [6]. In the realm of Fano resonance,
tuning has been of great importance and researchers have tried various ways to attain
tunability due to its potential advantages. Tuning of Fano resonance can be achieved
in various ways like varying the shape, size, orientation, arrangement, polarization
etc [9, 22–27]. Most of the above mentioned ways except polarization require the
fabrication of different samples with variation in any of the parameter to attain the
prescribed tunability. On the other hand, polarization can be used as an effective tool
to tune the asymmetry of the spectral line shape as well as the resonance peak/dip
positions from an external input without modifying the structure [22, 25, 27].

Interaction of Polarized light with plasmonic system has not been explored exten-
sively, partly due to weak scattering from the system in comparison with back-
ground, intermixed polarization effects, focusing affecting polarization etc. This has
an adverse effect on plasmonic studies because polarization offers interesting con-
trol on excitation-emission in the field of plasmonics, and a wealth of information of
potential interest and relevance to plasmonic sensing and characterization [28–35].
Such negligence is gradually being readdressed, as novel experimental techniques
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for polarization studies, enhanced models for understanding the interactions, and
sophisticated interpretation, are coming up [27, 35–41]. In this chapter we will be
providing the fundamentals and mathematical formulations of polarized light inter-
acting with plasmonic systems, details of polarimetric systems, discussion about the
various aspects of polarization mediated tuning of Fano resonance and its possible
potential applications.

The chapter is organized as follows. In Sect. 3.2 the basics of polarization have
been provided that will help the readers to connect and understand the connection
between the polarization and Fano resonance, which effectively is being used as
a mechanism for tuning the asymmetric Fano resonance profile. The forthcoming
subsections cover the polarization algebra, describing the two major polarization
formalisms. This is followed by the short description of the comprehensive plasmon
polarimetry platform which enabled the recording of scattering polarization signals
from theplasmonic system.Section3.3 contains a short descriptionofFano resonance
followed by special emphasis on Fano resonance in scattering regime. In Sect. 3.4 we
discuss about scattering from plasmonic waveguiding photonic crystal, and origin
of resonant and Rayleigh anomalies in metal dielectric grating. Further in Sect. 3.5
we discuss the results of polarization controlled tuning of Fano resonance from the
coupled plasmonic system of Oligomers and plasmonic waveguided system. The
chapter concludes with a discussion of the immense potential and various possible
applications of polarization mediated tuning of Fano resonance.

3.2 Basics of Polarization

Polarization is one of the distinct inherent properties of light and is known tomankind
from centuries. Light matter interaction from polarization perspective has been
explored and has proved to be extremely useful. A lot has been studied and still
much more has to be studied in the context of interaction of polarized light with
matter. Definitions and properties of polarization have been discussed extensively in
literature [42–44]. Here we will provide some basics, a brief overview and important
connections in order to understand the role of polarization in the context of Fano
resonance.

Polarization of light can be understood as the direction specific to the oscillation
of the transverse electromagnetic wave. Conventionally the oscillations of the elec-
tric field or the direction of the electric field is referred as the plane of polarization.
From polarization point of view, Light can be divided into two main sections: Unpo-
larized and Polarized. In unpolarized light, the electric field randomly oscillates in
all planes containing direction of propagation whereas for polarized light it oscillates
in a correlated manner. Polarized light can further be classified as Linear, Circular
and elliptical polarizations. A linear polarized light has the electric field component
of electromagnetic wave confined in a plane containing the line of propagation, for
circular polarization the temporal evolution of electric field vector traces a circle
normal to the direction of propagation, whereas for elliptical polarization the electric
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field follows an ellipse as the wave propagates. These two (linear and circular) polar-
ization states can be considered as the two particular cases of elliptical polarization.
However, there exist a mixed state where light is not completely polarized in such
case the extent of polarization is quantified using a parameter known as degree of
polarization, where completely polarized light will have degree of polarization 1,
that of unpolarized light 0 and partially polarized light having magnitude in between
0 and 1. We now extend the discussion to polarization algebra that contains the two
major formalisms.

3.2.1 Polarization Algebra

There are two formalisms that deal with the polarization property of light, Jones
formalism and Stokes-Mueller formalism. These two formalisms are quite useful,
important and different from each other. On one hand Jones formalism is field based,
on the other Stokes-Mueller formalism is intensity based representation. Jones for-
malism works for fully polarized light, whereas Stokes-Mueller formalism deals
with partially polarized light too. Both these formalisms will be useful for studying
interaction of polarized light with plasmonic system generating Fano resonance.

3.2.1.1 Jones Formalism

This formalism was proposed by R. C. Jones in 1942 to define the polarization
properties of light, and light matter interaction. He proposed a two-dimensional
matrix algebra for expressing the polarization of light and the properties of different
optical components for the completely polarized interactions. As mentioned earlier
this approach is field based and electromagnetic wave can be represented by a 2 × 1
Jones vector obtained using the electric field of the wave. The Jones vector of an
electromagnetic wave propagating in z direction having frequency ω can be written
as

E(z, t) =
[
Ex

Ey

]
=

[
E0xei(kz−ωt+φx )

E0yei(kz−ωt+φy)

]
(3.1)

Here Eox and Eoy are the amplitudes, φx and φy are the phases of electromagnetic
wave for x and y polarized components respectively and k is the wave vector asso-
ciated with the wave, the phase factor ei(kz−ωt) is common/redundant and can be
dropped. Thus, the polarization of wave can be expressed only using the amplitude
and phase derived parameters α and φ given as,

tanα = E0x

E0y
,φ = φx − φy (3.2)
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The intensity of electromagnetic field in terms of Jones vector can be written as

I = |Ey|2 + |Ey|2 = E · E† (3.3)

Here, E† represents the conjugate transpose of E. Some of the fully polarized states
represented in the form of Jones vector look like as given in the table below.

Polarization
state

H(0◦) +45◦ V (90◦) 135◦/−45◦ Right circular
polarized (RCP)

Left circular
polarized (LCP)

Jones vector
[
1
0

] [
1
1

] [
0
1

] [
1

−1

] [
1
i

] [
1
−i

]

The Jones vector depicts polarization property of electromagnetic wave. Similarly
there is Jones matrix (J ) which describes the polarization properties of the optical
components like polarizer, retarder, mirrors etc. Mathematically, Jones matrix (J ) is
a 2 × 2 transformation matrix encoding the polarization response of sample for the
Jones vector of light incident on the sample. It describes how the polarization property
of incident light (Jones vector) is altered/modulated when it passes through these
components (Jones matrices). The Jones matrix for some of the optical components
are given below.

Polarization
component

Linear polarizer
(Horizontal axis)

Linear polarizer
(Vertical axis)

Quarter wave
plate (Horizontal
axis)

Half wave plate
(Horizontal axis)

Jones matrix
(J)

[
1 0
0 0

] [
0 0
0 1

]
eiπ/4

[
1 0
0 i

]
eiπ/2

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]

Asmentioned above the Jones calculus only covers pure polarization components
and is a field based technique. However, the formalism is of not much practical use
as in most cases we observe the time average intensity instead of the field amplitude,
also most of the optical scattering phenomenons implicitly involves depolarization
phenomenon. To overcome these challenges Stokes-Mueller formalism is extensively
used for practical purposes.

3.2.1.2 Stokes-Mueller Formalism

G. G. Stokes in 1852 proposed that the polarization of light can be expressed in terms
of experimentally observable quantities and gave a 4 × 1 vector now known after
him as Stokes vector (S). The Stokes vector elements (or Stokes parameter) termed
as I, Q, U and V can be formed by recording six different (prescribed) intensities.
The stokes vector can be written as
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S =

⎡
⎢⎢⎣

I
Q
U
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

IH + IV
IH − IV
IP − IM

IRCP − ILCP

⎤
⎥⎥⎦ (3.4)

Here, these six intensity measurements correspond to intensity of various polariza-
tion states as: IH as Horizontal polarization, IV as Vertical polarization, IP as 45◦
polarization, IM as 135◦ (or −45◦) polarization, IRCP as Right Circular Polarization,
and ILCP as Left Circular Polarization respectively. I characterize the total inten-
sity, Q and U tells about the orientation and degree of linear polarization (H /V and
+45◦/−45◦ polarization state respectively) andV contains information of degree and
orientation of circular polarization. The Stokes parameters are related to each other
by the relation given as

I2 ≥ Q2 + U2 + V2 (3.5)

Here the equality sign is valid in the case of pure polarization states and inequality
for the rest of the partial polarization states. The parameter Degree of polarization
(DOP) can be extracted from Stokes vector as

DOP =
√
Q2 + U2 + V2

I
(3.6)

It can be seen from the above given equation that the degree of polarization for a
completely polarized light will be 1 (as Q2 + U2 + V2 = 1) and for unpolarized light
0 (as Q, U, V = 0). It is to be noted that for a polarized light the stokes vector can be
written in terms of the Jones vector as,

S = A(E ⊗ E†) where, A =

⎡
⎢⎢⎣
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎤
⎥⎥⎦ (3.7)

Here, ⊗ represents the tensor product.
Now as we see the polarization property of light can be described using Stokes

vector, we will move focus to the polarization properties of interacting medium. As
discussed before, the interaction of polarized light with any medium usually alters
the polarization of output light. If we write two stokes vector, one before interaction
and one after interaction, we will come up with a linear equation like

So = MSi (3.8)

Here, So and Si are the output and input stokes vector, whereas the Mueller matrix
“M” is the transfer function that encodes the polarization properties of the interact-
ing medium. This transfer function M is a 4 × 4 matrix which gives a mathemati-
cal description of the change of polarization after the interaction of polarized light
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with any arbitrary medium, incorporates the complete polarization properties of the
medium. Mueller matrix can also be thought of as the polarization fingerprint of the
medium, for completely polarized/coherent interaction the Mueller matrix can be
written in terms of Jones matrix as

M = A(J ⊗ J †)A−1 (3.9)

Every Jones matrix has a corresponding Mueller matrix however the inverse is not
true, because of the incoherent interactions/depolarization. The necessary and suf-
ficient condition for a 4 × 4 matrix to be a physically realisable Mueller matrix
is that the matrix map to a physical output Stokes vector (satisfying the relation
I 2 ≥ Q2 +U 2 + V 2) for all the possible incident polarized states. The different
elements of the Mueller matrix “M” encode the three basic polarization properties
diattenuation, retardance and depolarization, which are explained below.

Diattenuation: Diattenuation (d) stands for the differential attenuation between
orthogonal polarizations for both circular and linear components of polarization.
Linear diattenuation is thus the difference in amplitude for the two orthogonal linear
polarizations (Horizontal/Vertical, +45◦/−45◦ polarization state) and circular diat-
tenuation is defined as differential attenuation of Right and Left circularly polarized
state. Diattenuation parameter is akin to dichroism but much more generalized as it
can result due to various effects like reflection, absorption, scattering etc. Mathemat-
ically the Mueller matrix of a linear diattenuator with diattenuation d oriented at an
angle of θ can be written as

MD =

⎡
⎢⎢⎢⎢⎣

1 d cos 2θ d sin 2θ 0

d cos 2θ cos22θ +
√
1 − d2sin22θ

(
1 −

√
1 − d2

)
sin 2θ cos 2θ 0

d sin 2θ
(
1 −

√
1 − d2

)
sin 2θ cos 2θ sin22θ +

√
1 − d2cos22θ 0

0 0 0
√
1 − d2

⎤
⎥⎥⎥⎥⎦

(3.10)

The ideal example of a linear diattenuator can be a linear polarizer which let
pass one polarization and blocks the corresponding orthogonal component having
the diattenuation value d = 1. The diattenuation of an arbitrary system in terms of a
diagonal Jones matrix can be given as,

d = |J11|2 − |J22|2
|J11|2 + |J22|2 (3.11)

In terms of Mueller matrix element the diattenuation can be given as,

d =
√
M2

12 + M2
13 + M2

14

M11
(3.12)
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It is to be noted that the diattenuation parameter d is a dimensionless quantity and
ranges from 0 − 1.
Retardance: Retardance parameter is defined as the difference in phase for two
orthogonal polarizations (both linear and circular). In other words it is the difference
in the phase velocity of the two orthogonal linear (Horizontal/Vertical, +45◦/−45◦)
and circular (RCP/LCP) polarizations, the difference for linear polarizations provide
linear retardance and for circular polarizations it yields circular retardance or optical
rotation. It originates from the anisotropy in the refractive indices of the system, it
has proven itself to be an excellent parameter to probe such phase anisotropies, like
in the cases of tissues, proteins, lipids, glucose, plasmonics and many more [45, 46].
The general form of the Mueller matrices of linear retarder can be written as,

MR =

⎡
⎢⎢⎣
1 0 0 0
0 cos22θ + sin22θ cos δ sin 2θ cos 2θ(1 − cos δ) − sin 2θ sin δ
0 sin 2θ cos 2θ(1 − cos δ) sin22θ + cos22θ cos δ cos 2θ sin δ
0 sin 2θ sin δ − cos 2θ sin δ cos δ

⎤
⎥⎥⎦
(3.13)

and the Mueller matrices of circular retarder can be written as,

MR =

⎡
⎢⎢⎣
1 0 0 0
0 cos 2ψ − sin 2ψ 0
0 sin 2ψ cos 2ψ 0
0 0 0 1

⎤
⎥⎥⎦ (3.14)

Here θ is the orientation angle of the fast axis and, δ and ψ are the linear and circular
retardance respectively. The retardance of an arbitrary system in terms of a diagonal
Jones matrix can be given as,

δ = arg(J11) − arg(J22) (3.15)

In terms of Mueller matrix element the retardance can be given as,

δ,ψ = cos−1

(
Tr(MR)

2
− 1

)
(3.16)

Depolarization: It is defined as the loss in degree of polarization and is generated
in most of the cases due to the multiple scattering of photons (a/o particle behavior)
or the randomly oriented birefringent domains, the incoherent addition of amplitude
and phase of the scattered field which give rise to the scrambled output polarization
state. The general form of a depolarizer matrix can be written as

M� =

⎡
⎢⎢⎣
1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎤
⎥⎥⎦ (3.17)
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Here, |a|, |b|, |c| ≤ 1. The depolarization parameter for a linear polarization is 1 −
|a|, and 1 − |b|, whereas for the circular polarization it is 1 − |c|. Please note that
the depolarization factor presented here is different from the one presented for the
Stokes vector. Here it represents the loss of polarization due to the interaction from
the material (depolarization transfer function of medium) whereas the degree of
polarization for Stokes vector is a measure of polarized component of the light beam,
for example a material having higher magnitude of � is considerably depolarizing
in nature, therefore a polarized light beam after interacting with this material will
have lower degree of polarization.

These three parameters enable one to precisely probe the individual polarization
effects and the corresponding physics related to the same, resulting in better under-
standing as well as it works as a pointer/parameter for quantification of such effects.
In many cases these individual polarization effects occur simultaneously causing
these lumped effects hindering the extraction and unique interpretation. In last few
decades few robust decomposition technique like polar and log decomposition [47–
50], and various accurate inverse techniques have been developed andmade available
to overcome such challenges.

We now provide a short description of the experimental polarimetric system (com-
prehensive polarimetric platform) used for studying the polarization properties from
the plasmonic structures.

3.2.2 Comprehensive Polarimetric Platform for Plasmonic
Study

Recording of complete polarization information via Mueller matrix from plasmonic
system is a tough task due to the major challenges like, weak scattering signal incor-
porated with large background, simultaneous occurrence and intermixing of indi-
vidual polarization effects, requirement of high NA microscopic geometry (which
itself alters the polarization) for recording ofMuellermatrices over broadwavelength
range and corresponding spatial maps, analysis, quantification, understanding and
interpretation of plasmon polarimetry results from the recorded polarization signal
[37]. These outstanding challenges were addressed by integrating a dark field micro-
scope (removes background signal by recording pure scattering signal from sample)
withMueller matrix measurement scheme (records spectralMueller matrix for broad
wavelength range) and a robust Eigen Value calibration technique (corrects for all
sort of polarization alteration/transformation due to high NA focusing or non-ideal
behaviour of polarization optics or misalignments) [51, 52].

Mueller matrix measurement scheme shown in Fig. 3.1 consist of a set of fixed
linear polarizers aligned orthogonal to each other, one after the light source (P1)
and other before detector (P2). Two motorized, rotating quarter wave plates (QWP1
and QWP2) are used in combination with these polarizers (QWP1 kept after P1
and QWP2 before P2) to generate and analyse the polarization states respectively.
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Fig. 3.1 Schematic of Polarimetric Platform for Plasmonic study, built using an inverted dark-field
microscope. The white light emitted from Mercury lamp is passed through the Polarization state
generator (PSG) unit, then focused on the sample site through an annular condenser. The scattered
light is collected with an objective below the sample, and passes it through the Polarization state
analyzer (PSA) unit. The resultant spectral intensity signal is recorded through a spectrograph. P1,
P2: fixed linear polarizers and QWP1, QWP2: achromatic quarter waveplates. Taken from Chandel
et al. [53]

The set of P1 and QWP1 makes Polarization State Generator (PSG) unit which
can generate any polarization state by rotating the quarter wave plate and the linear
polarizer, whereasQWP2 andP2 forms Polarization StateAnalyser (PSA) unit which
is used in similar fashion to analyse the polarization states. Four optimized elliptical
polarization states are generated using PSG unit (with fixed axis of P1 and changing
fast axis of QWP1 to the optimized angles θ = 35◦, 70◦, 105◦ and 140◦) and the
scattered polarized state is analyzed using similar four optimized polarized state of
PSA unit, (rotating fast axis of QWP2 to the optimized angles θo = 35◦, 70◦, 105◦
and 140◦). Four optimized elliptical polarizations basis states for PSG and PSA in
combination are utilized to generate and record 16 sequential wavelength resolved
intensities. These spectrally resolved intensities are grouped in a 4 × 4 matrix Mi

which can be used to obtain the scattering Mueller matrix (M) from the scattering
sample with the help of known PSG and PSA matrices (obtained using the Stokes
vectors corresponding to the four states at the optimized angles,denoted by W and
A respectively) as,

Mi = AMW; M = A−1MiW
−1 (3.18)
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Once the scattering spectral Mueller matrix is recorded the individual polarization
properties were extracted and quantified using robust Polar decomposition or dif-
ferential decomposition technique. In polar decomposition technique the Mueller
matrix is decomposed into a sequence of three basis matrices, a diattenuator matrix,
a retarder matrix and a depolarization matrix as

M ⇐= M� · MR · MD = M� · MPol (3.19)

These basis matrices incorporate the individual polarization properties and are used
to extract and quantify these polarization properties in terms of polarization param-
eters named as diattenuation, retardance and depolarization. The MPol(= MR · MD)

matrix contains the information about completely polarized part of interaction.On the
other hand, in differential decomposition technique a differential matrix m is related
to the Mueller matrix and decomposed as a combination of an anti-symmetric and
symmetric matrix. The individual components of these two matrices integrate the
elementary polarization properties and the corresponding deviations. The polariza-
tion parameters are thus extracted from the Mueller matrix and utilized. The details
of this Comprehensive Polarimetry Platform can be found elsewhere [37, 54].

Aswe have covered the basics of polarization algebra and the system for recording
polarization signal from plasmonic system in scattering geometry. We now move
forward towards the short description of Fano resonance. As the book is dedicated
to Fano resonance and a lot is already conveyed, therefore we will restrain ourselves
from a detailed description of Fano resonance, however a short description will be
provided along with the model of Fano resonance in scattering domain.

3.3 Fano Resonance in Scattering

Fano resonance was first introduced in the study of auto ionizing states of atoms
by U. Fano (hence the name) in 1961, the resonance is characterized by a typical
asymmetric spectral line shape in contrast to the general Lorentzian resonances [1].
Its a universal resonance phenomenon which originates due to the interference of a
discreet narrow mode with a broad spectral line shape or continuum mode giving a
characteristic asymmetric line shape (σ) with constructive/destructive interference
on one side of the narrow resonance while destructive/constructive on the other side
of it. The spectral response of a Fano resonant system is given as

σ = (ε + q)2

1 + ε2
(3.20)

Here, q decides the asymmetry in line shape and ε = (ω − ωo)/(γ/2) is the reduced
energy scale. Where, ωo and γ are the resonance frequency and width of the discrete
mode, respectively.



68 A. K. Singh et al.

Although the Fano resonance is a feature specific to quantum systems but it is
observed in various classical optical systems because of the ubiquitous nature of
interference phenomenon. In fact first experimental observation of the Fano type
line shape could be traced back to the observation of Woods anomaly in metallic
grating in 1902 [55], however the origin of the anomaly was recently explained in
term of the interference of incoming waves with the leaky waves of the metallic
grating [56–59], since then Fano resonant line shape have been observed in various
classical optical systems for example metamaterials, various plasmonic and photonic
systems, simple Mie scatterer and many other scattering systems [6–9, 23, 24, 60,
61]. There has been an intensive study of the resonance in various optical systems
because of its potential application in various micro/nano optical devices such as
sensors, switches, slow light devices, filters and many others, for which the ability
to control the line shape using various physically accessible parameters is crucial.

In general optical system (3.20) is not strictly valid, and for lossy mediums (for
details see [62, 63]) a Lorentzian background in addition to the Fano line shape is
obtained. It has been shown using a phenomenological model that the scattered field
of a Fano resonant scatterer could be given as [27]

Es(ω) ≈ q − i

ε + i
+ B(ω) =

√
(q2 + 1)

(ε + i)
eiϕF + B(ω) (3.21)

where, B is the relative amplitude of the continuum mode and the first term corre-
spond to the discrete Lorentzian mode of amplitude

√
q2 + 1, and the Fano phase

shift “ϕF” is the additional phase shift of the Lorentzian mode which is directly
related to the asymmetry parameter “q” as

ϕF = − tan−1

(
1

q

)
(3.22)

Assuming relative amplitude of the continuum mode to be frequency independent
(ideal continuum), the scattered intensity can be given as,

Is(ω) = |Es(ω)|2 = B2 (qeff + ε)2

ε2 + 1
+ (B − 1)2

ε2 + 1
(3.23)

The first term yields the asymmetric spectral line shape with an effective asymmetry
parameter qeff(= q/B) while the second term corresponds to the non-interfering
Lorentzian background. In case B = 1, the scattered intensity reduces to an ideal
Fano profile as in (3.20), leading to perfect destructive (Is(ω) = 0) interference
at Fano frequency (ωF = ωo − qγ/2). The relative amplitude parameter “B” thus
controls the contrast of interference between the continuum and discreet mode.

In the forthcoming section, a short description of the theory of plasmonic grating
waveguides will be presented and the origin of different waveguiding anomalies
and their effects in scattered spectral response from waveguiding systems will be
discussed.
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3.4 Plasmonic Waveguiding Photonic Crystal

The potential applications of Fano resonance in optical domain has led to a quest
of a suitable optical system/structure with highly dispersive and tunable Fano
profile which could help designing more sensitive optical devices, several plasmonic
structures like oligomers, dolmen, ring-disk cavity, waveguiding plasmonic crystals
(WPC) and many others have shown Fano resonances in optical domain [6–9, 23,
24, 60, 61]. In most of the above structures except WPC, Fano resonance occurs
because of interference between super-radiant (bright) mode and sub-radiant (dark)
mode, where both the modes originate because of the collective oscillation of con-
duction band electrons (plasmonic resonances) i.e. electronic in nature, while in case
of WPC Fano resonance originates due to interference between the sharp waveguide
resonance (excited by the gratingBragg resonances) and a broad electronic resonance
(originates from the plasmonic grating) forming waveguide-plasmon polariton [6, 9,
22, 23]. WPCs offers a huge tunability of the Fano spectral response just like other
plasmonic structures by varying structure parameters aswell as angle of incidence but
it differs with them in it’s origin, i.e. interaction/interference of plasmonic and pho-
tonic mode. WPC enables a very strong coupling between the contributing photonic
and plasmonicmodewhich leads to an anti-crossing behavior in the spectral response
of the system [9, 22]. Indeed, the properties could offer huge technical applications
in optical domain. Here, we will discuss about one dimensional WPC only, however
the observations are quite general and could be seen for higher dimensions too.

One dimensional WPC consist of plasmonic nanowire grating, deposited on the
top of a thin waveguiding layer (refractive index, nwg) over a dielectric substrate
(refractive index, nsub < nwg) with a period dx as shown in Fig. 3.2a, the schematics
of WPC taken into consideration are shown in the figure. The wavevector (k) cor-
responding to a plane wave of frequency ωo incident on the system with an angle θ

(a)
(b)

Fig. 3.2 a Schematic view of one dimensional waveguiding plasmonic crystal on quartz substrate;
b the FEM simulated extinction spectra with 140 nm thick ITO layer for TE and TM polarization
states at normal incidence with grating period dx = 400 nm. Taken from Chandel et al. [53]
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from the normal to grating plane (z-axis) and φ with the direction of periodicity of
grating (x-axis) can be written as

k = (kx , ky, kz) = ko(sin θ cosφ, sin θ sin φ, cos θ) (3.24)

where, ko = ωo
c where c is the speed of light in vacuum, and the wavevector (kvac/sub

sca )
corresponding to light diffracted from grating into vacuum (air)/substrate can be
written as

kvac/sub
sca =

⎛
⎝kx + 2πn

dx
, ky,−/ +

√
εvac/subk2o −

(
kx + 2πn

dx

)2

− k2y

⎞
⎠ (3.25)

Here, n = 0,±1,±2,±3, ... represent different orders of Braggs resonance of the
grating, which could add/reduce momentum along x-axis into the diffracted light.
The “−/+” sign in z component corresponds to the light reflected/transmitted into
vacuum/substrate with permittivity εvac/sub.

The spectral response of the light transmitted from the system can show a huge
deviation from the response of the individual nanowires as shown in Fig. 3.2b (Sim-
ulated using FEM), the deviation in spectral response of the grating system arises
because of: (a) coupling between the individual nanowires depending on their peri-
odicity and dimensions, (b) waves propagating along the periodic structure because
of collective response of nanowire array which could be related to the diffraction
phenomenon called Woods anomaly. The anomaly could be classified into two cat-
egories: (a) resonant or waveguiding anomaly because additional resonances in the
waveguiding layer below grating, (b) diffractive or Rayleigh anomaly, associated
with opening of new diffraction channel into the substrate or air. The two anomalies
are briefly discussed in the following sections.

3.4.1 Resonant Anomaly in Metal Dielectric Grating

These are the anomalies observed in the transmission spectra producing a character-
istic asymmetric line shape and are responsible for the Fano resonance in the WPC.
The grating structure of the crystal excites the momentum matched bound waveg-
uidemodes of thewaveguiding layer through theBragg resonances, the bound guided
modes couple with the metallic grating and start radiating or become leaky forming
a quasi-guided/polaritonic modes [9, 22]. It is to be noted that there exist lower limit
on frequency of the guided mode that could exist in a given waveguiding layer called
the cut off frequency of the waveguide, given as

ωcut =
c tan−1

(
εsub−εvac
εITO−εvac

)
d
√

εITO − εsub
(3.26)
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(a) (b) (c)

Fig. 3.3 The FEM simulated, a extinction spectra for normally incident TM polarization states
with varying grating period, b dispersion curve of TM waveguide modes showing upper and lower
branch of waveguided polaritons with varying grating period. c Extinction spectra for incident
TM polarization states with varying angle of incidence, at grating period dx = 450 nm. Adopted
from [22]

As shown in Fig. 3.2b, the transmission of incident transverse electric (TE) and
transverse magnetic (TM) polarizations at normal incidence (θ = 0◦) shows a clear
Fano-type asymmetric line shape for a WPC consisting of gold nanowire grating
(periodic arrangement of infinite nanowires of width 100 nm and height 20 nm)
deposited on 140 nm thick waveguiding layer of Indium Tin Oxide (ITO) coated
on quartz substrate. The incident polarization dependence of the transmission spec-
tra originates because of the anisotropy of the plasmon resonance of the metallic
nanowire which are excited only for TM polarization, the polarization dependence
of the plasmonic resonance also leads to different origin of the asymmetric Fano
resonances, (a) for TM polarization the excited discrete waveguided modes interfere
with the broad plasmonic mode to give the asymmetric Fano line shape, the excited
plasmon mode also ensures at least two peaks in the transmission spectra, (b) for TE
polarization the broad plasmonic mode is absent, however the excited waveguided
modes interfere with the incident photon continuum to give the characteristic Fano
line shape.

In Fig. 3.3 the transmission spectra for incident TM polarization is shown with
varying periodicity of the grating structure and angle of incidence of light. It can
be observed from the Fig. 3.3a that at normal incidence (θ = 0◦) with varying peri-
odicity (a) the position of discrete mode shifts, which is a direct signature of the
shifting of the Bragg resonances (2πn/d, here n = 1) of the grating (b) the two
peaks corresponding to the upper and lower branch of the polaritonic system show
an anti-crossing behavior (the two peaks cannot be observed at same frequency),
which signifies the strong coupling between plasmon and waveguided modes form-
ing leading to an energy gap between higher and lower energy resonantmodes (peaks)
as shown by their dispersion in Fig. 3.3b (c) due to the mirror symmetry of the system
at θ = 0◦, instead of three only two peaks are observed in the transmission spectra.
However, at θ 	= 0◦ the mirror symmetry of the system is broken leading to three
peaks in the transmission spectra, one corresponding to the plasmon resonance and
the other two asymmetric resonances corresponding to the waveguide modes of the
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two Bragg resonances (±2π/d) for n = 1, as shown in Fig. 3.3c. The momentum
of the waveguided mode shifts as kx ± 2π/d leading to a symmetrical shift in the
resonance position of the waveguided modes with increasing θ. A pretty similar and
analogous behavior in the transmission spectra is found even for the incident TE
polarization, however here the plasmon modes is absent.

3.4.2 Rayleigh Anomaly in Metal Dielectric Grating

This anomaly can be observed in the transmission from grating producing a char-
acteristic cusp in the spectra. It has been observed that with varying periodicity of
the grating, the spectral behavior show that (a) a cusp appears in the spectra at dif-
ferent frequencies with varying periodicity, (b) effect of the anomaly on the spectral
response is dominant only near plasmonic resonances and (c) the position of anoma-
lies are independent of the polarization of incident light and the cusp are observed at
same frequencies for both TE and TM polarization [9, 22]. The anomaly/cusp-like
structure in transmission spectra can be associated with opening of new diffraction
channel in substrate or vacuum, or the field corresponding to a Bragg resonance
becomes radiative abandoning its evanescent nature. The condition for Rayleigh
anomaly is

ko = ωo

c
= 1√

εvac/sub

√(
kx + 2πn

d

)2

+ k2y (3.27)

It is clear from the above equation that the transmission spectra should show a grating
period and incident angle dependence of cusp-like structure similar to the resonant
anomalies.

In the next section, we will demonstrate the polarization controlled tuning of the
spectral response of plasmonic Oligomers and two dimensional plasmonic grating. A
self consistent theoretical model is introduced to demonstrate the polarization control
from the anisotropic Fano resonant systems.

3.5 Polarization Mediated Tuning of Fano-resonance

As shown in the previous section, WPC shows polarization dependence of the trans-
mission spectra from the system. However, the polarization dependence of the Fano
resonant asymmetric line shape in transmission spectra is not limited to the WPC
only, it can be demonstrated in various system like oligomers, dolmen andmanyother.
The presence of polarization dependent scattering/transmission spectra provides the
ideal tool to modulate, control and tune the spectral response and resonances like
Fano resonance. The origin of such polarization dependence lies in the anisotropic
polarization response of the structure/system. Indeed, full polarization information
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about the system could be very useful to controllably tune the light scattered from
the system, and as mentioned above the complete polarization information of any
system could be easily obtained from its Mueller matrix [27]. The polarization medi-
ated tuning of Fano resonance in plasmonic systems is demonstrated on plasmonic
oligomers, and Mueller matrix approach is used to demonstrate the spectral tuning
of WPC. Next, we will be exploring the origin and polarization controlled tuning of
Fano resonance in these systems.

3.5.1 Plasmonic Oligomers

Plasmonic oligomer is a coupled system, which consists of a ring of metallic nano-
disks and a disk at the centre [6, 24, 25, 60]. Oligomers have been reported to have
sharp asymmetric Fano spectral profile. As discussed above, the origin of Fano res-
onance in oligomers is different from waveguiding photonic crystal in terms of the
interfering modes. Here the collective oscillations or the collective dipole moment
of ring particles interferes with the dipole moment of centre particle. They form the
broad super-radiant and discrete subradiant mode for constructive and destructive
interference of the collective ring particles with center particle respectively [6, 24,
25, 60]. The interference of these two (super-radiant and sub-radiant) modes gives
rise to the asymmetric line profile of Fano resonance. The broad nature of superra-
diant mode is due to the dipolar nature of resonance whereas for subradiant mode
it is the presence of higher order (quadrupolar) mode at the central particle. In the
plasmonic oligomer systems the spectral profile, dip/peak are directly dependent on
the participating disk size, inter particle separation, material etc. Keeping this in
mind, the tuning of Fano resonance in oligomers has been achieved by varying the
particle size, inter-particle separation, displacement of particles etc. But such tuning
resulted when oligomer structure had been re-fabricated, which itself is a cumber-
some task. Polarization based tuning is kind of the perfect solution of the problem
posed here. The participating modes are mainly modulated using the polarization
which effectively alters the interference of the two participating modes, as a result
the Fano profile or the dip is changed. The fabricated oligomer had the central disk
diameter larger than ring particles so that there is effective cancellation of dipole
moment of the ring and disk particles. In an ideal case, the subradiant mode has zero
dipole moment, does not couple to light easily and is non-radiative in nature. But in
the sub-wavelength domain or near field limit, the plasmonic resonance mediates a
weak interaction resulting in a frail coupling between this superradiant and subra-
diant mode. This weak coupling commences an asymmetric Fano dip in the broad
dipolar resonance at the wavelength/energy of subradiant mode. In cases where the
subradiant mode radiates faintly the linewidth is slightly broadened in comparison
to the ideal sharp asymmetric Fano profile.

The Fano dip is thus quite useful as it contains crucial information like the strength
of cancellation (destructive interference), wavelength of discrete resonance and cou-
pling of the two participating modes. These properties of Fano dip provides us with
the perfect handle to probe and control the Fano resonance. The polarization depen-
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(a) (b)

Fig. 3.4 a A schematic showing the geometry of symmetry broken oligomer deposited on quartz
substrate, with pre and post selection of polarization state excited and collected from the system,
respectively. b Polarization controlled tuning of Fano spectral asymmetry in a symmetry broken
plasmonic oligomer sample

dence of discrete mode makes it very crucial in this regard and can be exploited for
various applications.

Figure3.4 represents the results of polarization based tuning. Here the pre and
post selection of polarization (excitation and detection) was taken to be same. The
position of the dip can be seen to be shifted from 685 to 735 nm for the different
pre-post polarization states. The shifting of the Fano dip is caused due to the polariza-
tion dependent modulation of dipole moments (of nano disks) and the higher order
modes (mainly quadrupolar mode). The polarized excitation and detection affects the
quadrupolar arrangement (strength and position) in between the participating disks
and central disk according to the orientation of polarization state. As a result altering
the subradiant mode energy and strength is seen as a shifted Fano dip and altered
asymmetric spectral profile.

We further extend this application to an anisotropic Fano resonant system, study
and model the polarization mediated tuning of Fano asymmetry.

3.5.2 Polarisation Controlled Tuning of Fano Asymmetry

The polarization response of an anisotropic Fano resonant system can be modelled
using Jones-Mueller formalism, and such a model can be used to predict the spectral
response of the system for various polarizations. The Jones Matrix (J (ω)) of a Fano
resonant system can be written as [27]

J (ω) =
[
j Rx + Bx 0

0 j Ry + By

]
; where, j Rx/y = qx/y − i

εx/y + i
(3.28)

The observed field scattered (Es(ω)) from such system for an incident pre (Eα) and
subsequent post (Eβ) selection of polarization state after the scattering can be given
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as
Es(ω) = E†

β J (ω)Eα (3.29)

And corresponding intensity is given as

Is(ω) = |E†
β j (ω)Eα|2 = 1

2
S†

βM(ω)Sα (3.30)

Here, pre and post states are chosen to be a general elliptical polarization state given as
Eα = [cosα sinαeiφα ]T and Eβ = [cosβ sin βeiφβ ]T ; Sα and Sβ are the corre-
sponding Stokes vectors (see (3.7)).M(ω) denotes theMueller matrix corresponding
to the Jones matrix (J (ω), see (3.9)). Assuming εx = εy = ε, the scattered field for
pre and post selected linear (φα = φβ = 0) state can be given as

Es(ω) = qx cosα cosβ + qy sinα sin β − i cos(α − β)

ε + i
+ Bx cosα cosβ

+ By sinα sin β (3.31)

And for cos(α − β) 	= 0 the corresponding scattered intensity is given as

Is(ω) = |Es(ω)|2 = cos2(α − β)

(
B2 (qeff + ε)2

ε2 + 1
+ (B − 1)2

ε2 + 1

)
(3.32)

where,

qeff = q

B
; q = qx cosα cosβ + qy sinα sin β

cos(α − β)
;

B = Bx cosα cosβ + By sinα sin β

cos(α − β)

(3.33)

When cos(α − β) = 0 the scattered intensity can be easily evaluated. However
it can be seen from above equations that the polarization can be used as tool to
tune/manipulate the Fano line shape either by tuning the asymmetry parameter “q”
or relative amplitude of the continuum “B” in an anisotropic medium. It is to be
noted that J11 	= J22 in (3.28) represents an anisotropic Fano resonant case showing
a differential polarization response from the system, the anisotropy could be basi-
cally classified as either amplitude (|J11| 	= |J22|, associated with diattenuation) or
phase (arg(J11) 	= arg(J22), associated with retardation). However, on the basis of
origin of anisotropy two cases are of particular interest, case 1-amplitude and phase
anisotropic discrete mode (qx 	= qy) and case 2-a perfectly diattenuating discrete
mode ( j Rx 	= 0 and j Ry = 0).

Case 1—Amplitude and phase anisotropic discrete mode (qx �= qy)

In this type of system anisotropy arises because of the contributions from discrete
modes only, which have a difference in the Fano phase “ϕF” associated with them.
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Here the Fano line shape can be tailored by tuning “ϕF” with the linear polarization
states. Assuming that the resonant frequency of the two discrete modes (ωox and
ωoy for x and y polarizations respectively) such that (ωox − ωoy 
 γ) where γ is the
mean of the width of the two discrete modes; the parameters of the line shape could
be reduced to

qeff = q

B
; q = qx cosα cosβ + qy sinα sin β

cos(α − β)
; B = Bx = By (3.34)

Figure. 3.5a demonstrates the tuning of Fano-type spectral line shape for pre
selection of Eα = [1 1]T and subsequent post selection of Eβ = [cosβ − sin β]T
with isotropic continuum Bx = By = 0.5; and strongly anisotropic discrete mode
qx = 1.5, qy = 0.5 with resonance frequency ωo = 1.78 eV and line width γ =
0.107 eV. As observed, considerably wider and different interesting regimes of the
asymmetry parameter (qeff) can be tuned by directly modifying the Fano phase factor
(ϕF ) by polarization state control.

With varying polarization the Fano phaseϕF can be gradually tailored, fromϕF =
−33.7◦ to −63.44◦ (corresponding to qeff = +3 → +1), from ϕF = −63.4◦ →
+49.1◦ corresponding to a Fano phase reversal (negative q-parameter regime lead-
ing to the reversal of spectral asymmetry), to a symmetric Lorentzian line shape
canceling the Fano phase (qeff → ∞,ϕF → 0◦).

Case 2—A perfectly diattenuating discrete mode ( j Rx �= 0 and j Ry = 0)

These kind of systems will have a discrete mode only in one of the eigenstate of
the system. In contrast to case 1, here the anisotropy arises due to the change in the
relative amplitude of continuum with the pre and post selection of polarization state.
The parameters of the line shape of the scattered intensity could be reduced to

Is(ω) = |Es(ω)|2 = cos2 α cos2 β

(
B2 (qeff + ε)2

ε2 + 1
+ (B − 1)2

ε2 + 1

)
;

qeff = q

B
; q = qx ; B = Bx cosα cosβ + By sinα sin β

cosα cosβ
.

(3.35)

In Fig. 3.5b, we have demonstrated the tuning of Fano-type spectral line shape for pre
selection of Eα = [1 1]T and subsequent post selection of Eβ = [cosβ − sin β]T
with Bx = By = 0.5 and qx = 1.5 with resonance frequency ωo = 1.78 eV and line
width γ = 0.107 eV. Different interesting regimes can be achieved - starting from a
modest asymmetry (qeff ∼ +3), high degree of asymmetry can be obtained (qeff ∼
+1.5), the negative q-parameter regime can be tailored (qeff ∼ −2.1), and finally
symmetric Lorentzian line shape (qeff → ∞) can be produced. These are illustrative
examples, and many other interesting possibilities emerge on appropriately designed
anisotropic Fano resonant systems.

The above analysis is strictly valid for non-depolarizing systems, which is not
in general the case in experimental scenarios. However, the study can be imple-
mented in such scenarios once we can filter out the depolarizing component (M�)
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Fig. 3.5 Demonstration of Polarization controlled tuning of Fano spectral asymmetry in a Ampli-
tude and phase anisotropic discrete mode (case-1), and b a perfectly diattenuating discrete
mode (case-2) with parameters mentioned in text. The pre-selected state is linear (α = 45◦, φα,
Sα = [1 0 1 0]T ) in both the cases and the post-selections are at different linear polarization angles β
(Sβ = [1 cos 2β sin 2β 0]T ) (marked by arrows). The frequency dependence of the scattered inten-
sities for different β (obtained using respective Sα and Sβ in (3.30)) were fitted to (3.23), and the
resulting parameters (B, qeff, Fano phase φF or q) are noted. The insets highlight the change in
the spectral line shapes with varying post-selection (including the reversal of spectral asymmetry
for negative q). While, in (a) qeff is tuned by directly modifying the Fano phase φF (or q), in (b)
regulated control is achieved by controlling B alone. The magnitudes of the continuously tuned
Fano phase ϕF and qeff in case 1, and B and qeff in case 2, parameters are represented by color
code and the corresponding color bar is displayed. Adopted from Chandel et al. [53] and Ray et al.
[27]

from the recorded Mueller matrix using matrix decomposition methods discussed
in Sect. 3.2.2 and use the remaining non-depolarizing part (Mpol) of Mueller matrix
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(a)
(c)

(b) (d)

Fig. 3.6 a SEM image of an array of gold nanodisks;b the scattering spectra from the gold nanodisk
array showing asymmetry at the farther end (≈690 nm) with theoretical fitting using (3.23), the
fitted q and B parameters are specified. c The recorded Mueller matrix from the disk array obtained
using Dark field set up. The parameter of the system are as follows: the Au circular disk array
were of diameter D = 160 nm, height h = 30 nm, center to center distance L = 480 nm; and the
thickness of ITO was 190 nm, d) Spectral variation of the Mueller matrix-derived linear retardance
δ (red dashed line, right axis) and linear diattenuation d (blue solid line, left axis). A characteristic
signature of anisotropic Fano resonance is observed in the rapid variation of d and δ parametres
across the narrow resonance peak of the quasiguided mode (E ≈ 1.8 eV or λ ≈ 690 nm). Adopted
from Ray et al. [27]

(see (3.19)) for the analysis. The experimental validation of above analysis is shown
using a WPC.

Figure3.6a shows a two dimensional WPC with a plasmonic nano-disk (diameter
D = 160 nm and height h = 30 nm) made of gold deposited on top of 190 nm thick
ITO coated quartz substrate with a period of 480 nm in both x and y direction (as
shown inSEMimage)with an electronbeam lithography technique.Asdiscussedpre-
viously such structure gives a Fano resonant scattering spectra (peak at Em ∼ 1.896
eV, λm ∼ 654 nm) due to interference of the broad isotropic plasmon mode of the
gold nano-disk with the discrete waveguided mode (peak at Eo = �ωo ∼ 1.777 eV,
λo ∼ 698 nm) of thin ITO layer, which can be observed in the polarization blind scat-
tering spectra of the sample shown in Fig. 3.6b, obtained using a dark field micro-
scope. The scattered profile were fitted using (3.23) and the effective asymmetry
parameter “qeff” was found to be ∼ +0.90 and corresponding Fano phase “ϕF” to
be ∼ 63.2◦. The polarizing part of the Mueller matrix of sample and the polariza-
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(a) (b)

(c) (d)

Fig. 3.7 The spectral variation of scattered intensities for a TM (x polarization) and b TE (y polar-
ization). The resonance parameters were obtained using theoretical fit with (3.23), the parameters
are noted in the figure. The spectral variation of c linear diattenuation (dFano) and d linear retardance
(δFano) using the theoretically predicted parameters (qx/qy , Bx/By). Taken from Ray et al. [27]

tion parameters are shown in Fig. 3.6c and Fig. 3.6d respectively. The off-diagonal
element of the matrix represents the anisotropic polarization response of the system,
which can be subsequently quantified by the polarization parameters of the system
namely retardance (δ) and diattenuation (d) corresponding to phase and amplitude
anisotropy respectively. It is to be noted that the origin of such anisotropy is the
differential response of TE and TM narrow waveguided modes, as the circular nano-
disk provides an isotropic and broad continuum. The sharp variation of polarization
parameters across the waveguided mode/Fano resonance peak ascertain the origin of
anisotropy due to the waveguided modes, and (3.11), (3.15) along with (3.28) imply
its relation with the Fano asymmetry.

In order to establish the fact, the parameters for orthogonal x and y polarizations
were obtained using projection on approximately block diagonal MPol matrix which
gives an appropriate estimate of the corresponding parameters of its Jones matrix.
The parameters showed a small phase as well as amplitude anisotropy as shown in
Fig. 3.7a, b. These parameters were obtained by pre- and postselection of correspond-
ing polarization states (Stokes vector: [1 1 0 0]T for x and [1 1 0 0]T for y) on theMPol

matrix. In order to quantify and estimate the anisotropy, the parameters were used
to obtain the retardance and diattenuation polarization parameters which showed a
good match with the experimental behaviour as shown in Fig. 3.7c, d, establishing
the connection between the asymmetry parameters qx , qy and the anisotropy of the
Fano resonance. The method shows the self-consistency as well as provides a check
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(a)

(b) (c)

Fig. 3.8 a Polarization controlled tuning of Fano spectral asymmetry in a moderately anisotropic
experimental waveguided plasmonic crystal sample. The pre-selected state is chosen to be elliptical
(�α − �β = 0.8 to compensate the background retardance) and post-selections at different linear
polarization angles β (value marked by arrows). The spectral variations of the scattered intensities
for different post selection angles (β, obtained using 3.30) were fitted to (3.23), and the resulting
parameters (qeff, Fano phase ϕF , or q) are noted. The dependence of the derived effective Fano
asymmetry parameter b q-parameter and c the relative amplitude factor B, on the post selection of
linear polarization angle β, for the case 1 anisotropic experimental waveguided plasmonic crystal
sample. Taken from Ray et al. [27]

on the accuracy of parameters obtained through fitting. The results demonstrate that
the physical parameters such as Fano phase ϕF and the relative amplitude parameter
(B) can be mapped to spectral asymmetry of the resonance. The difference in these
parameters leads to Fano resonance anisotropy, and indeed causes a peculiar rapidly
varying spectral retardance and diattenuation effects in the Mueller matrix. Thus,
the δ and d parameters could provide novel experimental tool to probe and analyze
anisotropic Fano resonances.

The tuning of Fano spectral line shape with pre and post selection of polarization
state for the WPC is demonstrated in Fig. 3.8. The pre-selected state was optimized
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to an elliptical polarized state to compensate the background retardance observed
(α = 45◦,φx − φy ∼ 0.8, see Fig. 3.6) with varying linearly polarized post selected
state. The system is equivalent to the case 1 discussed above with linear pre and post
selected polarization state. Its to be noted that here an effective tuning of relative
amplitude of the continuum is observed due to Bx 	= By . Although chosen system
is weakly anisotropic (qx − qy ∼ 0.1), it shows a considerable amount of tuning of
effective asymmetry by modulating the Fano phase. Figure3.8b, c shows a range of
asymmetry parameter “q” and relative amplitude “B” obtained through polarization
tuning respectively, negative q parameter region was obtained at β = 130◦ imply-
ing the reversal of asymmetry of spectra (i.e. ωF > ωo to ωF < ωo). However the
variation of the parameters with post selection angle β is slightly deviated from the
behavior predicted by (3.33), the possible reason for such deviation could be remnant
contribution of the background retardance due to complexity involved in the focused
geometry or smaller magnitude of the detected intensities (within the noise level of
the experimental measurement system).

3.6 Conclusion and Outlook

In conclusion, this chapter presents and explores the studies of asymmetric Fano
resonance from the aspect of polarization, which has immense potential for both
fundamental understanding and numerous applications but has not been investigated
in details. Basics of polarization along with Fano resonance has been provided for
better understanding of connections and implementations for the polarization based
modulation of Fano resonance. A brief description of the Plasmonic polarimetry plat-
form is also provided, which was used to record the complete polarization response
in the form of spectral scattering Mueller matrix from plasmonic nanostructures
along with the accurate extraction and quantification of individual polarization prop-
erties. Experimental results of polarization based tuning of Fano resonance, from the
coupled plasmonic system like Plasmonic Oligomers as well as from waveguided
photonic crystals has been presented backed by theoretical ones. We have also pre-
sented a newmodel of anisotropic Fano resonance in the scattering of electromagnetic
waves. The model enables interpretation of the Fano spectral asymmetry via a set
of physically meaningful parameters, namely, the Fano phase shift and the relative
amplitudes of the interfering modes. Experimental control on these parameters and
engineering of the resulting spectral line shape is achieved in anisotropic Fano res-
onant system by Mueller matrix-based polarization analysis. It is further shown that
the Mueller matrix-derived retardance and diattenuation parameters capture exclu-
sive information on the anisotropy of Fano phase shift and relative amplitude fac-
tors (respectively), and that these can be utilized for optimal pre and post selection
of the polarization states for desirably tuning the spectral line shape. The princi-
ple is demonstrated on waveguided plasmonic crystals exhibiting moderate level of
anisotropy, and a much more dramatic control is envisaged in strongly anisotropic
systems. The ability to probe, manipulate and desirably tune the interference effect
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enables remarkable control on the spectral line shape, leading to realization of several
exotic regimes of Fano resonance from the same system. This promising approach
should therefore stimulate further studies enabling new applications of polarization-
optimized anisotropic Fano resonant systems, which may potentially lead towards
development of novel polarization controlled optical meta-devices. In general, this
approach may open a new avenue in analyzing/interpreting and controlling Fano
resonance in diverse systems.

References

1. U. Fano, Phys. Rev. 124(6), 1866 (1961)
2. A.C. Johnson et al., Phys. Rev. Lett. 93(10), 106803 (2004)
3. I. Mazumdar, A.R.P. Rau, V.S. Bhasin, Phys. Rev. Lett. 97(6), 062503 (2006)
4. A.R. Schmidt et al., Nature 465(7298), 570 (2010)
5. P. Fan et al., Nat. Mater. 13(5), 471 (2014)
6. B. Luk’yanchuk et al., Nat. Mater. 9(9), 707 (2010)
7. C. Ott et al., Science 340(6133), 716 (2013)
8. Y. Sonnefraud, ACS Nano 4(3), 1664 (2010)
9. A. Christ et al., Phys. Rev. Lett. 91(18), 183901 (2003)

10. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business
Media, 2007)

11. J.N. Anker et al., Nat. Mater. 7(6), 442 (2008)
12. W.-S. Chang et al., Nano Lett. 12(9), 4977 (2012)
13. A. Bärnthaler et al., Phys. Rev. Lett. 105(5), 056801 (2010)
14. C. Wu et al., Nat. Mater. 11(1), 69 (2012)
15. K. Nozaki et al., Opt. Express 21(10), 11877 (2013)
16. A. Kaldun et al., Phys. Rev. Lett. 112(10), 103001 (2014)
17. M.R. Shcherbakov et al., Phys. Rev. Lett. 108(25), 253903 (2012)
18. C. Wu, A.B. Khanikaev, G. Shvets, Phys. Rev. Lett. 106(10), 107403 (2011)
19. B. Zhang, Light Sci. Appl. 1(10), e32 (2012)
20. N.I. Zheludev et al., Nat. Photonics 2(6), 351 (2008)
21. Y. Zhu et al., Adv. Opt. Mater. 1(1), 61 (2013)
22. A. Christ, Phys. Rev. B 70(12), 125113 (2004)
23. G. Gantzounis, N. Stefanou, N. Papanikolaou, Phys. Rev. B 77(3), 035101 (2008)
24. M. Hentschel, ACS Nano 5(3), 2042 (2011)
25. J.B. Lassiter et al., Nano Lett. 10(8), 3184 (2010)
26. M. Lisunova et al., J. Phys. D: Appl. Phys. 46(48), 485103 (2013)
27. S.K. Ray, ACS Nano 11(2), 1641 (2017)
28. C.-L. Du et al., Plasmonics 4(3), 217 (2009)
29. T.K. Sau et al., Adv. Mater. 22(16), 1805 (2010)
30. C. Sönnichsen et al., Phys. Rev. Lett. 88(7), 077402 (2002)
31. J. Müller et al., Appl. Phys. Lett. 81(1), 171 (2002)
32. K. Drozdowicz-Tomsia et al., Chem. Phys. Lett. 468(1), 69 (2009)
33. Z. Gryczynski et al., Chem. Phys. Lett. 421(1), 189 (2006)
34. O. Schubert et al., Nano Lett. 8(8), 2345 (2008)
35. N. Lippok et al., Nat. Photonics 11(9), 2017 (2017)
36. J. Soni, H. Purwar, N. Ghosh, Opt. Commun. 285(6), 1599 (2012)
37. S. Chandel et al., Sci. Rep. 6, 26466 (2016)
38. Y. Huang, D.-H. Kim, Nanoscale 3(8), 3228 (2011)
39. L. Li et al., Light Sci. Appl. 4(9), e330 (2015)



3 Mueller Matrix Approach for Engineering Asymmetric Fano-resonance … 83

40. D. Li, Nat. Photonics 11(6), 336 (2017)
41. T. Shegai et al., Proc. Natl. Acad. Sci. 105(43), 16448 (2008)
42. D.H. Goldstein, Polarized Light (CRC Press, 2016)
43. S.D. Gupta, N. Ghosh, A. BanerjeeWave Optics: Basic Concepts and Contemporary Trends,

(CRC Press, 2015)
44. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley-

Interscience, 1998)
45. N. Ghosh, M.F.G. Wood, I.A. Vitkin, J. Biomed. Opt. 13(4), 044036 (2008)
46. N. Ghosh, I.A. Vitkin, J. Biomed. Opt. 16(11), 110801 (2011)
47. S.-Y. Lu, R.A. Chipman, JOSA A 13(5), 1106 (1996)
48. N. Ortega-Quijano, J.L. Arce-Diego, Opt. Lett. 36(10), 1942 (2011)
49. R. Ossikovski, Opt. Lett. 36(12), 2330 (2011)
50. S. Kumar et al., J. Biomed. Opt. 17(10), 105006 (2012)
51. F. Stabo-Eeg, Dissertation, Norges teknisk-naturvitenskapelige universitet, Fakultet for

naturvitenskap og teknologi, Institutt for fysikk (2009)
52. A.D. Martino et al., Thin Solid Films 455, 112 (2004)
53. S. Chandel, Curr. Nanomater. 2(1), 60 (2017)
54. J. Soni et al., Opt. Express 21(13), 15475 (2013)
55. R.W. Wood, Proc. Phys. Soc. Lond. 18(1), 269 (1902)
56. F.J.G. De Abajo, Rev. Mod. Phys. 79(4), 1267 (2007)
57. A. Hessel, A.A. Oliner, Appl. Opt. 4(10), 1275 (1965)
58. C. Billaudeau et al., Opt. Express 17(5), 3490 (2009)
59. M. Sarrazin, J.-P. Vigneron, J.-M. Vigoureux, Phys. Rev. B 67(8), 085415 (2003)
60. N.A. Mirin, K. Bao, P. Nordlander, J. Phys. Chem. A 113(16), 4028 (2009)
61. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82(3), 2257 (2010)
62. B. Gallinet, O.J.F. Martin, ACS Nano 5(11), 8999 (2011)
63. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83(23), 235427 (2011)



Chapter 4
Fano Resonances and Bound States
in the Continuum in
Evanescently-Coupled Optical
Waveguides and Resonators

Stefano Longhi

Abstract This chapter provides a comprehensive review of some recent theoretical
and experimental advances in the field of Fano resonances and bound states in the
continuum for light transport in evanescently-coupled optical structures, including
arrays of dielectric optical waveguides and coupled resonator optical waveguides.
The review will be focused on the occurrence of Fano resonances and bound states in
static photonic structures, the role of particle (photon) statistics, dynamical control
of Fano resonances, and Fano resonances in non-Hermitian optical structures.

4.1 Introduction

Fano resonances were introduced in a pioneering work by Ugo Fano in 1935 [1]
and formalized in 1961 [2] to explain certain asymmetric profiles of spectral absorp-
tion lines in atoms [3]. The theoretical description of these resonances was developed
independently by Feshbach [4] in nuclear physics. In contrast to a more conventional
symmetric-shaped Lorentzian (Breit-Wigner) resonance, a Fano resonance is gener-
ally associated to an asymmetric line shape which arises from the constructive and
destructive interference of discrete resonance states by broadband continuum states.
Nowadays, Fano resonances are ubiquitous in several areas of physics. A recent com-
prehensive review can be found, for instance, in [5]. Among the different physical
fields where Fano resonances are found, light transport in photonic structures has
provided sincemore two decades a feasible laboratory tool to observe the rich physics
embodied in Fano resonances, with important applications to optical switching and
optical sensing. Photonic systems where Fano resonance can occur can be roughly
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speaking classified into four classes: photonic crystal structures, arrays of coupled
optical waveguide and resonators, plasmonic nano structures, and metamaterials.
Recent progress on Fano resonances in photonic crystal, plasmonic and metamate-
rial structures is reviewed in [6–8]. In this chapter we provide an overview of Fano
resonance and related physical aspects, such as the existence of bound states in the
continuum, for light transport in waveguide lattices with side-coupled waveguides
or coupled resonator optical waveguides (CROW) structures, which has attracted
great and increasing interest in the past decade [9–31]. In particular, we focus on
the occurrence of static Fano resonances and related bound states in the continuum
(BIC) in waveguide lattices with side-coupled waveguides, the role of particle (pho-
ton) statistics on Fano resonances, dynamical control of Fano resonances in CROW
structures, and Fano resonances in non-Hermitian coupled waveguide systems.

4.2 Fano Resonance and Bound States in the Continuum
in Optical Waveguide Lattices with Side-Coupled
Waveguides

Light transport in an array of evanescently-coupled optical waveguides with side-
coupledwaveguides provides the simplest optical structurewhere the physics of Fano
resonance and related phenomena come into play [15, 16, 21, 23, 27]. Light propa-
gation in a chain of optical waveguides is described, within a tight-binding approx-
imation, by coupled mode equations [32–34] which provide an optical analogue to
single-particle quantum transport in quantumwires and quantumwaveguides, where
Fano resonance phenomena are commonplace [35–43]. A rather general waveguide
lattice, that shows Fano-like resonance profiles and bound states in the continuum
(BIC) [44–49], is shown in Fig. 4.1a. It comprises a set of N optical waveguides |1〉,
|2〉, …, |α〉,…, |N 〉 which are side-coupled to a linear array of evanescently-coupled
optical waveguides. The side-coupled waveguides play the role of discrete states
which decay into the common continuum of states provided by the tight-binding
array (the optical analogue of a quantum wire); see Fig. 4.1b. The side waveguide
|α〉 is assumed to be weakly coupled, with a coupling rate κα, to the waveguide of
index nα in the array (α = 1, 2, ..., N ), whereas the coupling rate between adjacent
waveguides in the linear array is κ. Indicating by bn(z) the field amplitude of light
waves trapped in the waveguide n of the linear array, and by cα(z) the field amplitude
of lightwaves trapped in the sidewaveguide |α〉, in the nearest-neighbor tight-binding
approximation the evolution of modal amplitudes along the spatial propagation dis-
tance z is governed by the following set of coupled-mode equations [21]

i
dbn
dz

= −κ(bn+1 + bn−1) −
N∑

α=1

καcαδn,nα
(n = 0,±1,±2, . . .) (4.1)

i
dcα

dz
= −καbnα

+ ωαcα (α = 1, 2, . . . , N ) (4.2)
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where ωα in the propagation constant mismatch of the side waveguide |α〉 as com-
pared to the propagation constant of waveguides in the linear array. Light transport in
the waveguide array set-up of Fig. 4.1a provides a photonic simulator of the N -level
Fano-Anderson model, which describes rather generally the decay of N discrete
states into a common continuum [50–53]. Fano resonances and bound states in the
continuum arise from interference of the various decay channels. To highlight the
optical-quantum analogy, it is worth rewriting (4.1) and (4.2) using a Bloch basis |k〉
rather than a Wannier basis for the linear array (see, for instance, [16, 21, 53, 54]).
To this aim, let us introduce the amplitude c(k, z), which is a function of the Bloch
wave number k defined inside the first Brillouin zone −π ≤ k < π, according to

c(k, z) = − 1√
2π

∞∑

n=−∞
bn(z) exp(ikn), (4.3)

so that the inversion relation

bn(z) = − 1√
2π

π∫

−π

dkc(k, z) exp(−ikn) (4.4)

holds. Using (4.3) and (4.4), from (4.1) and (4.2) the following coupled-mode equa-
tions are obtained for the amplitudes cα(z) and c(k, z)

i
dc

dz
= ω(k)c(k, z) +

N∑

α=1

gα(k)cα(z) (4.5)

i
dcα

dz
= ωαcα(z) +

π∫

−π

dkg∗
α(k)c(k, z) (α = 1, 2, ..., N ) (4.6)

where we have set

ω(k) = −2κ cos k, gα(k) = κα√
2π

exp(iknα). (4.7)

In their present form, (4.5) and (4.6) describe the decay of N discrete states |1〉, |2〉,…,
|N 〉 of energies �ω1, �ω2,…, �ωN coupled to a common tight-binding continuum (a
band) of states |k〉 with energy �ω(k) as derived by the Schrödinger equation with
the Hamiltonian (see Fig. 4.1b)

H = �

N∑

α=1

ωα|α〉〈α| + �

∫
dkω(k)|k〉〈k| + �

N∑

α=1

∫
dk

[
gα(k)|α〉〈k| + g∗

α(k)|k〉〈α|]

(4.8)
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(a)

(b) (c)

Fig. 4.1 a Schematic of a linear array of straight evanescently-coupled optical waveguides with
N side-coupled waveguides |1〉, |2〉,…, |N 〉. Light propagates along the paraxial z direction. b The
quantum analogue of the optical waveguide system describing the coupling of N discrete states with
a common continuum. c Fano resonance for N = 2 side waveguides. The panels show the behavior
of the decay rate J of light from the waveguide |1〉, weakly coupled to the array, in the presence of
the strongly-coupled second waveguide |2〉, versus the normalized detuning parameter ω1/κ. The
decay rate J is normalized to the one observed in the absence of the second waveguide. Parameter
values are κ1/κ = 0.04, κ2/κ = 0.1, ω2/κ = 0.2 and n0 = 3 in the left panel, n0 = 4 in the right
panel. Note the asymmetric line shape of J at around ω1 = ω2, which is a typical signature of a
Fano resonance

where gα(k) is the coupling amplitude between states |α〉 and |k〉. Note that in the
optical analogue of the quantummechanical decay problem the temporal evolution of
the quantum state is replaced by the spatial propagation dynamics along the waveg-
uide axis z, and the fractional light power |cα(z)|2 trapped in waveguide |α〉 plays
the role of the population for level |α〉 in the scheme of Fig. 4.1b.

The muti-level Fano-Anderson model is known to provide a fertile system to
study Fano resonance and the appearance of BIC states via destructive interference
of decay channels into the common continuum (an effect also known as population
trapping in atomic physics). The simplest case, which is amenable to an analytical
treatment and capable of providing the main physical insights into Fano resonance
and BIC, is when the discrete states are weakly coupled with the continuum [21],
i.e. κα � κ. Following a standard procedure (see, for instance, [55]), the amplitudes
c(k, z) of the continuous states can be eliminated from (4.5) and (4.6), yielding a set
of integro-differential equations for the field amplitudes cα(z) in the side waveguides
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dcα

dz
= −iωαcα(z) −

N∑

β=1

z∫

0

dξ�α,β(z − ξ)cβ(ξ) (4.9)

where

�α,β(τ ) ≡
π∫

−π

dkg∗
α(k)gβ(k) exp[−iω(k)τ ] (4.10)

are the ‘memory functions’. For our specific model (4.7), the form of �α,β reads
explicitly

�α,β(τ ) = i nα−nβ κακβ Jnα−nβ
(2κτ ) (4.11)

where Jn is the Bessel function of order n. Under the assumption κα � κ and after
setting cα(z) = qα(z) exp(−iωαz), for ‘frequencies’ωα sufficiently far from the band
edges±2κ the amplitudes qα vary slowly with z over the characteristic spatial period
∼ 1/κ of the memory function as estimated from (4.11). By invoking the markovian
approximation, (4.9) then simplify into the coupled differential equations

dcα

dz
� −iωαcα −

N∑

β=1

�α,βcβ (4.12)

where we have set

�α,β =
∞∫

0

dτ�α,β(τ ) exp(iωβτ ) = κακβi
|nα−nβ | ×

×
(√

4κ2 − ω2
β + iωβ

)|nα−nβ |

(2κ)|nα−nβ |
√
4κ2 − ω2

β

(4.13)

To observe a Fano resonance and BIC, a minimum of two side waveguides is
required, and therefore we will focus our study to the simplest case of N = 2 side
waveguides. After setting n1 = 0 and n2 = n0 > 0, in the markovian approximation
the amplitudes of light waves in the two side waveguides |1〉 and |2〉 evolve according
to the coupled equations

dc1
dz

= −(�11 + iω1)c1 − �12c2 (4.14)

dc2
dz

= −�21c1 − (�22 + iω2)c2 (4.15)

where the 2 × 2 matrix {�n,m} is determined by (4.13).
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Let us first consider the limiting case where the coupling κ1 of waveguide |1〉
with the linear array (continuum) is much weaker than the coupling κ2 of the other
side waveguide |2〉 with the continuum. In this case, we can view the decay of light
in waveguide |1〉 as a result of its evanescent coupling with a ‘structured’ continuum
obtained by the strong coupling of the linear array with the side waveguide |2〉. The
features of the structured continuum appear at frequencies close to ω2, and therefore
according to Fano theory [2, 55] the decay of state |1〉 into the structured continuum
is expected to be strongly modified for ω1 � ω2, with a characteristic asymmetric
profile of the decay rate versus ω1 at around ω1 = ω2. The profile of the decay rate
versus ω1 can be analytically calculated by elimination of c2(t) from (4.14) and
(4.15) taking the limit κ1 � κ2. This yields the following equation for the decay of
amplitude c1(z)

dc1
dz

�
[
−(�11 + iω1) + �12�21

�22 + i(ω2 − ω1)

]
c1. (4.16)

Note that the decay law that one would observe in the absence of the second waveg-
uide |2〉 which structures the continuum, i.e. in a featureless continuum, is simply
obtained from (4.16) by taking κ2 = 0, i.e. �12 = �21 = �22 = 0. The behavior of
the decay rate R versus ω1, normalized to its value �11 in absence of the second side
waveguide, is then given by

J ≡ R

�11
= 1 − Re

{
�12�21

�11[�22 + i(ω2 − ω1)]
}

(4.17)

The curve J (ω1) shows an asymmetric shape aroundω1 = ω2 which strongly depends
on n0 being an even or an odd number. Typical behaviors of J for an odd and for
an even value of n0 are shown in Fig. 4.1c. Note that, for ω1 near ω2, a strong peak
is observed when n0 is odd, corresponding to an increase of the decay rate, whereas
a strong deep in the behavior of J is observed when n0 is even, corresponding to a
deceleration of the decay. In particular, the minimum of the normalized decay rate
J is found to vanish at ω1 = ω2 when ω2 = 0, leading to a complete suppression of
the decay (population trapping). Such a suppression of the decay is related to the
existence of a BIC when ω1 = ω2 = 0 and for an even value of n0. In the markovian
limit, population trapping and the appearance of a BIC state are associated to the
vanishing of the real part of one of the two eigenvalues of the 2 × 2 matrix {�n,m}
which governs the decay dynamics of the two states |1〉 and |2〉 according to (4.14)
and (4.15). In the optical waveguide system of Fig. 4.1a, the trapping mechanism and
the existence of a BIC can be physically explained in a simple way as a destructive
interference effect among different tunneling paths into the common continuum.
Fromsuch aperspective, the trappingmechanism is thus analogous to the one found in
chains of tunneling-coupled quantumdots [39, 40, 42]. In fact, ifwe consider two side
waveguides |1〉 and |2〉 connected to the linear array at sites n1 = 0 and n2 = n0 > 0,
for ω1 = ω2 = 0 and for an even value of n0 the coupled mode equations (4.1) and
(4.2) admit of the trapped state
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(a) (b) (c)

Fig. 4.2 Other configurations of side-coupled waveguides to either a an infinite linear waveguide
array, and b, c a semi-infinite linear waveguide array where Fano resonances and BIC can be
observed

bn = 0 for n < 0, n > n0, n = 0, 2, 4, . . . , n0 (4.18)

b1 = −κ1

κ
, b3 = κ1

κ
, b5 = −κ1

κ
, . . . , bn0−1 = (−1)n0/2

κ1

κ
(4.19)

c1 = 1, c2 = −(−1)n0/2
κ1

κ2
. (4.20)

such that the waveguides in the linear array at sites n ≤ 0 and n ≥ n0 decouple
from the other waveguides of the structure. Decoupling is made possible owing to
the vanishing of the tunneling rates −κb1 − κ1c1 and −κbn0−1 − κ2c2 for the two
waveguides in the array at sites n = 0 and n = n0, respectively. BIC arising from
such a decoupling mechanism (also called a dark state) has been experimentally
observed in [56, 57]. Interestingly, by adiabatically varying the ratioκ1/κ2, according
to (4.20) one can transfer excitation between the two side waveguides |1〉 and |2〉
using the waveguide lattice as a virtual bus. Such an interesting possibility provides
the photonic analogue of adiabatic population transfer via a continuum and has
been experimentally demonstrated using femtosecond laserwrittenwaveguide arrays
in [56].

It should be noted that, as the previous analysis has been focused to the case of two
side waveguides, trapping effects may occur for more than two side-coupled waveg-
uides.Assuming, for the sakeof definiteness,nN > nN−1 > · · · > n1, a trapping state
is found provided that a non-decaying solution to (4.1) and (4.2) does exist with bn =
0 for n ≤ n1 and n ≥ nN . In the markovian approximation, where the continuum
degrees of freedom are eliminated, the trapping state corresponds to an eigenmode of
(4.12) with a vanishing decay rate. As an example, in case of N = 3 side waveguides
with n1 = 0, n2 = 1 and n3 = 2, a trapping state with bn = δn,1 exp(−iω1z), c1 =
−(κ/κ1) exp(−iω1z), c2 = −(ω1/κ2) exp(−iω1z), c3 = −(κ/κ3) exp(−iω1z) does
exist provided that ω3 = ω1 and ω2 = ω1 − κ2

2/ω1.
We briefly mention that different side-coupling configurations can be used to

observe Fano resonances and BIC using waveguide lattices. Some of other possible
configurations are shown in Fig. 4.2 and discussed in [14, 16, 23, 27]. In the con-
figuration of Fig. 4.2a, an infinitely-extended linear waveguide array is coupled to a
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system of N side defect states. In this simple system transmission and reflection of
propagating waves can be tailored through engineering Fano resonances. In partic-
ular, perfect reflections and transmissions can be observed due to either destructive
or constructive interferences [14]. In the configurations of Fig. 4.2b, c, one or two
waveguides are side-coupled to a semi-infinite waveguide lattice [23, 27]. In this
case a BIC can be regarded as a surface state localized at the edge of the semi infinite
waveguide array, and can coexist with other more conventional bound states outside
the continuum with exponential localization. In particular, in the setting of Fig. 4.2b,
experimentally realized in [23], simultaneous Fano and Fabry-Perot resonances are
found. The surface mode, related to the BIC, is a compact state with all energy
concentrated in a few waveguides at the edge and no field penetration beyond the
side-coupled waveguide position. Similar behavior is found for BIC in the configura-
tion of Fig. 4.2c, which was realized in the experiment of [27]. It should be noted that
BIC in waveguide lattices are not necessarily related to Fano interference, and can
be observed without any side-coupled waveguides in specially-engineered lattices
with non-uniform coupling constants. For example, in [58] a BIC with non-compact
support and algebraic localization has been experimentally observed in a semi infi-
nite waveguide array with inhomogeneous hopping rates. Finally, we mention that
the Fano-Anderson model (4.1, 4.2) has been recently extended assuming imagi-
nary (non-Hermitian) couplings κα [59], which makes the dynamics non-unitary.
Remarkably, by flipping the coupling from Hermitian (κα real) to non-Hermitian
(κα imaginary) time reversal of the subsystem of discrete states can be achieved,
while the continuum of states is not reversed. Exact time reversal requires frequency
degeneracy of the discrete states, or large frequency mismatch among the discrete
states as compared to the strength of indirect coupling mediated by the continuum.
Interestingly, periodic and frequent switch of the discrete-continuum coupling results
in a frozen dynamics of the subsystem of discrete states.

Finally, we mention that several results and physical phenomena previously dis-
cussed in waveguide lattices can be found in other optical structures, notably in
photonic crystal waveguides (see, for instance, [49, 60–62] and references therein).
A photonic crystal waveguide is realized by a defect line which forms directed con-
tinuum for propagative guided electromagnetic waves. Defect rods in the vicinity of
the defect line interact with the continuum and give rise to scattering of ingoingwaves
in a similar fashion as discussed above. A quantum-mechanical analog of the non-
Hermitian Hamiltonian of the open system with complex eigenvalues can be derived
for this system [60], which describes a scattering of electromagnetic waves by the
defect rods. In this formalism a BIC is found by tailoring the dielectric constant of the
defect rods so that one of the complex eigenvalues becomes real. Interestingly, two
o-channel nonlinear defects coupled to the photonic waveguide serve as selfadjusted
Fano mirrors and can self-induce a BIC [61, 62].
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Fig. 4.3 a Schematic of two discrete levels coupled to a common tight-binding (TB) continuum,
and b physical realization based on two quantumwells side-coupled to a tight binding quantumwire.
In the photonic simulation of the two-level Fano-Anderson Hamiltonian with two indistinguishable
particles, the quantum wells and the quantum wire are replaced by evanescently-coupled optical
waveguides in the geometrical setting schematically shown in Fig. 4.2c. Excitation of the side
waveguides |1〉 and |2〉 with two polarization-entangled photons with a phase offset ϕ enables to
effectively simulate the evolution of two non-interacting bosonic (for ϕ = 0) and fermionic (for
ϕ = π) particles. c, d Evolution of the survival probability Ps(t) for bosons (solid curves), fermions
(dashed curves) and for two distinguishable particles (dotted curves) for κ1/κ = κ2/κ = 0.5 and
for ε1/κ = 0, ε2/κ = 0.8 in (c) and ε1/κ = ε2/κ = 0.8 in (d)

4.3 Fano Resonance and Particle Statistics

Quantum decay processes, Fano resonances and BIC are generally regarded as angle-
particle effects and have been observed in different systems using particles with
either bosonic (e.g. neutral atoms, photons) or fermionic (e.g. electrons) nature.
However, recent works [27, 53, 60–65] showed that particle statistics and contact
interactions can deeply modify the decay dynamics as well as the appearance of Fano
renounce andBIC in amany-body system. Even in the absence of particle interaction,
fermions and bosons may show very different decay behavior, in particular in many
cases fermions tend to decay faster. Interestingly, under certain circumstances Fano
resonance and BIC can disappear when particle statistics is switched from bosonic
to fermonic. The latter phenomenon has been theoretically predicted in [53] and
experimentally observed in [27] in a waveguide photonic lattice probed by non-
classical states of light.

The simplest model to investigate the role of particle statistics on quantum
decay, BIC and Fano resonance is the two-level Fano-Anderson model, which is
schematically shown in Fig. 4.3a. The model describes rather generally the decay
of two discrete states |1〉 and |2〉, such as two quantum wells, into a common tight-
binding continuum represented, for example, by a semi-infinite linear quantum wire
(Fig. 4.3b). The tight-binding lattice band spans the energy interval −2κ < E < 2κ,
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where κ is the hopping rate between two adjacent wells in the wire, whereas the
energy offsets ε1 and ε2 of the discrete states |1〉 and |2〉 from the center of the
tight-binding lattice band is generally (but not necessarily) assumed to be embed-
ded into the continuum, i.e. |ε1,2| < 2κ. If the couplings κ1 and κ2 of the discrete
sates |1〉 and |2〉 with the quantum wire is weak, i.e. provided that κ1,2 � κ, for the
single particle case quantum decay, Fano resonance and the appearance of BIC can
be described within the markovian approximation following a similar analysis to the
one developed in the previous section. An interesting property of the system shown
in Fig. 4.3b is the existence of one BIC when ε1 = ε2, even beyond the markovian
limit. As discussed in the previous section, the BIC arises because of a destructive
Fano interference between different decay channels, which leads to fractional decay
when a single particle is initially placed in either one of the two wells |1〉 or |2〉.

For the two-particle case, the system is assumed to be prepared, at time t = 0,
with one particle occupying the well |1〉 and the other one the well |2〉. Quantum
decay is described by the survival probability Ps(t) = |〈ψ(0)|ψ(t)〉|2, which is the
probability that at time t none of the two particles has decayed into the continuum
(the wire). For non-interacting particles, the expression of Ps(t) can be derived in
terms of the single-particle scattering matrix S(t) = Sn,m(t) (n,m = 1, 2), where
Sn,m(t) is the amplitude probability that a particle, occupying at t = 0 the well |m〉,
is found at time t in the well |n〉. The expression for Ps(t) depends on the statistics
of the two particles and reads explicitly [53]

P (bos)
s (t) = |S1,1S2,2 + S1,2S2,1|2 = |perm S(t)|2 (4.21)

for bosonic particles, and

P (ferm)
s (t) = |S1,1S2,2 − S1,2S2,1|2 = |det S(t)|2 (4.22)

In a photonic simulation of the the decay dynamics of the two indistinguish-
able particles, the temporal evolution of the two-level Fano-Anderson Hamiltonian
is mapped into the spatial propagation of two polarization-entangled photons in an
array of evanescently-coupled optical waveguides in the geometrically setting shown
in Fig. 4.2c. Let us indicate by â†n,T the creation operator of photons in the fundamen-
tal mode of waveguide |n〉 with polarization states T = H (horizontal) or T = V
(vertical), respectively. The optical structure is excited at the input t = 0 plane by
two photons in a polarization entangled state, injected into waveguides |1〉 and |2〉,
namely

|ψ(t = 0)〉 = 1√
2

(
a†1,Ha

†
2,V + exp(iϕ)a†1,V a

†
2,H

)
|0〉 (4.23)

whereϕ is a controllable phase. As shown in [66], by switching the phaseϕ fromϕ =
0 toϕ = π, one can effectively simulate the evolution of two non-interacting bosonic
and fermionic particles, respectively. In a linear optical network, the photon state
|ψ(t)〉 at a propagation distance t is obtained from (4.23) by the formal replacement
[66, 67]
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â†n,T →
∞∑

j=1

S(T )
j,n (t)â†j,T , (4.24)

where S(T )
j,n (t) is the amplitude probability that one photon with polarization state T ,

injected at t = 0 in waveguide |n〉, is found in the waveguide | j〉 after a propagation
length t . The amplitudes S(T )

j,n (t) for the waveguide structure can be readily calculated
from coupled-mode theory that describes propagation of classical light waves in the
optical network. Substitution of (4.24) into (4.23) yields

|ψ(t)〉 = 1√
2

[(
S(H)
1,1 S(V )

1,2 + exp(iϕ)S(V )
1,1 S

(H)
1,2

)
â†1,H â

†
1,V

+
(
S(H)
1,1 S(V )

2,2 + exp(iϕ)S(V )
2,1 S

(H)
1,2

)
â†1,H â

†
2,V

+
(
S(H)
2,1 S(V )

1,2 + exp(iϕ)S(V )
1,1 S

(H)
2,2

)
â†2,H â

†
1,V

+
(
S(H)
2,1 S(V )

2,2 + exp(iϕ)S(V )
2,1 S

(H)
2,2

)
â†2,H â

†
2,V

+ ...] |0〉 (4.25)

where . . . is a sum of operator products â†j,H â
†
n,V with either n or j greater than 2.

From (4.25) one can readily calculate the coincidence probability P (1,1)(t) to find,
at propagation distance t , one photon (with either polarization H or V) in waveguide
|1〉 and the other photon (with polarization V or H) in waveguide |2〉. Assuming that
the amplitude probabilities Sn, j (for n, j = 1, 2) do not depend on the polarization
state, i.e. SH

n, j = SV
n, j ≡ Sn, j , one obtains

P (1,1)(t) = 1

2
|S1,1(z)S2,2(z) + exp(iϕ)S1,2(z)S2,1(z)|2

+ 1

2
|S1,1(z)S2,2(z) + exp(−iϕ)S1,2(z)S2,1(z)|2 (4.26)

Note that, for bosonic particles (ϕ = 0), one has P (1,1)(t) ≡ P (bos)(t) =
|perm S(t)|2, whereas for fermions (ϕ = π) one has P (1,1)(t) ≡ P (ferm)(t) =
|det S(t)|2, which provide the survival probabilities for bosonic and fermionic par-
ticles in the two-level Fano-Anderson model according to (4.21) and (4.22). The
coincidence probabilities P (bos)(t) and P (ferm)(t) for indistinguishable photons with
ϕ = 0,π should be compared with the coincidence probability for distinguishable
photons, which is simply obtained by neglecting quantum interference and reads

P (dis)(t) = ∣∣S1,1(t)S2,2(t)
∣∣2 + ∣∣S1,2(t)S2,1(t)

∣∣2 . (4.27)

Figure 4.3c shows, as an example, the behavior of P (bos)(t), P (ferm)(t) and
P (dis)(t), defined by (4.21), (4.22) and (4.27), predicted by coupled-mode equation
analysis for parameter values κ1/κ = κ2/κ = 0.5, ε1/κ = 0 and ε2/κ = 0.8. For
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Fig. 4.4 Map of the survival probability Ps as a function of t and (ε2 − ε1)/κ for a bosons, and
b fermions. Parameter values are: κ1/κ = κ2/κ = 0.5 and ε1/κ = 0.8 (Fan interference regime).
In c the behavior of Ps versus (ε2 − ε1)/κ is shown at the normalized time t = 8/κ for bosons
(solid curve), fermions (dashed curve) and for distinguishable particles (dotted curve)

such parameter values, the Fano-AndersonHamiltonian does not sustain a BIC, and a
single particle, initially placed at either wells |1〉 or |2〉, decays toward zero (complete
decay). As shown in Fig. 4.3c, the same behavior occurs for bosonic and fermionic
particles, the decay being faster for fermions than for bosons. More interesting is the
case ε1 = ε2, where a BIC with energy ε = ε1 = ε2 arises as a result of destructive
Fano interference of decay channels. Figure 4.3d shows, as an example, the behav-
ior of P (bos)(t), P (ferm)(t) and P (dis)(t) for parameter values κ1/κ = κ2/κ = 0.5,
and ε1/κ = ε2/κ = 0.8. Remarkably, as P (bos)(t) shows a fractional (limited) decay
owing to the existence of a BIC, P (ferm)(t) shows a complete decay. Such a result is
basically a signature of the Pauli exclusion principle and can be explained observ-
ing that no more than one fermion can be accommodated into the dressed bound
state, the remaining one decaying into the continuous (scattering) states. This means
that for two fermions Fano interference, responsible for the existence of a BIC and
fractional decay, is suppressed. To better highlight the suppression of Fano inter-
ference in the quantum decay of two fermionic particles, in Fig. 4.4 we plot the
behavior of the probabilities P (bos)(t) and P (ferm)(t) versus t as a function of the
normalized energy detuning (ε2 − ε1)/κ for κ1/κ = κ2/κ = 0.5 and ε1/κ = 0.8.
Note that, for two bosonic particles, at a given time t = t0 P (bos)(t0) shows a Fano
resonance at ε2 = ε1, which is the signature of destructive quantum interference of
decay channels and fractional decay. On the other hand, the Fano resonance is com-
pletely suppressed for two fermionic particles. This is clearly shown by plotting the
behavior of at a given propagation distance, e.g. t = t0 = 8/κ, as shown Fig. 4.4c.
Disappearance of the Fano resonance for fermonic particles has been demonstrated
in a recent experiment [27]. In the experiment, to determine the survival probability
for indistinguishable particles, two photons at 810 nm wavelength, generated by a
spontaneous parametric down-conversion source, were coupled to single-mode opti-
cal fibres and injected simultaneously in waveguides |1〉 and |2〉. Output light from
the same waveguides was collected by an objective, coupled to multimode fibres and
detected by single-photon avalanche photodiodes. Coincidence-detection counts, in
equal temporal gates, were performed for different input states: indistinguishable
vertically polarized photons, polarization-entangled photons in antisymmetric state
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(a) (b) (c) (d)

Fig. 4.5 Map of the survival probability Ps as a function of t and (ε2 − ε1)/κ for (a) bosons, and
(b) fermions. Parameter values are: κ1/κ = κ2/κ = 0.5 and ε1/κ = 4 (Rabi oscillations regime).
In (c) the behavior of Ps versus (ε2 − ε1)/κ at the time t = 8/κ is shown, whereas (d) depicts the
behavior of Ps versus t for ε2 = ε1. Solid curve: bosons; dashed curves: fermions; dotted curves:
distinguishable particles

and distinguishable photons. The latter were generated by introducing, for each of the
previous states, a temporal delay for one of the photons. These conditions correspond
to identical bosons, identical fermions and distinguishable particles. From coinci-
dence counts and by varying the offset ε2 − ε2 in different manufactured waveguide
array samples, the survival probabilities for effective fermonic and bosonic particles
were retrieved, clearly showing the disappearance of the Fano resonance according
to the theoretical prediction (Fig. 4.4c).

So far we have considered the case where the energies ε1,2 of the discrete states
|1〉, |2〉 are embedded in the continuum of scattered states. A different scenario is
found when ε1 and ε2 fall outside the continuos band of the lattice. In this case,
the Fano-Anderson Hamiltonian sustains two bound states outside the continuum,
and the survival probability for a single particle, initially placed in either one of the
sites |1〉 or |2〉, shows fractional decay and Rabi-like oscillations for ε2 close to ε1.
In this case the two fermions can be now accommodated in the two bound dressed
states, and thus fractional decay is observed for fermions as well. However, while
for bosons the survival probability shows Rabi-like oscillations with time when ε2 is
close to ε1 (like for the single-particle problem), Rabi oscillations are suppressed for
fermionic particles. This is shown in Fig. 4.5, which depicts the behavior of P (bos)(t)
and P (ferm)(t) for the same parameter values as in Fig. 4.4, except for ε1 = 4κ. Note
that, as expected, the survival probability for fermions now shows a fractional (i.e.
not complete) decay owing to the existence of two bound dressed states. However,
as compared to bosons, for fermions Rabi oscillations in the survival probability
at ε2 � ε1 are suppressed. The theoretical analysis of Rabi oscillations for the two-
particle state can be given in a rather simple form when the energies ε1 and ε2 of the
discrete states |1〉 and |2〉 are far outside the continuous band of scattered states, and
the couplingsκ1 andκ2 are of the same order ofmagnitude. In this case, the amplitude
occupation probabilities of continuous states are weak and can be eliminated from
the dynamics, leading and an effective (second-order) coupling of states |1〉 and
|2〉 mediated by the scattered states (see, for instance, [68, 69]). Assuming |ε1,2| �
κ1,2,κ and a small detuning |ε2 − ε1| (of the same order of magnitude or smaller than
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∼ κ2
1/ε1), for the single-particle problem the following effective coupled equations

for the occupation amplitudes c1(t) and c2(t) of sites |1〉 and |2〉 can be obtained

i
dc1
dt

= κec2 − �c1 , i
dc2
dt

= κec1 + �c2 (4.28)

where we have set

κe = κ1κ2

ε1
, 2� = ε2 − ε1 + κ2

2 − κ2
1

ε1
. (4.29)

Note that (4.28) describe detuned Rabi oscillations of a two-level system. The single-
particle scattering matrix S(t) = {Sn,m(t)} (n,m = 1, 2) can be readily calculated
from (4.28) and reads

S1,1(t) = cos(�t) + i
�

�
sin(�t)

S1,2(t) = S2,1(t) = −i
κe

�
sin(�t) (4.30)

S2,2(t) = cos(�t) − i
�

�
sin(�t)

where � = √
κ2
e + �2. For a single particle, initially placed at either sites |1〉 or |2〉,

the survival (revival) probability is given by

Ps(t) = |S1,1(t)|2 = |S2,2(t)|2 = cos2 �t + �2

�2
sin2 �t (4.31)

and shows detuned Rabi oscillations. For two indistinguishable particles, the revival
probabilities are given by the modulus square of the permanent and determinant of
S(t) for bosons and fermions, respectively, i.e.

P (ferm)
s = |det S(t)|2 = 1 (4.32)

and

P (bos)
s = |perm S(t)|2 =

(
cos2 �t + �2 − κ2

e

�2 + κ2
e

sin2 �t

)2

(4.33)

Note that for fermions the survival probability is frozen, corresponding to the two
fermions occupying the two bound dressed states with no evolution. Conversely, for
bosons the survival probability shows Rabi-like oscillations owing to the possibility
for the bosons to occupy either one or both the bound dressed states. Note also that,
at � = 0 the Rabi oscillations of the two bosons occurs at a frequency twice the
single-particle Rabi oscillations.
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4.4 Dynamical Control of Fano Resonances

In photonics, Fano resonances find interesting applications in the design of optical
filters, switches, modulators and sensors, especially at the micro- and nano-scale.
For such applications, lineshape engineering, i.e. the possibility to control and tune
frequency, shape and width of the Fano resonance, is of major importance. Usually,
the Fano lineshape can be tuned over wide spectral ranges by carefully altering the
geometry of a nanostructure [70–72]. However, dynamical and fine control of Fano
resonances is a highly desirable functionality, which can not be accomplished by
material or geometric engineering. Several methods have been suggested for dynam-
ical lineshape engineering, based on two-beam interference [72], phase engineering
of the excitation beam [73], the use of hybrid gratings [74], the application ofmechan-
ical stress [75], and dynamicmodulation of the refractive index inmicro cavities [28].
The latter method is based on dynamic modulation of the resonance frequency of
a microcavity in a linear CROW structure and provides an example of Fano res-
onance in time-periodic systems, where the resonance arises from interference of
different Floquet channels [76–78]. A CROW consists of a homogeneous chain of
resonators in which light propagates by virtue of the evanescent coupling between
adjacent cavities [79–81]. CROWs have been explored in a variety of material plat-
forms and resonator types, including photonic-crystal defect cavities, microspheres,
microdisks, and microring resonators. While in static CROW structures Fano reso-
nances are usually realized by side-coupled microcavities in the geometrical settings
similar to the ones shown in Figs. 4.1a and 4.2 for optical waveguide arrays, a Fano
resonance can be dynamically created and tuned by periodic modulation of the res-
onance frequency of one resonator in a linear chain, without the need to resort to
side cavities [28]. Figure 4.6a shows a schematic of the CROW structure that real-
izes a dynamic and controllable Fano resonance. It consists of a chain of coupled
micro/nano resonators with the same resonance frequency ω0 and coupling constant
κ. The resonance frequency of the resonator at site n = 0 is assumed to be biased
and periodically modulated in time. This can be accomplished by modulation of the
microcavity refractive index using various physical mechanisms such as free-carrier-
plasma dispersion and electro-optic effects [82–85]. Coupled mode equations that
describe light hopping in the coupled microrings/resonators read

i
dan
dt

= ω0an + κ(an+1 + an−1) + δn,0�ω0(t)an (4.34)

where an(t) is the mode amplitude of the field in the n-th microring/resonator,
�ω0(t) = σ + � cos(ωt) is the resonance shift of the resonator at site n = 0, which
comprises a bias (static) term σ and a sinusoidal term of amplitude � and frequency
ω. For �ω0 �= 0, the resonator at site n = 0 acts as a scattering centre, enabling to
reflect light waves propagating along the CROW at some spectral frequencies inside
the CROW transmission band (ω0 − 2κ,ω0 + 2κ). Note that, since the Hamilto-
nian is time-periodic, scattering is inelastic, i.e. it does not conserve the energy,
which can be exchanged with quanta of the driving field. If ω and � are of the same
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Fig. 4.6 a Schematic of a CROW with dynamic modulation. b Transmittance versus normalized
frequency (ω(q) − ω0)/κ for σ/κ = 1, ω/κ = 1 and �/κ = 0.3 (solid curve). The dotted curve is
the transmittance of the static CROW (� = 0), whereas the dashed curve is the transmittance as
predicted by the approximate analytical relation (4.39). Inset: enlargement of the Fano resonance
near ω = ω0. c, d Fano lineshape engineering: (c) Transmittance for σ/κ = 1, �/κ = 0.3 and for
ω/κ = 1 (curve 1), ω/κ = 2 (curve 2), and ω/κ = 3 (curve 3); (d) Transmittance for ω/κ = 1,
σ/κ = 1 and for �/κ = 0.3 (curve 1), �/κ = 0.6 (curve 2), and �/κ = 0.9 (curve 3)

order of magnitude than the coupling constant κ, dynamic Fano resonances can arise
because light can hop across the modulated resonator following different Floquet
paths [76]. Assuming that a light wave with Bloch number q (0 < q < π) and fre-
quency ω(q) = ω0 + 2κ cos q is incident onto the modulated resonator from the left
to the right side of the chain, according to Floquet theory [76] the exact scattered
solution to (4.34) has the form

an(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∑∞
α=−∞

{
δα,0 exp[−iqα(n + 1)] + rα(q) exp[iqα(n + 1)]}

× exp(−i�αt) n ≤ −1∑∞
α=−∞ Bα exp(−i�αt) n = 0∑∞

α=−∞ tα(q) exp[−iqα(n − 1)] × exp(−i�αt) n ≥ 1
(4.35)

where �α = ω(q) + αω, rα(q) and tα(q) are the reflection and transmission ampli-
tudes of the various Floquet (scattered) orders α = 0,±1,±2,±3, . . ., Bα(t) are the
harmonic amplitudes of the field in the modulated resonator at n = 0, and qα are
defined from the relation

cos qα = cos q + α(ω/2κ), (4.36)

with 0 ≤ qα ≤ π if qα is real (propagative modes) and Im(qα) < 0 if qα is complex
(evanescent modes). The power transmittance T (q) and reflectance R(q) of the
modulated resonator can be then calculated as
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T (q) =
∑

〈α〉

vgα

vg0
|tα|2 , R(q) =

∑

〈α〉

vgα

vg0
|rα|2 (4.37)

where vgα = 2κ sin qα is the group velocity at the Bloch wave number qα and the
symbol 〈...〉 means that the sum is extended over the indices α corresponding to
propagative modes (i.e. qα real). For a lossless system one has R + T = 1 and the
system is reciprocal, i.e. transmittance is independent of the incidence side. Substi-
tution of the Ansatz (4.35) into (4.34) and eliminating rα and Bα yields the following
difference equation for the transmission amplitudes tα of various Floquet orders

tα
(
1 − exp(2iqα) + σ

κ
exp(iqα)

)

+ �

2κ
(tα+1 exp(iqα+1) + tα−1 exp(iqα−1)) (4.38)

= δα,0 (exp(−2iqα) − 1) .

Let us first notice that, in the absence of the acmodulation, i.e. for� = 0, the solution
to (4.38) is given by tα(q) = δα,0tst (q), where tst (q) is the transmission amplitude
of the static CROW, given by

tst (q) = exp(−2iq) − 1

1 − exp(2iq) + (σ/κ) exp(iq)
. (4.39)

The transmittance Tst (q) of the static CROWis simply given by Tst (q) = |tst (q)|2.
A typical behavior of Tst versus the normalized frequency (ω(q) − ω0)/κ is shown in
Fig. 4.6b, dotted curve. Dynamic Fano resonances can be created by switching on the
ac modulation term. Let us first consider the biased case (σ �= 0) and let us assume,
for the sake of definiteness, σ > 0. In this case the static CROW structure sustains
a localized (bound) mode oscillating at the frequency ωloc = ω0 + (4κ2 + σ2)1/2

outside the transmission CROW band. To create a Fano resonance at the frequency
ωF inside the CROW transmission band, let us modulate the microcavity refractive
index at the frequency ω satisfying the condition ω = ωloc − ωF . In this case, a light
photon at the frequencyω(q) close toωF incident onto themodulatedmicroresonator
(incident Floquet channel) can gain one energy quantum�ω and drop into the ‘bound’
state. Similarly, photons in the ‘bound’ state can loss one energy quantum �ω and
jump to the incident channel. Interference between direct and indirect (bound-state
mediated) photon crossing creates a Fano-like resonance, as shown in Fig. 4.6b, solid
curve. Formally, the onset of the Fano resonance can be explained by considering the
small-modulation limit�/κ → 0 and looking for a solution to (4.38) as a power series
tα = t (0)α + t (1)α + t (2)α . . ., where the term t (k)α is of the order ∼(�/κ)k . At leading
order (k = 0) one recovers the static case, namely t (0)α (q) = δα,0tst (q), whereas at
first order one obtains

t (1)α (q) =
{

0 α �= ±1
− �

2κ
tst (q) exp(iq)

1−exp(2iqα)+(σ/κ) exp(iqα)
α = ±1

(4.40)
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While t (1)−1 (q) is a bounded function of q and of order∼�/κ, t (1)1 (q) shows a singular-
ity at q = qF = arccos[(ωloc − ω − ω0)/2κ], which breaks the perturbative analysis.
The singularity can be avoided by considering both t0 and t1 of the same order ∼1.
In the two-channel approximation, one obtains at leading order

t (0)0 (q) � exp(−2iq) − 1

1 − exp(2iq) + (σ/κ) exp(iq) − �(q)
(4.41)

where we have set �(q) = (�/2κ)2 exp[i(q + q1)]/[1 − exp(2iq1) + (σ/κ)

exp(iq1)]. Note that t (0)0 (q) differs from the static value tst (q) because of the complex
term�(q) in the denominator of (4.41). Since the Floquet channelα = 1 corresponds
to an evanescent mode, at leading order the transmittance can be thus calculated as
T (q) � |t (0)0 |2, which well reproduces the exact shape obtained by exact numer-
ical analysis of (4.37) (see the dashed curve in Fig. 4.6b). Note that, around the
frequency ω = ωF , the transmittance shows a characteristic sharp and asymmetric
profile, rapidly varying from zero to (almost) one. The frequency ωF around which
the Fano resonance appears can be tuned by changing the modulation frequency ω
according to the relation ωF = ωloc − ω, whereas the resonance width is controlled
by the modulation amplitude �. This is shown in Fig. 4.6c, d.

The case of unbiased microresonator (σ = 0) shows a different behavior. Here
the static transmittance is unity ((4.39) with σ = 0), and the structure does not sus-
tain any localized mode. When the modulation is switched on, for ω < 2κ quite
remarkably two resonances (rather than one) at the frequencies ω0 + 2κ − ω and
ω0 − 2κ + ω are created, symmetrically placed with respect to ω0. The two reso-
nances appear as asymmetric dips in the transmission spectrum. As ω → 2κ−, the
two resonances interference and overlap at ω = ω0, yielding a more complex reso-
nance pattern comprising a narrow transmission dip with embedded an ultra-narrow
resonance peak with unity transmittance at frequency ω = ω0 [28]. The ultra-narrow
transmission peak created inside the dark dip and arising form resonance overlap-
ping can be regarded as a kind of electromagnetically-induced transparency (EIT)
effect. The entire dynamical process, i.e. creation and overlapping of resonances,
can be well described within a five-channel model by considering the amplitudes tα,
α = 0,±1,±2 in (4.38), and could be exploited to realize ultra narrow resonances
for sensing applications. For such narrow resonances, however, the impact of res-
onator losses should be included [28] and may be loss compensation is required to
reach ultra narrow resonances.

4.5 Fano Resonances in Non-Hermitian Photonic
Structures

In photonic structures, light transport can be ingeniously tailored by a judicious com-
bination of optical gain and loss which, rather than merely provide amplification or
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(a)

(b) (c)

Fig. 4.7 Fano resonance in a PT -symmetric Fano-Anderson model. a Schematic of a linear array
of optical cavities/resonators with two side-coupled resonators with optical gain and loss. b Spectral
transmittance T and c reflectance R versus frequency ω of the incident wave for parameter val-
ues V/κ = 0.2, ω0/κ = 0.2, and for γ0/κ = 0 (curve 1), γ0/κ = 0.02 (curve 2) and γ0/κ = 0.2
(curve 3)

attenuation of photons, can deeply modify localization and propagation of light in
ways impossible to realizewith passive structures. One of themost interesting config-
uration of gain and loss in an optical structure is a balanced distribution that respects
the so-called parity-time (PT ) symmetry. PT photonics is a rapidly emerging area
of research, which was initiated about tens years ago in a series of pioneering works
[86–91], inspired by the concept of parity-time symmetry in non-Hermitian exten-
sions of quantum mechanics [92, 93], and subsequently demonstrated in a series of
seminal experiments [94–97]. The literature onnon-Hermitian photonics is extremely
broad, and some special issues and review papers are just appearing [98–101]. In
this section we are not aimed at discussing all facets of PT symmetry in photonics,
rather we just provide some insights into Fano resonances in non-Hermitian photonic
structures.We alsomention that Fano resonance in non-Hermitian transport are found
in other physical fields, such as in coherent transport of electrons in mesoscopic
solid-state systems [102] and in acoustic systems [103]. The interplay between Fano
resonances and exceptional points in non-Hermitian models have been investigated
as well [104–106].

The simplest system to theoretically investigate the impact of gain and loss on
Fano resonances in photonic structures is to consider a non-Hermitian extension of
the Fano-Anderson model [25, 26, 29, 107–109] in a geometrical settings similar to
those shown in Figs. 4.1a and 4.2, in which optical gain and loss are introduced in
the side coupled waveguides/resonators. When nonlinearity is included in the Fano-
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Anderson model, non-reciprocal transmission can be observed [26, 110, 111]. As a
first example, let us consider the PT -symmetric Fano-Anderson model of Fig. 4.7a,
which is studied in [108]. It consists of a linear array of coupled resonators with two
side cavities A and B, one with optical gain γ0 and the other with optical loss −γ0,
attached at the site n = 0 of the array. Indicating by κ the coupling constants between
adjacent resonators in the linear array and by V the coupling constants of the two
side coupled cavities with the n = 0 resonator in the array, in the linear propagation
regime coupled-mode equations for the modal amplitudes cn , cA and cB in the array
and in the two side cavities read

i
dcn
dt

= −κ(cn+1 + cn−1) − V δn,0(cA + cB)

i
dcA
dt

= −Vc0 + (ω0 + iγ0)cA (4.42)

i
dcB
dt

= −Vc0 + (ω0 − iγ0)cB

where ω0 is the resonance frequency offset of the side cavities from the ones of the
linear array. Let us consider a propagative wave at frequency ω = −2κ cos q and
Bloch wave number q > 0 incident from the left side. Since scattering is elastic, a
solution to (4.42) can be searched in the form

cn = exp(iqn − iωt) + r(ω) exp(−iqn − iωt) n ≤ 0

cn = t (ω) exp(iqn − iωt) n ≥ 0 (4.43)

cA = A exp(−iωt) , cB = B exp(−iωt)

where t (ω) and r(ω) are the spectral transmission and reflection amplitudes (for left
incidence side), respectively. They are readily found after substitution of the Ansatz
(4.43) into (4.42) and read

t (ω) =
√
1 − (ω/2κ)2√

1 − (ω/2κ)2 + i V
2

κ
ω0−ω

(ω0−ω)2+γ2
0

, r(ω) = t (ω) − 1. (4.44)

with −2κ < ω < 2κ. Figure 4.7 shows typical examples of spectrum transmittance
T (ω) = |t (ω)|2 and reflectance R(ω) = |r(ω)|2 for increasing values of the nor-
malized gain-loss parameter γ0/κ. The figure demonstrates two noteworthy effects
[108]. The first one is the suppression of the transmission by the degenerate side-
coupled resonators without the gain and loss, i.e. when γ0 = 0. In this case excitation
of the two side-coupled elements results in the resonant reflection at ω = ω0, which
can be explained in terms of the Fano resonance [5]. A weak balanced gain and
loss at the side-coupled cavities, i.e. for γ0 � κ, lifts the degeneracy between the
attached sites, leading to a transmission profile resembling the EIT effect (curve 2 in
Fig. 4.7b, c): z narrow transmission peak, with transmissivity (T = 1 at ω = ω0,
arises inside the transmission dip. However, for strong balanced gain and loss the
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(a) (b)

Fig. 4.8 Nonreciprocal optical transmission based on nonlinear Fano resonance. a Schematic of
the CROW structure with two side-coupled nonlinear optical resonator with gain (A) and loss (B).
b Numerically-computed spectral transmittance T for left (curve 1) and right (curve 2) incidence
sides on a log scale. The amplitude of incident wave, for either left and right incidence sides,
is set equal to one. Parameter values are: κ = 1, γ0 = 0.02, ω0 = 0, VA = VB = 0.5, N = 1,
and χ = 0.0125. The wavelength is defined by λ = 2π/q, where q is the Bloch wave number.
ω(q) = −2κ cos q is the dispersion curve of the tight-binding lattice band. The red-shadowed area
on the right of the graph,around λ = 4.5, corresponds to a bistable behavior. The horizontal arrow
shows the shift of the Fano resonances due to the Kerr nonlinearity in resonators A and B. Figure
(b) is adapted from [26]

side-coupled resonators are out of resonance and any spectral features aroundω = ω0

is washed out (curve 3 in Fig. 4.7b, c).
In a linear system, the transmittance is the same for left and right incidence sides.

However, when a nonlinearity (usually a Kerr-type nonlinearity) is added to the
side-coupled resonators, asymmetric transmission is found, which can be exploited
to realize an optical isolator. Experimental observations of optical non-reciprocity
involving nonlinear PT -symmetric microrings have been recently reported in [110,
111]. Nazari et al. [26] suggested that the observed non-reciprocity may reside in
nonlinear Fano resonances, which can be captured by the simple PT -symmetric
nonlinear Fano-Anderson model shown in Fig. 4.8a. The optical structure is similar
to the one previously considered in Fig. 4.7a, apart from that the two side-coupled
resonators are attached to different sites of the linear array, the gain resonator at
site n = 0 and the loss resonator at site n = N . Also, different coupling coupling
constants VA and VB of the side resonators A and B with the array are assumed.
Coupled mode equations for the modal amplitudes cn , cA and cB in the array and in
the two side cavities read

i
dcn
dt

= −κ(cn+1 + cn−1) − VAδn,0cA − VBδn,NcB

i
dcA
dt

= −VAc0 + (ω0 + iγ0)cA − χ|cA|2cA (4.45)

i
dcB
dt

= −VBcN + (ω0 − iγ0)cB − χ|cB |2cB
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where ω0 is the resonance frequency offset of the side cavities from the ones of
the linear array, γ0 is the gain/loss parameter, and χ measures the strength of the
Kerr nonlinearity in resonators A and B. For this model, spectral transmittance and
reflectance for left and right incidence sides can be computed numerically, following
the procedure detailed in [26]. Owing to nonlinearity, multiple (bistable) states can
be found, as discussed in [108]. Figure 4.8b shows a typical example of transmittance
curves for a left/right incident wave for the model of (4.45). Note that both the shape
and the position of the Fano resonances depend on the direction of the incident
wave, and that for a left (gain-side) incoming wave a red-shift in the transmittance
resonances is found. Such a shift of the Fano resonances induced by nonlinearity
can be exploited to realize non-reciprocal optical transmission and thus an optical
isolator. However, it should be mentioned that the use of nonlinear optical effects to
achieve effective optical is generally limited by the appearance of so-called dynamical
reciprocity [112], although this is not always the case [113].
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Chapter 5
Model of Coupled Oscillators for Fano
Resonances

Benjamin Gallinet

Abstract The use of analogies in numerical simulations and experiments can be a
powerful tool to extract useful information, understand and design optical and elec-
tromagnetic systems based on the Fano effect. The model of coupled oscillators has
been used over decades to interpret the Fano interference effect in a variety of optical,
plasmonic and microwave systems. Fano resonances can be modeled with systems
of weakly or strongly coupled mechanical oscillators, providing insight into the
dynamics of the radiative continuum and the localized resonance. The coupled oscil-
lator model has been revisited and used extensively in optical and electromagnetic
analogs of Fano resonances in the recent years, and has also been the subject of fur-
ther elaborations bringing it quite far from its standard form: this includes an explicit
distinction between non-radiative and radiative losses, the relationship between the
driving force and the radiative damping of the bright oscillator, its extension to non-
linear effects (such as second or third harmonic generation), and the inclusion of a
phase in the coupling term. Further work which has been conducted to understand
the interplay between the bright mode and the dark mode in Fano-resonant systems
is discussed, in particular the effect of modes coupling and non-radiative losses on its
spectral lineshape. For this purpose, the Fano formula and its generalization to lossy
systems have been derived in the coupled oscillator system. Finally, an extended
coupled oscillator model including radiative losses as a result of Abraham-Lorentz
force on accelerated charges is discussed. It allows a model of hybridization taking
into account radiative losses and radiative coupling. Both phenomena of superradi-
ance and subradiance, as well as the interaction between hybridized modes can be
predicted. The purpose of this Chapter is to review these different forms of coupled
oscillator models for Fano-resonant optical and microwave systems, and provide
theoretical and experimental examples of applications.
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5.1 Introduction

In optical and electromagnetic systems, Fano resonances involve the interference
between a radiative continuum and a localized resonance [1–3]. They carry a specific
spectral signature with an asymmetric lineshape, with an asymmetry depending on
the relative phase between the continuum and the localized resonance [4]. In this
framework, the classical analog of electromagnetically induced transparency (EIT)
effect can be seen as a specific case of a Fano interference, when the role of the
continuum is played by a broadband resonance with large radiative losses and the
two resonances are almost tuned [5, 6]. The coupling between the continuum and
the localized resonance strongly determines the response of the system and can
lead to very different types of responses, which do not necessarily qualify as a
Fano resonance [3, 7]. The different loss channels of the resonances, radiative or
non-radiative, also influence in a complex way the Fano resonance [8]. Modeling
these complex resonance and interference effects can be a challenge, and the use of
analogies can be a powerful tool to extract useful information, understand and design
optical and electromagnetic systems based on the Fano effect.

One of the most widespread modeling tool in physics is obviously the classical
oscillator. In particular, the coupled oscillator model has been used extensively in
optical and electromagnetic analogs of Fano resonances in the recent years, and has
also even been sometimes the subject of further elaborations bringing it quite far
from its standard form. The purpose of this Chapter is to review different forms of
coupled oscillator models for Fano-resonant optical and microwave systems, and
provide theoretical and experimental examples of applications. First, the classical
oscillator will be first reviewed and its interpretation to the case of an electromag-
netic resonance will be discussed (Sect. 5.2). The role of non-radiative and radiative
losses through the Abraham-Lorentz force will be discussed. Then the coupled oscil-
lator model will be introduced and illustrated through examples of applications in
plasmonics (Sect. 5.3). This model will be used in Sect. 5.4 to derive the Fano res-
onance formula and its generalization to lossy localized resonances. Its extension to
the electromagnetically induced absorption will be shown. Finally, the generalized
coupled oscillator model, introducing radiative coupling between resonators, allows
formodeling the interaction of subradiance and superradiance of hybridized photonic
modes (Sect. 5.6).

5.2 Oscillator Model

This section aims at reviewing the oscillator model applied and interpreted in the
context of a structure interacting with electromagnetic radiation. The electrons in
the structure oscillate under the excitation of a harmonic electric field generated by
an electromagnetic wave. This interaction can enter a resonant state under certain
conditions. A collection of modes is available in the structure, each with a given



5 Model of Coupled Oscillators for Fano Resonances 111

resonance frequency and damping rate. In general, the full dynamics of the system,
included the resonance frequencies and damping rate of the modes, can be calculated
using e.g. full-field electromagnetic simulation methods or measured experimentally
using far-field or near-field spectroscopy. Around the resonance of a mode at fre-
quency ω0, the bound charges, the polarization density and the electric field show a
dispersion which can be modeled with an harmonic oscillator. A model of harmonic
oscillator taking into account the radiative and non-radiative damping of a collec-
tion of charges in a structure is described in this section. The non-radiative damping
originates from collision events with the cores or other electrons, while the radiative
damping originates from the emission by electrons of radiation when accelerated.

First, consider a single charge q withmassm such as an electron bound to an atom,
so that it is subject to a restoring force from the core. The oscillator is characterized
by its resonance frequency ω0 and damping γi (Fig. 5.1a). The resonance frequency
depends on the dimensions of the structures and on thematerial properties, such as the
refractive index or the plasma frequency for metals [9]. The damping force accounts
for the various collision events with the cores or other electrons. Following Kats
et al. [10], in addition to the internal damping forcemγi ẋ , the charge is experiencing
an additional force mγr

...
x due to radiation reaction, where γr = q2/(6πmε0c3) [11].

This term describes the recoil that the charge feels when it emits radiation, and is
referred to as theAbraham-Lorentz force or the radiation reaction force. The equation
of motion of this charge can be written as:

ẍ + γi ẋ + ω2
0x = (q/m)E0e

iωt + γr
...
x . (5.1)

By assuming a harmonic motion (x = c exp(iωt)E0/|E0|), the steady-state solution
of (5.1) can be written down as:

c = (q|E0|/m)

(ω2
0 − ω2) + iω(γi + ω2γr )

. (5.2)

Thedamping rate of the resonance is therefore the someof the contributions fromnon-
radiative and radiative damping, respectively γi and γr . For a collection of charges
participating to the oscillation in a structure of volume V , each electron is subject
to the same restoring and damping force from the cores. If the structure is small
compared the wavelength, all charges oscillate in phase, with a relative position x′
from the core. The local polarization field is related to the oscillator amplitude by
Ploc = nqx where n is the charge density. Due to the influence of other charges
(screening effect) or the geometry of the structure, only a subset N of the bound
charges oscillate, possibly under different directions. Defining the average polariza-
tion vector P by:

P = q

∫
V n(r)x′(r)dr

∫
V dr

� qNx
V

. (5.3)
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where x is an average amplitude. The total radiation reaction force is proportional to
N 2 and assumed to be equally distributed between the charges, which implies that
the radiation reaction force on a single oscillator is proportional to N . This leads to
the following equation for the average polarization vector for the structure:

P̈ + γi Ṗ + ω2
0P = αω2

0E0e
iωt + Vω2

0

6πε0c3
α
...
P . (5.4)

whereα = Nq2

Vmω2
0
is the polarizability, defined as the system response for aDC electric

field (i.e.
...
P = P̈ = Ṗ = 0). The oscillator model can be equivalently used from

a description in terms of amplitude of charge displacement or polarization field.
Another interpretation uses an effective susceptibility to describe analytically the
system, provided that the resonating structure is much smaller than the wavelength:

P = χε0E0 , (5.5)

where the susceptibility:

χ = Nq2/(Vmε0)

ω2
0 − ω2 + iω(γi + Nω2γr )

. (5.6)

The power loss channels from internal friction and from radiation can be distin-
guished using this model. For a single charge, the absorbed power Pabs(t) is given
by:

Pabs(t) = Re[−mγi ẋ(t)]Re[ẋ(t)] = −mγiω
2|c|2 sin2(ωt + φ) . (5.7)

The average power over one period of oscillation T = 2π/ω is:

〈Pabs〉 = −mγiω
2

2
|c|2 . (5.8)

Similarly, the power lost by radiation Prad(t) is given by:

Prad(t) = Re[−mγr
...
x (t)]Re[ẋ(t)] = −mγrω

4|c|2 sin2(ωt + φ) , (5.9)

and the average power over one period of oscillation by:

〈Prad〉 = −mγrω
4

2
|c|2 . (5.10)

Comparing (5.8) and (5.10), the frequency dependence of the power is different,
which results in a shift of the peak of absorption or scattering cross sections with
respect to the near-field amplitude [10]. Furthermore, both far-field cross sections are
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(b)

(c) (d) (e)

q,m,x(t)(a)

Fig. 5.1 a Oscillator model of a moving charge in a an electric field, where q is the charge,
m is the inertial mass, and x(t) is the displacement from the equilibrium position. b Schematic
of a gold optical antenna (length L = 1 µm, height h = 50 nm, width w = 130 nm) on a silicon
substrate, illuminated by a normally incident plane wave polarized along the antenna axis. The cross
represents the point 4 nm away from the antenna edgewhere the near-field is calculated. c Scattering
and absorption cross-sections numerically calculated (dashed lines) and the model (solid lines). d
Near-field intensity enhancement calculated by the model (solid line) and numerically (dashed line)
at the location identified by the cross, with the incident field subtracted off. eOscillator phase (which
also represents the phase of the near-field). Adapted with permission from [10]. Copyright Optical
Society of America

red-shifted from the near-field amplitude which can be modeled with the oscillator
amplitude |c|2 [10, 12]. As an example, a gold linear plasmonic antenna on a silicon
substrate is considered (Fig. 5.1b) [10]. In Fig. 5.1c–e are shown the scattering and
absorption cross-sections, the near-field intensity at the edge, and the near-field phase,
respectively, for the antenna as calculated numerically (dashed lines). The simulation
results presented in Fig. 5.1c with (5.8) and (5.10) are fitted to obtain the parameters
q,m,ω0 and γi . These parameters are used to reconstruct the spectral position and
lineshape of the near-field intensity (Fig. 5.1d), as well as the phase response of the
antenna (Fig. 5.1e).

5.3 Coupled Oscillator Model

This section aims at introducing the model of coupled oscillators for Fano reso-
nances [2, 6, 13–19]. In this model, an oscillator A with a large damping rate is
subject to an external driving force. This oscillator is the equivalent of the radiative
continuum and is referred sometimes to the bright oscillator. Another oscillator with
a low damping rate, not driven, is the equivalent of the discrete state. After the deriva-
tion of the main equations, their application to plasmonic and microwave systems is
discussed as an example.
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Fig. 5.2 a–e Fano resonance in a conservative system. (a) Electrical circuit analog of Fano reso-
nances: the LC circuit is excited only through its inductive coupling to an RLC circuit. (b) Mechan-
ical model of Fano resonances: two coupled oscillators A and D with resonance frequencies ωa
and ωd respectively. The oscillator A has a damping γa and is forced by an external excitation with
amplitude f . Their coupling constant is g. (c–e) Amplitude of the forced oscillator as a function of
the excitation frequency for different values of detuning ωd − ωa (with ωa = 50.00 s−1, g = 6.00
s−2 and γa = 0.30 s−1). f–j Fano resonance in nonconservative systems. (f) A resistance Rd is
added to the LC circuit. (g) A damping constant γd is added to the oscillator D. (h–j) Amplitude
of the forced oscillator as a function of the excitation frequency for different values of detuning
ωd − ωa (with ωa = 50.00 s−1, g = 6.00 s−2, γa = 0.30 s−1 and γd = 0.02 s−1)

Consider two oscillating charges A and D coupled by a spring of constant g
(Fig. 5.2). Their resonance frequency are ωa and ωd , respectively, and their damping
are γa and γd . A time-harmonic force is applied to oscillator A. The equations of
motion for this system can be written as:

ẍa + γa ẋa + ω2
axa + gxd = (qE0/m)eiωt (5.11)

ẍd + γd ẋd + ω2
dxd + gxa = 0 . (5.12)
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In the following, the force amplitude q|E0| defined in the context of an oscil-
lating charge will be referred sometimes as f for generality. Assuming a time-
harmonic behavior for the response of the oscillators (xd = cd exp(iωt)E0/|E0| and
xa = ca exp(iωt)E0/|E0|), the amplitude of the response of the oscillator A is given
by:

ca = ω2
d + iγdω − ω2

(ω2
a + iγaω − ω2)(ω2

d + iγdω − ω2) − g2
(q|E0|/m) . (5.13)

The amplitude of oscillator A is shown for different parameters in Fig. 5.2. Several
observations can be made from (5.13) and Fig. 5.2:

1. The amplitude of oscillator A undergo a local minimum around the resonance
frequency of oscillator D.

2. When the frequency of oscillatorsAandDare equal, a symmetric dip is observed.
When they are detuned from each other, an asymmetric lineshape is observed,
composed of a local minimum and local maximum. Its symmetry switches
together with the detuning. This is a signature of a Fano-like interference.

3. When a damping is added to the oscillator D, the amplitude of constructive and
destructive interferences is damped.

4. When the oscillator is damped, the width of the Fano resonance increases with
the coupling between the oscillators and the intrinsic damping of the oscillator
D.

5. The modulation depth of the Fano resonance increases with the oscillators cou-
pling.

From (5.12), the amplitude of oscillator D is:

cd = − g

(ω2
a + iγaω − ω2)(ω2

d + iγdω − ω2) − g2
(qE0/m) . (5.14)

Considering a large damping and a response of the bright oscillator slowly varying
compared to the response of the dark oscillator, the lineshape of (5.14) is a lorentzian-
like lineshape around the resonance frequency of the dark oscillator, with amplitude
proportional to the coupling g.

The mechanical power Pa(t) transferred from the electric field to oscillator A is:

Ptot(t) = Re[F(t)]Re[ẋ(t)] = (qE0) cos(ωt)ω|ca| sin(ωt + φa) (5.15)

where tan(φa) = Im(φa)/Re(φa). The average power over one period of oscillation
T = 2π/ω is:

〈Ptot(t)〉 = 1

T

T∫

0

P(t)dt = qE0ω

2
Im(ca) . (5.16)
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Replacing ca by its expression in (5.13) yields:

〈Ptot(t)〉 = (qE0)
2ω

2m
Im

(
ω2
d + iγdω − ω2

(ω2
a + iγaω − ω2)(ω2

d + iγdω − ω2) − g2

)

(5.17)

The coupled oscillator model has been refined in [20] to include the coupling of the
radiative resonator to the electromagnetic fields. A radiation damping term is intro-
duced in the bright oscillator as well as in the external driving force. The model is
able to link surface conductivity to scattering, group delay and absorbance in a meta-
material surface. It has been applied experimentally in microwaves metamaterials
supporting EIT or electromagnetically induced absorption (EIA).

The coupled oscillator model has been used for example in [21] to quantitatively
analyze a Fano-resonant system,more precisely a plasmonic analog of EIT (Fig. 5.3).
In this system, a single gold nanorod supporting a dipolar plasmonic mode is placed
on top of two parallel nanorods supporting a quadrupolar mode. The dipolar mode
interacts strongly with the radiation continuum and has a large bandwidth. On the
other hand, the quadrupolar mode has comparatively very small radiative losses.
When the single top nanorod is centered with respect to the bottom nanorods, the
quadrupolar mode is not excited for symmetry reasons. As the top nanorod is offset s
from the center, a coupling between the dipolar and quadrupolar mode is generated.
A dip in the transmittance appears, which is the signature of a Fano-like interference.
The width of transmittance dip increases as s is increased, independently from the
resonance frequency or damping of the modes, which makes it an interesting param-
eter to study. The absorbance spectra are fitted with (5.17) and the values of the fitting
parameters reported in Fig. 5.3c. It can be observed that the only parameter which
varies as the offset s is increased is the oscillator coupling. The damping parameter
of the quadrupolar mode is comparable to the value of the Drude damping of gold at
this frequency range. The low radiative losses can be understood from the cancella-
tion of the dipolar moment. On the other hand, the damping parameter of the dipolar
mode is significantly larger due to its high radiative losses. This example has shown
how quantitative information on the properties of the resonators can be extracted
from a fit with the coupled oscillator model. In another more recent example [22],
the line-shape of the transmitted power of a THz split ring resonator array has been
fitted with the coupled oscillator model in order to retrieve the coupling and damping
coefficients of the modes.

The coupled oscillatormodel can also be used to understand the Fano resonance in
non-linear systems. In [16], the coupled oscillatormodel is extended to the non-linear
regime and applied to the case of metallic photonic crystal slabs. In the anharmonic
coupled oscillator model the bright and the dark modes can be treated as classical
harmonic oscillators with a third order perturbation term [16]. In [23] a fitting of
the measured linear extinction spectra in a dolmen-like structure with the expression
for the linear extinction yields the linear optical properties of the coupled oscillator
system. Subsequently, the solution in first order perturbation describing the third
harmonic (TH) response can be calculated as the third power of the time-dependent



5 Model of Coupled Oscillators for Fano Resonances 117

Tr
an

sm
itt

an
ce

/
re

fle
ct

an
c e

0.8

0.6

0.4

0.2

0

0.3

0.2

0.1Ab
so

rb
an

ce

0.4 ω
Model

0

0

0

Tr
an

sm
itt

an
ce

/
re

fle
ct

an
c e

0.2

0.8

0.6

0.4

Ab
so

rb
an

ce

0.3

0.2

0.1

140 160 180 200120 220

Frequency (THz)
140 160 180 200120 220

Frequency (THz)

0

δ γ1 γ2κ
80

60

40

20

0

80 1006040200

s (nm)

Fr
eq

ue
nc

y 
(T

H
z)

(b) (c) (d)

(e) (f) (g)

(h)

(a)

Fig. 5.3 a Scanning electron micrographs of the fabricated structures. b Experimental absorbance
as a function of frequency for different rod position detuning s. c Result of fitting the absorbance
spectra with (5.17). Adapted from [21]

linear response. The transfer of TH energy between both modes, as well as the linear
response function at the TH frequency have been neglected since they are small
and spectrally flat, respectively. Hence, in the oscillator model the sources of the
nonlinearity are the displacements of the unperturbed solution. Applied to a dolmen-
like plasmonic structure, this oscillator model successfully predicts the TH spectrum
in comparison to the measured and computed spectra with finite elements.

5.4 Resonance Formulas

This section aims at deriving the equivalent of the Fano formula from an oscillator
model, and its generalization to a lossy system. Such derivations have been reported
in [8, 24, 25].An oscillator is coupled to a continuumwhich dynamics are determined
by a general operator. First, the case of a non-lossy oscillator is considered, from
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which the equivalent of the Fano formula is derived. With a lossy oscillator, the Fano
interference is damped and itsmodulation depth depends on the coupling between the
oscillator and the continuum. An expression for the different resonance parameters
is derived, and applied to the case where the continuum is a highly damped oscillator.
The regimes of low, critical and strong coupling are discussed and illustrated with
examples.

5.4.1 Derivation of Resonance Formula Without Intrinsic
Damping

In this model, an oscillator D with displacement xd is coupled with coupling con-
stant g to a continuum with displacement xa . For generality, it is assumed that the
dynamics of the continuum is determined by the linear time-differential operator L.
The oscillator D is for the moment not subject to a damping force. An external force
f (t) is applied to the continuum. The equations of motion of this general system are:

Lxa + gxd = f (5.18)

ẍd + ω2
d xd + gxa = 0 . (5.19)

Taking the Fourier transform of (5.18) and (5.19) yields:

Lωca + gcd = f̂ (5.20)

(ω2
d − ω2)cd + gca = 0 , (5.21)

where ca(ω), cd(ω), Lω and f̂ (ω) are the Fourier components of the displacement
xa(t), xd(t), the operator L and the force f (t), respectively. For simplicity, the
dependencies in ω are kept implicit, except for the operator Lω . It is assumed that
the continuum slowly varies as a function of ω and that around the resonance can be
evaluated as Lωd = Ld . The amplitude of the response of the continuum is written
as:

ca = ω2
d − ω2

Ld(ω
2
d − ω2) − g2

f̂ . (5.22)

Around the frequency resonance ωd of the oscillator D, energy is resonantly trans-
ferred between the two systems. This transfer occurs at a frequency that is shifted
from ωd by:

� = − g2

|Ld |2
Re(Ld)

ωd
, (5.23)
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Fig. 5.4 Amplitude of the forced oscillator as a function of the excitation frequency for a a real
coupling constant g = 2.00 s−2 and b an imaginary coupling constant g = 2.00i s−2 (with ωa =
50.00 s−1, ωd = 50.30 s−1 and γb = 0.30 s−1). Dots: calculated directly from (5.22); solid line:
calculated from (5.25)

The resonance width� is solely determined from the coupling between the oscillator
and the continuum:

� = g2Im(Ld)/|Ld |2 (5.24)

We defined the reduced frequency κ = (ω2 − ω2
d − ωd�)/�. From (5.22), we derive

the response of the continuum as a function of the reduced frequency:

|ca|2 = | f̂ |2
|Ld |2

(κ + q)2

κ2 + 1
, (5.25)

where the asymmetry parameter q is given by:

q = −Re(Ld)

Im(Ld)
, (5.26)

Equation (5.25) is equivalent of the Fano formula such as formulated in [4] applied
to a mechanical oscillator. It is valid if the complex amplitude of the continuum does
not strongly vary within the Fano resonance frequency interval. In such conditions,
the agreement between (5.25) and (5.22) is perfect, as shown in Fig. 5.4a. In the case
of a purely imaginary coupling constant g = ig′, (5.22) becomes:

ca = ω2
d − ω2

Ld(ω
2
d − ω2) + g′2 f̂ . (5.27)

A physically meaningful response of the system requires that the resonance has a
positive width. As a result, the resonance frequency shift and asymmetry parameter
reverse their sign for a purely imaginary coupling:
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q = Re(Ld)

Im(Ld)
, (5.28)

and

� = g′2

|Ld |2
Re(Ld)

ωd
. (5.29)

These results imply in particular that if a π/2 phase retardation is introduced in the
oscillators coupling, the conditions of destructive and constructive interference are
reversed (Fig. 5.4b).

The response of the oscillator D around its resonance frequency is derived from
(5.21) and normalized to the response of the uncoupled system A:

|cd |2 |Ld |2
| f̂ |2 = |Ld |2

Im(Ld)2�c

1

κ2 + 1
. (5.30)

Its line shape is a symmetric lorentzian whose amplitude and width are controlled
by the coupling between the two systems. As the coupling decreases, the energy
transferred from the continuum to the oscillator is stored longer and its amplitude
increases.

The role of the radiative continuum can be played by a highly damped oscillator,
for example in plasmonic systems. For the case of two coupled oscillators, Lω =
ω2
a − ω2 and Ld = ω2

a − ω2
d . The resonance parameters then become:

� = 2g2γaωd

|Ld |2 , q = ω2
d − ω2

a

2ωdγa
, � = g2

|Ld |2
ω2
d − ω2

a

ωd
. (5.31)

For high frequencies (i.e. ωa,ωd � γa), (5.25) can be approximated as a function
of single powers of the frequency:

(2ωa)
2

| f̂ |2 |ca|2 = 1

(ω − ωa)2 + γ2
a

(ω − ω0 + qγ)2

(ω − ω0)2 + γ2
, (5.32)

where the spectral width in frequency units is given by:

γ = �

2ωd
, (5.33)

the resonance frequency by:

ω0 = ωd + �

2
, (5.34)
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and the asymmetry parameter by:

q = ωd − ωa

γa
. (5.35)

5.4.2 Derivation of Formula Including Intrinsic Damping

We now introduce a damping force to the oscillator D, from which the impact of
intrinsic losses on the resonance properties and lineshape will be assessed. From
(5.18) and (5.19), the equations of motion become in this case:

Lxa + gxd = f (5.36)

ẍd + 2iγd ẋd + ω2
d xd + gxa = 0 . (5.37)

Taking the Fourier transform of (5.36) and (5.37) yields:

Lωca + gcd = f̂ (5.38)

(ω2
d + 2iγdω − ω2)cd + gca = 0 , (5.39)

where ca(ω), cd(ω), Lω and f̂ (ω) are the Fourier components of the displacement
xa(t), xd(t), the operator L and the force f (t), respectively. For simplicity, the
dependencies in ω are kept implicit, except for the operator Lω . It is assumed that
the continuum weakly varies as a function of ω and that around the resonance can be
evaluated as Lωd = Ld . The amplitude of the response of the continuum is written
as:

ca � ω2
d + 2iγdω − ω2

Ld(ω
2
d + 2iγdω − ω2) − g2

f̂ . (5.40)

Around the frequency resonance ωd of the oscillator D, energy is resonantly trans-
ferred between the two systems. This transfer occurs at a frequency that is shifted
from ωd by:

� = − g2

|Ld |2
Re(Ld)

ωd
, (5.41)

The resonance width is the sum of two contributions �i = 2γdωd from intrinsic
losses and �c = g2Im(Ld)/|Ld |2 from the coupling between the oscillator D and the
system A:

� = �i + �c . (5.42)
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Fig. 5.5 Amplitude of the forced oscillator as a function of the excitation frequency for a a real
coupling constant g = 4.00 s−2,ωd = 50.30 s−1, b g = 6.00 s−2,ωd = 49.70 s−1, c g = 4.00i s−2,
ωd = 49.70 s−1 (with ωa = 50.00 s−1, γa = 0.3 s−1 and γd = 0.02 s−1. Dots: calculated directly
from (5.40); solid line: calculated from (5.43)

The reduced frequency κ is defined by κ = (ω2 − ω2
d − ωd�)/�. From (5.40), we

derive the response of the oscillator A as a function of the frequency:

|ca|2 = | f̂ |2
|Lω|2

(κ + q)2 + b

κ2 + 1
, (5.43)

where the asymmetry parameter q is given by:

q = − Re(Ld)

Im(Ld)(1 + �i/�c)
, (5.44)

and the modulation damping parameter b by:

b = �2
i

(�c + �i )2
. (5.45)

Equation (5.43) is a generalization of the Fano formula such as formulated in [4]
to the case of a resonator with intrinsic losses. It is valid if the complex amplitude
of the continuum does not strongly vary within the resonance frequency interval.
In such conditions, the agreement between (5.43) and (5.40) is perfect, as shown in
Fig. 5.5. A derivation of this formula from Maxwell’s equations and the Feschbach
formalism [26, 27] has been reported in [8, 24, 25]. The resonance parameters
are expressed in terms of the electromagnetic field distributions of the radiative
continuum and the localized resonant mode.

The response of the oscillator D around its resonance frequency is derived from
(5.39) and normalized to the response of the uncoupled system A:

|cd |2 |Ld |2
| f̂ |2 = |Ld |2�c

Im(Ld)2(�c + �i )2

1

κ2 + 1
. (5.46)



5 Model of Coupled Oscillators for Fano Resonances 123

As the coupling decreases, the intensity |cd |2 reaches a maximum value for �c = �i .
This is the so-called critical coupling condition.As the coupling decreases, the energy
is stored longer in the oscillator D but is subject to stronger damping, so that its
intensity vanishes.

For the case of two coupled oscillators A and D with respective resonance fre-
quencies ωa and ωd and damping γa and γd , Lω = ω2

a − ω2 + 2iγaω and Ld =
ω2
a − ω2

d + 2iγaωd . The resonance parameters then become:

�c = 2g2γaωd

|Ld |2 , q = ω2
d − ω2

a

2ωdγa(1 + �i/�c)
, � = g2

|Ld |2
ω2
d − ω2

a

ωd
. (5.47)

Equation (5.43) is valid if the complex amplitude of the oscillator A does not strongly
vary within the Fano resonance frequency interval.

For high frequencies (i.e. ωa,ωd � γa), (5.43) can be approximated as a function
of single powers of the frequency:

(2ωa)
2

| f̂ |2 |ca|2 = 1

(ω − ωa)2 + γ2
a

(ω − ω0 + qγ)2 + bγ2

(ω − ω0)2 + γ2
, (5.48)

where the spectral width in frequency units is given by:

γ = �

2ωd
= �i

2ωd
+ �c

2ωd
:= γi + γc , (5.49)

the resonance frequency by:

ω0 = ωd + �

2
, (5.50)

and the shape parameters by:

q = ωd − ωa

γa(1 + γi/γc)
, b = γ2

i

(γc + γi )2
. (5.51)

The oscillator amplitude in oscillator D becomes from (5.46):

|cd |2 ∝ γc

(γc + γi )2
(5.52)

Figure 5.6 shows an example of the critical coupling condition applied to coupled
oscillators. The two oscillators have different resonance frequencies, and the Fano
modulation is asymmetric. Themodulation strength increasesmonotonouslywith the
coupling. The amplitude of the oscillator D increases as a function of the oscillator
coupling and reaches a maximum when the coupling γc balances intrinsic losses γi .
As the coupling increases, the width γ of the modulation becomes comparable to
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Fig. 5.6 Amplitude of the oscillators aAand bDas a function of the frequency, withωa = 1.599 eV,
γa = 0.060 eV, ω0 = 1.650 eV, and γi = 0.012 eV. The blue, green, and red curves correspond to γc =
0.003 eV, γc = 0.009 eV, and γc = 0.082 eV, respectively. The solid and dashed line correspond to the
direct evaluation from (5.13) and to the evaluation with (5.48), respectively. c Symmetry breaking in
a plasmonic nanostructure. d Reflectance of a two-dimensional array of such structures. The black,
blue, red, and green curves correspond increasing symmetry breaking s. The symbols I, II, and III
represent the three different coupling regimes. e Surface charge distribution at a resonant energy
1.61 eV for symmetric and non-symmetric cases, respectively. f Spectral width of the reflection
dip as a function of the symmetry breaking. The solid blue and the dashed black lines represent the
total and the intrinsic width, respectively. g Modulation damping b as a function of the symmetry
breaking. The solid blue line corresponds to the ratio of the reflectance at a photon energy of 1.61
eV in the symmetry broken system (s �= 0) to the reflectance in the symmetric system (s = 0) at the
same energy. The black circles correspond to calculations using panel (f) and the expression of the
modulation damping b in (5.51). h Electric field intensity enhancement related to the quadrupolar
mode at 1.61 eV as a function of the symmetry breaking (location: red point in panel (c)). The black
circles correspond to calculations using panel (f) and (5.52). Adapted from [25] with permission.
Copyright American Chemical Society
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the width γa of the oscillator A. For strong coupling, a splitting in the response of
the oscillator D is observed, each individual resonance being a normal mode of the
composite system, and the dip in the spectral response of oscillator A of the system
is not Fano interference but the sum of two Lorentzians centered on each hybridized
mode frequency [25, 28, 29]. This limiting case is the classical analogue of Autler-
Townes splitting (ATS) [7, 15, 30–32]. In [32], analytical profiles of EIT and ATS
derived froma coupled resonatormodel are used to fit transmission spectra of coupled
whispering gallery modes. A quantitative criterion to discriminate between EIT and
ATS is presented. When the coupling strength of the resonators is low and the decay
rate γd of the dark resonator is much lower than the decay rate of the bright resonator
γa , the EIT model is favored. If the decay rates of the resonators are comparable
and the coupling is strong, the ATS model is favored. Finally, if the decay rates of
the resonators are comparable and the coupling is low, the EIT model is favored. A
transition regime can occur when the difference in decay rates is comparable to the
critical coupling strength. This procedure has also been applied experimentally to a
system of coupled mechanical oscillators [19].

Figure 5.6c–h shows an example in a plasmonic system similar to Fig. 5.3, for
near-field and far-field properties have been numerically calculated. The offset from
the symmetric position allows to directly tune the coupling between the dipolar and
quadrupolar modes. As the mode coupling is increased, the modulation becomes
more pronounced: the modulation damping ranges from 1 in the weak coupling
regime (γc 	 γi ) and decreases monotonically to 0 in the strong coupling regime
(γc � γi ). For weak coupling, the modulation amplitude is extremely sensitive to the
symmetry breaking. In Fig. 5.6h, the electric field intensity enhancement associated
with the quadrupolar mode initially increases along with the modes coupling but
reaches a maximum for a specific value of the mode coupling and then decreases.
The local near-field intensity enhancement depends on the total energy stored by
the mode and the modal field distribution (5.52). The values of damping γc and γi
extracted from Fig. 5.6f enables to predict the behavior of the modulation damping
(Fig. 5.6g) and the near-field enhancement from the quadrupole (Fig. 5.6h) using
(5.51) and (5.52), respectively.

5.5 Electromagnetically Induced Absorption

Electromagnetically induced absorption (EIA) differs from EIT in the sense that
the destructive interference generating a window of transparency is changed into
a constructive interference. In an optical system retardation is present and can be
harnessed for phase tuning by increasing the relative distance between resonators.
Consider the two oscillators A andD of the standard coupled oscillator mode coupled
by a complex spring of constant g = |g|eiφ whereφ is the phase delay in the coupling.
This models the classical equivalent of electromagnetically induced absorption [33,
34]. The equation of motion becomes:
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ẍa + γa ẋa + ω2
axa + |g|eiφxd = (qE0/m)eiωt (5.53)

ẍd + γd ẋd + ω2
d xd + |g|eiφxa = 0 . (5.54)

This equation can be written under matrix form:

(
ω2
a − ω2 − iγaωa |g|eiφ

|g|eiφ ω2
d − ω2 − iγdωd

) (
ca
cd

)

=
(
f
0

)

, (5.55)

from which the oscillators amplitude can be found by matrix inversion:

(
ca
cd

)

= f

(ω2
a + iγaω − ω2)(ω2

d + iγdω − ω2) − |g|2e2iφ
(

ω2
d + iγdω − ω2

|g|eiφ
)

.

(5.56)

The energy absorbed by the system is equal to the energy transferred by the driving
force to oscillator A. Following the procedure for the derivation of (5.17) yields the
total power transferred to the system:

〈Ptot(t)〉 = (qE0)
2ω

2m
Im

(
ω2
d + iγdω − ω2

(ω2
a + iγaω − ω2)(ω2

d + iγdω − ω2) − |g|2e2iφ
)

.

(5.57)

Assuming ωd � ωa in an EIT-like system, the absorption at ω = ωd = ωa satisfies:

〈Ptot(t)〉 ∝
(

γdωd

γaγdω
2
d + |g|2 cos(2φ)

)

. (5.58)

The amplitude of absorption can be therefore be tuned using the phase of the cou-
pling coefficient, resulting to a constructive or destructive interference. However,
the phase and amplitude of the coupling coefficient are linked in a realistic system.
Those constraints render the optimal condition of absorption enhancement difficult
to achieve.

As an example of EIA effect, Figure 5.7 shows the transmittance, reflectance and
absorbance calculated numerically in a system similar to the one of Figure 5.3 sup-
porting a plasmonic EIT. Here, the distance dz from the top nanorod supporting a
dipolar mode to the bottom nanorods support a quadrupolar mode is tuned, which
has the effect to change the phase delay in the coupling between the dipolar and
the quadrupolar modes. This is equivalent to changing the phase φ in (5.53). When
the vertical spacing is increased, the near-field coupling between the dipolar and
quadrupolar modes is decreased as expected. However, the modulation of the dip
in reflectance becomes much stronger than that of the peak in transmittance, indi-
cating a change in absorbance. At the quadrupole resonance position, a very strong
absorbance peak is observed for a vertical spacing of approximately dz = 260nm
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Fig. 5.7 a Parameters of the system supporting the classical equivalent of EIA. The phase difference
between the dipolar and the quadrupolar modes can be tuned by changing the vertical spacing dz .
bResulting calculated transmittance, reflectance, and absorbance spectra as a function of the vertical
spacing dz . Adapted from [34] with permission. Copyright Optical Society of America

(Fig. 5.7b). In this condition, the retardation phase is matched to obtain constructive
interference.

Figure 5.8 shows experimental and numerical spectra corresponding to the struc-
ture of Fig. 5.7 fitted to the harmonic oscillator model (5.57). The fitting parameters
are plotted and their trend can be visualized. As expected, increasing the offset S
yields an increase in the coupling parameter |g|. The coupling phase parameter can be
extracted from the fit, and shows a dependence in the coupling strength. Finally, the
fitting parameters show that the quadrupolarmode damping rate is in fact smaller than
the dipolar damping rate, as expected. However, interestingly the dipolar damping
rate decreases consistently with increasing coupling strength while the quadrupolar
damping rate increases.

5.6 Radiative and Non-radiative Lifetimes in Strongly
Coupled Systems

In some Fano-resonant systems such as oligomers [35–37] or concentric ring res-
onators [38, 39], the continuum and the discrete state are supported by the same set
of nanostructures. In such systems, hybridization of modes occur to form bonding



128 B. Gallinet

(a) (b)

(c) (d)

a

a

d

d

a
d

a
d

|g
|

|g
|

Fig. 5.8 a, b Fit curves (dashed) of the coupled oscillator model with a complex coupling coef-
ficient, (5.57), to the (a) experimental and (b) calculated absorbance spectra (solid graycurves).
c, d Retrieved fit parameters |g|, φ, γd , and γa . Adapted from [33] with permission. Copyright
American Chemical Society
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and anti-bonding modes. One of the resulting modes has a very high dipole moment
and radiation loss, is referred as the superradiant mode and plays the role of the
continuum. The other mode resulting from the hybridization has a very low dipole
moment, almost vanishing, is referred as the subradiant mode and plays the role
of the discrete state. Both superradiant and subradiant modes are supported by the
same nanostructures. In the standard oscillator model (5.11) the oscillators do not
directly have a correspondence with the structure, which makes an interpretation
difficult. The Fano interference results in the scattering spectrum by driving only
the superradiant mode with an external field and the damping of the two oscillators
is prescribed a priori. In this Section, an oscillator model of hybridization taking
into account radiative losses and radiative coupling is presented. Both phenomena of
superradiance and subradiance, as well as the interaction between hybridized modes
are modeled.

5.6.1 Extended Coupled Oscillator Model

In Sect. 5.2, an oscillator model taking into the radiation reaction force, proportional
to the third derivative of the dipole amplitude, has been described. In this section,
the model is extended to a system of two coupled oscillators and is referred as the
extended coupled oscillator (ECO)model in the following. In contrast to the standard
coupled oscillator model, the oscillators represent the original diabatic modes of the
system and are characterized by resonant frequencies ω1, ω2 and damping γ1, γ2
accounting for nonradiative losses. Nonradiative damping in a nanoparticle is a local
quantity that only depends on the local plasmon oscillation and is independent of
any dissipation in nearby systems. In contrast, radiative damping is a collective
effect exhibiting interference, i.e.. sub- or superradiance. The radiative damping of
two dipolar oscillators is proportional to the total dynamical dipole moment of the
system, influenced by the individual polarizabilities of the oscillators (5.4). The
external excitation is represented by forces applied on both oscillators and is here for
simplicity assumed to be in phase, which can be justified when the spatial extension
of the system is smaller than a quarter wavelength of the incident light. The net
force on each oscillator is proportional to their polarizabilities (5.4). The equations
of motion can then be written in terms of polarization of the oscillators [40]:

P̈1 + γi1Ṗ1 + ω2
1P1 + gP2 = α1ω

2
1E0e

iωt + 1

6πε0c3
[α1V1ω

2
1

...
P1 + α2V2ω

2
2

...
P2]
(5.59)

P̈2 + γi2Ṗ2 + ω2
2P2 + gP1 = α2ω

2
2E0e

iωt + 1

6πε0c3
[α1V1ω

2
1

...
P1 + α2V2ω

2
2

...
P2] .

(5.60)
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where α1 = (N1q)2/(V1mω2
1) and α2 = (N2q)2/(V2mω2

2) are the respective polar-
izability of the oscillators and V1 and V2 their respective volume. Assuming an
harmonic time-dependence of the polarization, (5.59) and (5.60) can be written in a
matrix form:

(
ω2
1 − ω2 + iωγi1 + iω3γr1 g + iω3γr2

g + iω3γr1 ω2
2 − ω2 + iωγi2 + iω3γr2

)(
P1

P2

)

=
(

γr1
γr2

)

E′
0 ,

(5.61)

where the radiative damping coefficient is given by:

γrn = (6πc3ε0)αnω
2
n , (5.62)

and E′
0 = 6πc3ε0E0. The radiative damping term appears both in the diagonal and

coupling elements of the equation of motion matrix in (5.61). Equation (5.61) can
be written as:

(
�1 �2

�1 �2

) (
P1

P2

)

=
(

γr1
γr2

)

E′
0 . (5.63)

where

�n = ω2
n − ω2 + iωγin + iω3γrn , (5.64)

and

�n = g + iω3γrn . (5.65)

Inverting the matrix in (5.61) leads to

(
P1

P2

)

= 1

�1�2 − �1�2

(
�2 −�1

−�2 �1

) (
γr1
γr2

)

E′
0 . (5.66)

Such a model can be applied to a system of coupled antennas, as shown in
Fig. 5.9. The central antenna is modeled by a diabatic oscillator, while the outer
nanorods by the other diabatic oscillator. They are respectively named DN and DA
in the following. A fit of the model with measured and simulated scattering spec-
tra shows a good agreement. The squared modulus of the sum of the polarization
amplitudes, |P1 + P2|2, represents light scattering efficiency of the system and is
used to model the scattering spectrum. A first inspection of the scattering spectrum
shows a Fano-type resonance, which takes its origin from the coupling between the
hybridized superradiant and subradiantmodes (referred asAB andAD, respectively),
as will be discussed in the following. The superradiant and subradiant modes can be
also individually driven using in-phase or out-of-phase excitation of the individual
diabatic oscillators [41].
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Fig. 5.9 a Dark-field measurements, b simulations of scattering cross section, c fit with the ECO
model, and d SEM pictures (scale bar 100 nm) of structures with constant nanorods length L =
120nm and increasing antenna gap size from 5 to 50 nm. e Plasmon hybridization diagram with
the spectral position of the diabatic (dashed lines) and adiabatic modes (solid red and blue lines)
versus the gap width. f Resonance wavelengths of the diabatic modes extracted from the fitting with
the ECO model (black) and coupling constant g (blue). g Schematics of Coulomb interaction for
different gap widths. For small gaps, the ABmode is at higher energy than AD because of repulsive
forces between antenna and nanorods, while for large gaps, forces are attractive and the effect is
opposite. Adapted with permission from [40]. Copyright American Chemical Society

5.6.2 Superradiance and Subradiance in Hybridized Modes

We now wish to express this equation in terms of hybridized mode, when one is
superradiant and the other subradiant. We perform a change of basis expressed from
the individual dipoles P1 and P2 into a basis of dipoles oscillating in phase Pb =
1/

√
2(P1 + P2) or out of phasePd = 1/

√
2(P1 − P2). The system of (5.63) becomes
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Let us define the resonance frequency of the subradiant mode by:

ωd =
√

ω2
1 + ω2

2

2
− g , (5.68)

and the resonance frequency of the superradiant mode by:

ωb =
√

ω2
1 + ω2

2

2
+ g . (5.69)

Their respective damping coefficient is given by:

γd = γi1 + γi2

2
, (5.70)

and

γb = γi1 + γi2

2
+ ω2(γr1 + γr2) . (5.71)

Equation (5.67) then becomes:
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E′
0 . (5.72)

The resonance frequency of the hybridized modes, subradiant and superradiant, cor-
responds to the well known model of strongly coupled oscillator model, including
Rabi splitting and the avoided crossing [42], but also provides an expression for their
radiative and non-radiative lifetimes.

An example in a plasmonic structure is shown in Fig. 5.9. The geometry of the
plasmonic structure plays a major role in determining the energies of the diabatic and
adiabatic modes. Fig. 5.9f shows a dependence on the coupling coefficient g from
the gap width. The coupling between the diabatic oscillators g is tuned by the gap
distance in the central antenna: a fit with the ECO models reveals that it undergoes a
change of sign which can be explained from electrostatic arguments (Fig. 5.9g). The
sign of the detuning between the superradiant and subradiant modes can be changed.
For zero coupling, the adiabatic modes are not defined and there is a discontinuous
jump in Fig. 5.9e. This is a fundamentally different behavior from standard avoided
crossings, where the interaction remains finite and the two adiabatic states repel each
other. The unusual phenomenon of a sign change in the coupling between the antenna
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and nanorodmodes can be understood from the schematic in Fig. 5.9g: as the antenna
gap increases, the Coulomb interaction changes sign from repulsive to attractive.

The coupling coefficients between the superradiant and subradiant modes are:

�bd = ω2
1 − ω2

2

2
+ iω(γi1 − γi2)

2
, (5.73)

and

�db = ω2
1 − ω2

2

2
+ iω(γi1 − γi2)

2
+ iω3(γr1 − γr2) . (5.74)

When the polarizability and intrinsic damping of the oscillators is nearly equal, i.e.
the nanoparticles are nearly equal in terms of geometry and amount of carriers, one
can approximate γi1 � γi2 and γr1 � γr2, yielding:
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0
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. (5.75)

This system of equation is equivalent describes a highly damped radiative resonator
coupled to a non-radiative resonator. This makes it equivalent to the standard model
of coupled oscillators (5.11) and the absorbed power can be calculated equivalently.
However, the radiative and non-radiative characters result from hybridization of two
radiative resonators. As an illustration, we consider the influence of the nanorods
length on the response of the system. Normalized experimental scattering spectra
as well as simulations with corresponding oscillator model fitting and SEM pictures
for four different nanorods lengths are presented in Fig. 5.10. The calculated spectra
agree very well with the measured spectra as well as with the ECO model. Several
effects caused by the tuning can be immediately observed: a clear red shift of the
superradiant peak, a width tuning of the Fano resonance and the disappearance of
the Fano resonance for a specific nanorods length. The first effect is simply due to
the fact that increasing the nanorods length causes a red shift of the nanorods mode
and a resulting red shift of the hybridized modes. It can be seen from (5.75) that the
coupling between the hybridized modes depends on the energy difference between
the two diabatic modes. Therefore, from the knowledge on the influence of modes
coupling on the Fano resonance (Sects. 5.3 and 5.4), the modulation depth of the
Fano resonance can be controlled.

In Fig. 5.10e, a plasmon hybridization diagram illustrates the effects of tuning
the energy of nanorods mode. As the uncoupled nanorod resonance (DN, black
dashed line) wavelength approaches that of the uncoupled antenna (DA, gray dashed
line), the hybridized modes exhibit an avoided crossing behavior. The positions of
AB and AD are extracted from the absorption peaks using (5.43). The anticrossing
behavior implies that the magnitude and sign of the coupling remains unchanged.
When the diabatic modes cross, which occurs for L = 87.5 nm, the width of the Fano
resonance goes to a minimum and the Fano line shape is completely damped, leading
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Fig. 5.10 a Dark-field measurements, b simulations of scattering cross section, c fit with ECO
model, and d SEM pictures (scale bar 100 nm) of systems with different nanorods lengths ranging
from 70 to 150 nm and antenna gap fixed at 25 nm. e Plasmon hybridization diagram with the
spectral position of diabatic and adiabatic modes versus nanorods length. f AB and AD mode
resonance widths versus nanorods length extracted with a fitting using (5.43). Adapted from [40]
with permission. Copyright American Chemical Society

to a single Lorentzian peak for the scattering cross section that corresponds then to a
pure bright mode. In Fig. 5.10f, the width associated with the AD mode goes toward
the minimum for nanorod lengths approaching 87.5 nm while the width of the AB
mode reaches a maximum. Because of the overlap of the absorption peaks around the
anticrossing point, the modal widths cannot be extracted from the absorption spectra
but are instead determined using (5.43) that provide position and mode width of the
hybridized modes by fitting the scattering cross section.

The ECOmodel has also been used to predict some effects in the second harmonic
generation (SHG) from plasmonics structures [43]. The oscillation amplitudes of the
diabatic oscillators have been extractedwith the ECOmodel. The convolution of their
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respective SHG emission pattern with the linear oscillator amplitude from the ECO
model corresponds very well to the emission pattern of the numerically computed
SHG from the system.

5.7 Summary

The model of coupled oscillators has been used over decades to interpret the Fano
interference effect in a variety of optical, plasmonic and microwave systems. In this
model, one resonator with a large damping rate is subject to an external driving force.
This so-called bright oscillator is the equivalent of the radiative continuum. Another
so-called dark oscillator with a low damping rate, not driven, is the equivalent of
the discrete state. The high interest for this model has triggered further research to
extend its description to further effects or to more rigorously and accurately model
the Fano interference, electromagnetically induced transparency (EIT) and electro-
magnetically induced absorption (EIA) effects: this includes an explicit distinction
between non-radiative and radiative losses, the relationship between the driving force
and the radiative damping of the bright oscillator, its extension to non-linear effects
(such as second or third harmonic generation), and the inclusion of a phase in the
coupling term.

Further work has been conducted to understand the interplay between the bright
mode and the dark mode in Fano-resonant system, in particular the effect of modes
coupling and non-radiative losses on its spectral lineshape. For this purpose, the
Fano formula and its generalization to lossy systems have been derived in the cou-
pled oscillator system. The different resonance parameters are expressed in terms
of the oscillator parameters and their coupling. In Fano-resonant systems such as
oligomers the continuum and the discrete state are supported by the same set of struc-
tures. An extended coupled oscillator model including radiative losses as a result of
Abraham-Lorentz force on accelerated charges has been discussed. It allows a model
of hybridization taking into account radiative losses and radiative coupling. Both
phenomena of superradiance and subradiance, as well as the interaction between
hybridized modes can be predicted.

Oscillator models are a simple yet powerful tool to interpret theoretical, numerical
or experimental work when it is used for example for fitting, extracted physical
parameters and predict effects. Thanks to their universal and versatile character, they
will continue to be applied to a variety of optical and microwave systems and even
in other fields of research.
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Chapter 6
Storage and Retrieval of Electromagnetic
Waves in Metamaterials by Dynamical
Control of EIT-Like Effect

Toshihiro Nakanishi and Masao Kitano

Abstract The storage of light is one of the most significant applications of electro-
magnetically induced transparency (EIT) effects in atomic systems. It is also possible
to mimic the EIT effect using artificial media, or metamaterials, which are based on
coupled resonators. This chapter focuses on metamaterials that realize the storage
and retrieval of electromagnetic waves in the same way as the atomic EIT system.
We introduce tunable metamaterials that are loaded with variable capacitors, which
realize dynamical modulation of the EIT-like effects and the control of asymmet-
ric spectra unique to the Fano resonance. Experiments are performed to show that
electromagnetic waves are stored and released coherently in a multi-layered meta-
material designed for the operation in the microwave region. In addition, we show
the frequency conversion of the stored waves and the extension of the storage time
using parametric amplification.

6.1 Introduction

Electromagnetically induced transparency (EIT) is a nonlinear optical effect that
makes an opaquemedium become transparent using an incident auxiliary light called
a control light [1, 2]. Destructive interference between two excitation pathways
causes the EIT effect in a three-level system. The transparency is induced in an
extremely narrow spectral region. This indicates that the refractive index, which is
related to the absorption through the Kramers-Kronig relation, is also modified in the
transparent region. As a result, the group velocity of the light is significantly reduced
owing to the highly dispersive characteristics of the medium. This slow-light effect
has been applied to the storage of light, or “optical memory,” which is realized by
the dynamical modulation of the group velocity [3–6].

It is also possible to mimic EIT effects such as the suppression of absorption and
slowpropagation by using classical systems, because the phenomenon of interference
is universal among waves or oscillations. In fact, similarities to the EIT effect have
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been found in various classical systems, such as optical waveguides equipped with
cavities [7–10], optomechanical systems [11–13], acoustic systems [14], and electric
circuits [15]. Recently, the implementation of the EIT effects using metamaterials, or
EIT-like metamaterials, has attracted considerable attention. EIT-like metamaterials
respond to electromagnetic waves in the same way as atomic EIT media, and this is
because the effective medium parameters of EIT-like metamaterials are expressed in
the same form as those of the atomic EIT medium. Unlike atomic media, EIT-like
metamaterials can be realized in various frequency regions by designing the struc-
ture, dimensions, and materials of the metamaterial constituents, or meta-atoms. In
fact, since the experimental demonstrations of the EIT-like effect in metamaterials
were first reported in the microwave frequency region [16, 17], the investigation of
EIT-like metamaterial has been extended to higher frequencies, including terahertz
[18–20] and optical regimes [21–25]. Owing to the sharp spectral response and field
enhancement of highly localized modes, EIT-like metamaterials are suited to vari-
ous applications, including high-accuracy sensing [26–29], the manipulation of near
fields [30], surface plasmon control [31], nonreciprocal transmission [32–34], las-
ing spacers [35], the enhancement of nonlinearity [36], and absorption enhancement
[37, 38].

For practical applications, active control of the metamaterials is important [39].
In particular, the control of conductivity in metamaterial constituents is often utilized
to modulate the function of EIT-like metamaterials. In microwave regions, tunable
EIT-like metamaterials have been demonstrated in various ways using nonlinear
diodes [40], superconductors [41, 42], and air-discharge plasma [43]. For higher fre-
quencies, conductivity modulation by photocarrier excitation in semiconductors has
been widely investigated [44–46] owing to the fast modulation response. In addition,
microelectromechanical system (MEMS) technologies enable the tuning of the EIT-
like effect by the reconfiguration of metamaterial
structures [47].

The above methods have achieved the control of the EIT-related phenomena con-
cerned with the sharp transparency or slow group velocity, but they do not address
the storage of electromagnetic waves, which is realized by the dynamical control
of the EIT-like effect. In this chapter, we introduce a tunable EIT-like metamaterial
loaded with variable capacitors, and we demonstrate the storage and retrieval of elec-
tromagnetic waves in the metamaterial. In addition, we demonstrate the frequency
conversion during the storage process, and show a way of extending the storage time
by parametric amplification using a double EIT-like metamaterial that exhibits two
EIT-like properties for fundamental waves and second harmonic waves.

6.2 Electromagnetically Induced Transparency in Atomic
Systems

The EIT effect can be found in a three-level system interacting with two external
fields, as shown in Fig. 6.1. Assume that a probe light with an oscillating electric
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Fig. 6.1 Three-level system
interacting with probe and
control light

Fig. 6.2 Electric
susceptibility of atomic EIT
medium for γ2 =
0.5ω0, γ3 = 0, �c = 0.2ω0.
Imaginary part (top) and real
part (bottom). The detuning
� is normalized by the
frequency of the |1〉-|2〉
transition, ω0

field Ep cosωt induces the transition from |1〉 to |2〉with a detuning �, and the other
field Ec cosωct , called the control light, connects the transition between |3〉 and |2〉
with no detuning. We obtain an electric susceptibility for the probe light using the
electric dipole moment for the probe-light transition pp and the atomic density N as
follows [48]:

χ = i|pp|2N
2ε0�

i� + γ3

2(
i� + γ2

2

) (
i� + γ3

2

)
+

∣∣∣∣
�c

2

∣∣∣∣
2 . (6.1)

The relaxation rate of the coherence between |1〉 and |2〉 (|1〉 and |3〉) is represented
by γ2 (γ3), and the frequency of the Rabi oscillation induced by the control light is
given by �c, which is proportional to the electric field of the control light.

The spectral shape of the susceptibility for the ideal case γ3 = 0 is illustrated in
Fig. 6.2. The absorption spectrum given by the imaginary part of the susceptibility
exhibits sharp transparency in a broad absorption line,which is a typical characteristic
of theEIT effect. Thewidth of the transparencywindow,w, is proportional to |�c|2, or
the intensity of the control light. In addition to the absorption profile, the refractive
index, which is given by the square root of the real part of the susceptibility, is
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probe pulse

control light

(a)

(b)

(c)

(d)

EIT medium

storage time
0

control
light

Fig. 6.3 a Schematic diagram of light storage using EIT effect in an atomic medium. Light-storage
procedures are divided into three phases: b slow-propagation phase; c storage phase; and d retrieval
phase. The intensity of the control light, which varies as a function of time, t , is also shown on the
right-hand side of the diagram

significantly modified in the transparency window. Consequently, the group velocity
of the probe light is dramatically reduced. Hau et al. successfully reduced the group
velocity to 17 m/s in a laser-cooled atomic gas [49]. They prepared a single-shot
pulse with a duration of 2.5 µs and a pulse length of 750 m in a vacuum, and fed
it into the EIT medium. Because of the slow propagation in the medium, the pulse
length was compressed into 43 µm in the medium.

It is possible to realize the storage of light in the medium by dynamically control-
ling the states of the EIT effect. Suppose that a probe pulse interacts with a medium
composed of three-level atoms, as shown in Fig. 6.3a. In the first phase, the intensity
of the control light is kept constant and the probe pulse slowly travels in the medium,
as shown in Fig. 6.3b. Then, the control light is gradually reduced, and the probe
pulse is further slowed down. The pulse is stored in the medium when the control
light is eventually turned off, as shown in Fig. 6.3c. Then, the stored pulse can be
restarted by restoring the control light, as shown in Fig. 6.3d. The duration without
the control light, τ , determines the storage time. If the medium stores a fraction of
the probe pulse, as shown in Fig. 6.3c, the resultant signal is split into two parts with
a separation of time τ , as shown in Fig. 6.3d. If the medium is sufficiently thick, the
whole pulse can be stored in the medium. In that case, the released pulse is identi-
cal to the original one because the freezing and releasing processes are carried out
coherently.
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Fig. 6.4 a Coupled resonator model of the EIT-likemetamaterial. b Interaction with external waves
without resonator coupling. c Interaction with external waves with resonator coupling

6.3 Metamaterial Analog to Atomic EIT Effect

6.3.1 Coupled Resonator Model

The quantum effect based on the wave nature can be partially or perfectly realized
even in classical systems, such as coupled oscillators [50, 51]. The EIT effect is
also mimicked by the coupled oscillator composed of two resonators with different
quality factors [15]. Based on the classical analogy, various types of metamaterials
that mimic the EIT effect, or EIT-like metamaterials, have been proposed for various
frequency ranges, ranging from microwave to optical regions.

Before showing actual structures of EIT-like metamaterials, we outline the EIT-
like effect in metamaterials using the concept model shown in Fig. 6.4a. The circles
represent two resonant modes, which are called the “radiative mode” and “trapped
mode.” The antenna attached to the radiative mode symbolically shows the function
that interacts with propagating electromagnetic waves. In other words, the radiative
mode can be directly excited by the incidence of the external waves. However, the
trapped mode is uncoupled with the external waves.

In the absence of the coupling between the radiative mode and the trapped mode,
as shown in 6.4b, the energy excited by propagating waves in the radiative mode
is scattered into free space or absorbed in the radiative mode, and the transmission
drops at the resonant frequency. The quality factor of the radiative mode is low owing
to the scattering dissipation, called the radiation loss, even in the ideal case where
intrinsic losses such as Ohmic or dielectric losses are negligible.

If the radiative mode and the trapped mode are coupled with each other, as shown
in 6.4c, the electromagnetic response of the metamaterial is significantly modified.
Assuming that the resonant frequencies of these two modes are the same and the
dissipation of the trapped mode is negligible, the energy received through the radia-
tive mode is effectively transferred into the trapped mode for the incidence of the
propagating waves at the resonant frequency. The energy temporarily stored in the
trapped mode is then retransferred into free space through the radiative mode. In the
steady state, two excitation pathways of the radiative mode from the incident waves
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and from the oscillation in the trapped mode are balanced so that no oscillations
are excited in the radiative mode. As a result, the absorption or scattering loss is
significantly suppressed owing to the small dissipation of the trapped mode. In the
transmission spectrum, the width of the transparency window is proportional to the
coupling strength. In addition to the transparency, the temporal storage in the trapped
mode causes some delay, and the group velocity of the metamaterial for the input
waves is significantly reduced. It is known that the smaller the coupling, the slower
the group velocity. This is because the smaller coupling results in longer storage in
the trapped mode. The above properties, such as sharp transparency and slow prop-
agation for small coupling, can be regarded as classical counterparts to the atomic
EIT effect. In fact, the electric susceptibility of the metamaterial, which determines
the electric response of propagating waves, can be expressed in the same form as
that of the atomic EIT system given by (6.1) [52].

It should be noted that the EIT-like effect is closely related to the Fano resonance,
which is characterized by an asymmetric spectral line shape [53, 54], and various
metamaterialswith Fano resonances based on coupled resonators have been proposed
[55]. The EIT effect can be regarded as a special case of the Fano resonance, where
the resonant frequencies of the radiative mode and the trapped mode coincide with
each other [56].

6.3.2 Design of EIT-like Metamaterials

A straightforward way to implement a metamaterial based on the coupled resonator
model described in the previous section is to combine two resonant structures, one
of which effectively interacts with external waves, and the other has a low-loss
resonant mode. As a typical example, an EIT-like metamaterial is shown in Fig. 6.5a.
The unit structure of the metamaterial is decomposed into two structures, as shown
in Figs. 6.5b and c, with the charge distributions of the resonant modes. The electric-
dipole oscillation in Fig. 6.5b is used as the radiativemode, and the electric quadruple
oscillation in Fig. 6.5c is used as the trapped mode. From the normal incidence of
electromagnetic waves with the polarization shown in Fig. 6.5a, only the radiative
mode is directly excited. If the separation d is close enough to induce the coupling

(b) (c) (a) 
E

B
metald

Fig. 6.5 a EIT-like metamaterial proposed by Zhang et al. [52]. bDipole antenna. c Pair of metallic
stripes. The symbols “+” and “−” represent the charge distributions of each resonant mode
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Fig. 6.6 EIT-like
metamaterial proposed in
[16]. a Symmetric split ring.
b Radiative mode. c Trapped
mode. d Asymmetric split
ring

(a) (b) (c) (d)

H

E

between these two structures, the EIT-like effects, i.e., sharp transparency and slow
propagation, can be observed. A smaller d results in a wider transparency window.

The sharp transparency in metamaterials was first demonstrated in the microwave
band [16]. The design is different from the EIT-like metamaterials composed of two
separate resonators, as in the previous example shown in Fig. 6.5a; however, the
operation of the metamaterial can also be explained by the coupled resonator model.
First, we consider the symmetric split ring resonator composed of two identical
metallic arcs, as shown in Fig. 6.6a. The structure has two resonant modes, one of
which is formed by symmetric currents in two arcs, as shown in Fig. 6.6b, and the
other is formed by anti-symmetric currents, as shown in Fig. 6.6c. The former mode
induces an electric dipole moment, which is easily excited by the normally incident
plane waves, with the polarization defined as in Fig. 6.6a, and it works as a radiative
mode. However, the latter mode induces a magnetic moment, which is uncoupled
with the external waves and works as a trapped mode with high quality factor. For
the symmetric split ring resonator, because these two modes are eigenmodes, or
uncoupled with each other, only the radiative mode is excited by the external waves.

Next, we consider that some asymmetry is introduced in the structure, as shown
in Fig. 6.6d. In this configuration, the radiative mode, as shown in Fig. 6.6b, and the
trappedmode, as shown in Fig. 6.6c, are no longer eigenmodes, and they are coupled.
Consequently, EIT-like effects are induced.

6.4 Storage and Retrieval of Electromagnetic Waves
in Metamaterials

6.4.1 Procedures for Storage and Retrieval
of Electromagnetic Waves

In Sect. 6.2, we introduced the procedures for achieving light storage in atomic EIT
media, and we explained that dynamical control of the EIT effect is required by
modulating the control light. Even in EIT-like metamaterials, dynamical switching
between EIT on and EIT off states enables the storage of electromagnetic waves. In
this section, we present the procedures for electromagnetic-wave storage in EIT-like
metamaterials using the concept model, as illustrated in Fig. 6.7. First, the meta-
material is prepared in an EIT on state, where the radiative and trapped modes are
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Fig. 6.7 Procedures for the storage and retrieval of electromagnetic waves. a Slow-propagation
phase. b Storage phase. c Retrieval phase

coupled. If the spectrum of the incident pulse is in the transparency window, the
pulse is transmitted through the metamaterial with a transit time or group delay,
which corresponds to the time taken for the electromagnetic energy received in the
radiative mode to be transferred to the trapped mode and to return to the radiative
mode through coupling. During the propagation, if the metamaterial is changed into
an EIT off state, where the two resonant modes are decoupled, the energy is captured
in the trapped mode. Then, this energy is released by returning the metamaterial to
the EIT on state to reintroduce the coupling.

6.4.2 Tunable EIT-Like Metamaterial

Figure6.8a illustrates the unit cell of a tunable EIT-like metamaterial for the storage
of electromagnetic waves [57]. The design of the EIT-like metamaterial is based on
EIT-like metamaterials with broken structural symmetry [16, 20, 58]. It is assumed
that one or both of the capacitances of two capacitors, which are denoted by C1

and C2, can be controlled, and that external fields have the polarization as denoted

(a) (b) (c)

metal

Fig. 6.8 a Unit cell of tunable EIT-like metamaterial. b Radiative mode. c Trapped mode
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Fig. 6.9 a Unit structure and its dimensions. The thickness and permittivity of the substrate are
0.8 mm and 3.3, respectively. b Transmission spectra obtained by electromagnetic simulation
for three cases: (I) C1 = C2 = 2.1 pF; (II) C1 = 1.91 pF,C2 = 2.33 pF; (III) C1 = 1.75 pF,C2 =
2.63 pF. c Current distribution at the resonance for case (I). d Current distribution at the center of
transparency for case (II). Periodic boundary conditions are imposed for the unit cell with a size
of 120 mm × 25 mm. The incident waves are vertically polarized. Adapted with permission from
[57]. Copyrighted by the American Physical Society

on the left-hand side of the diagram. For the case of C1 = C2, the currents in the
structure form two eigenmodes, as shown in Fig. 6.8b, c, which are characterized by
the relative phases of the currents flowing in the two capacitors, as expressed by i1
and i2. The symmetric current, which is shown in Fig. 6.8b, forms an electric dipole
oscillation, which is excited by external fields and is highly radiative. On the other
hand, the anti-symmetric current, as shown in Fig. 6.8c, forms a loop current, or
magnetic dipole oscillation, which is less radiative and is uncoupled to the external
fields. The former mode could be a radiative mode and the latter mode could be
a trapped mode. The resonant frequencies for these two modes should be closely
located. In the case of C1 = C2, there is no EIT effect because the two modes are
eigenmodes and are decoupled. By breaking the symmetry, i.e., C1 �= C2, these two
modes are coupled andEIT-like effects can be expected. The degree of the asymmetry
determines the coupling strength and the width of the transparency window. The
dynamical control of the structural symmetry with variable capacitors contributes to
the dynamical modulation of the EIT-like effects, which is required for the storage
of electromagnetic waves.

Figure6.9a shows a unit cell of the metamaterial with its dimensions. The trans-
mission spectra calculated by electromagnetic simulations are shown in Fig. 6.9b
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for three cases: (I) C1 = C2 = 2.1 pF; (II) C1 = 1.91 pF,C2 = 2.33 pF; (III) C1 =
1.75 pF,C2 = 2.63 pF. For the symmetric case, C1 = C2, the transmission is
depressed over a broad spectrum. At the center of the transmission depression, a
resonant current is induced on the metal, as shown in Fig. 6.9c, which corresponds to
the radiativemode. On the other hand, for the other cases,C1 �= C2, sharp transparent
regions appear in the broad resonant lines. At the transmission peak, a resonant loop
current is induced, as shown in Fig. 6.9d, and this can be regarded as the trapped
mode. We confirmed that the increase in the degree of asymmetry leads to the broad-
ening of the transparency window. As shown in this study, it is possible to control the
width of the transparency window without changing the center of the window. This
is done by keeping the composite capacitance in the loop, CL = C1C2/(C1 + C2),
constant. In general cases where C1 and C2 are controlled independently, the mis-
match of the resonant frequencies between the radiative mode and the trapped mode
results in asymmetric transmission spectra that are unique to Fano resonance, and
this is demonstrated in Sect. 6.4.4. The tunability of the Fano resonance is one of the
significant functionalities of the metamaterials.

The minimum width of the transparency window is limited by the linewidth of an
isolated trapped mode, which is determined by the radiation loss of the loop current
and the Ohmic loss in the capacitors andmetal. The transparency peak is deteriorated
by the loss in the trapped mode.

For an experimental demonstration of the tunable EIT-like effect in themicrowave
band, the unit structures were fabricated using a copper film on a dielectric substrate
with dimensions (W × H × D) = (120 mm × 25 mm × 0.8 mm) and a permittiv-
ity of 3.3. For the capacitance C1, we used a varactor diode. The capacitance C1 is a
function of the applied bias voltage V , which is fed through a bias circuit. A 1.2 pF
normal capacitor with low Ohmic loss was introduced for the other capacitance C2.
In this case, unlike the simulation in which CL is kept constant, the center and width
of the transparent window are expected to change with C1(V ).

The results of transmission measurements for a single-layered metamaterial
placed in an open-type waveguide are shown in Fig. 6.10a. For V = −3.6 V, we
observe a broad depression in the transmission spectrum, which indicates that
the unit cell of the metamaterial is symmetric, including the capacitances, i.e.,
C1(V ) � C2 = 1.2 pF. By breaking the symmetry, we can observe transparency
windows. When increasing C1(V ) by reducing |V |, the asymmetry of the structure
is enhanced and the transparency window becomes wider. The transmission peaks
shift to lower frequencies because they correspond to the resonant frequencies of the
trapped modes, which are determined by the loop capacitance CL. This is the reason
for the difference with the simulation results, where both capacitances are changed
while CL is kept constant.

The group delay of the three-layered metamaterial can be estimated by measur-
ing the transit time of pulses. The carrier frequency of the pulse was tuned to a
transparent peak for each bias voltage. Figure6.10b shows observed signal inten-
sity that is transmitted through the three-layered metamaterial with bias voltages of
V = 0,−0.4 V, and −0.8 V. For comparison, the output signal in the absence of
the metamaterial is also displayed. Each signal passing through the metamaterial is
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Fig. 6.10 Experimental results. a Transmission spectra of EIT-like metamaterial for V =
0,−0.4,−1.2,−2.0,−3.6 V. b Output intensity for pulses propagating through the metamaterial
with V = 0,−0.4 V, and for the case without the metamaterial. c Group delays and transmission
peaks for various V . Adapted with permission from [57]. Copyrighted by the American Physical
Society

delayed, depending on the bias voltage, while the shape of the pulse is maintained.
The graph in Fig. 6.10c represents the group delays and transmissions at the center
of transparency windows. From V = 0 to V = −0.9 V, the group delay increases
with |V |. This is because the transparency window becomes sharper for larger |V |
and the group velocity in the metamaterial becomes slower. For V < −0.9 V, the
transparency windows are corrupted and the group delay is decreased.

6.4.3 Storage and Retrieval of Electromagnetic Waves

Dynamical control of the EIT-like effect in metamaterials enables us to realize the
storage and retrieval of electromagnetic waves, as discussed in Sect. 6.4.1. For our
experimental demonstration, we used two bias voltages: V = −0.4 V for the “EIT
on” state and V = −3.6 V for the “EIT off” state. A 35 ns pulse with a carrier
frequency of 1.440 GHz, which is located at the center of the transparency window
for V = −0.4 V, is fed into the waveguide with the three-layered metamaterial. The
initial state of the metamaterial is set to the “EIT on” state with the bias voltage
V = −0.4 V. When the rear part of the pulse enters the metamaterial, the state is
changed to the “EIT off” state by changing the bias voltage to V = −3.6 V. During
this period, the energy of the electromagnetic wave in the metamaterial is captured
in the trapped modes. After some time period τ , which corresponds to the storage
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time, the state is returned to the “EIT on” state to release the stored energy into the
waveguide.

Figure6.11a shows the output signal transmitted through the metamaterial under
the modulation of the bias voltage for storage times of τ = 10 ns and τ = 20 ns.
The states of the metamaterial are superimposed at the bottom of each graph. It
is confirmed that the signals are dropped during the “EIT off” state owing to the
storage of the electromagnetic waves, and the retrieved signals can be observed
after the reintroduction of the EIT effect. This is clear evidence that the tunable
EIT-like metamaterial can store and release the electromagnetic waves in the same
way as atomic EIT media. From results obtained for various values of τ , the height
of the retrieved pulses decays exponentially with a time constant of 6.3 ns, which
corresponds to the lifetime of the trapped mode.

If themetamaterial “remembers” the phase distribution of the input pulse correctly,
the retrieved signal should be released in the forward direction. Figure6.11b shows
the intensity of the retrieved signals released in the forward (backward) direction on
the left (right) side for n-layered metamaterials (n = 1, 2, 3). For a single-layered
metamaterial, n = 1, retrieved signals with almost the same amplitudes are released
in opposite directions because the energy is radiated from a single meta-atom. As n
increases, the retrieved signals are enhanced in the forward direction and are sup-
pressed in the backward direction. This indicates that the oscillation in each trapped
mode during the storage process “inherits” the relative phase of the oscillating elec-
tric field of the incident waves at each location, and the retrieved pulse reproduces
the phase distributions of the incident waves. These results suggest that by increasing
the number of layers, the metamaterial could potentially store the whole of an input
pulse that has an arbitrary temporal shape. It is also possible to store waves with
arbitrary transverse modes and any polarizations by appropriately distributing the
meta-atoms.
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6.4.4 Frequency Conversion of Electromagnetic Waves

Because the stored energy is released from the trapped mode, the frequency of the
retrieved signal can be modified by changing the resonant frequency of the trapped
mode. For an experimental demonstration of the frequency conversion, only the
capacitanceC2 is changed to 1.8 pF. The transmission spectra of themetamaterial for
various bias voltages, V = 0.25 V,−1.00 V, and−3.50 V, are shown in Fig. 6.12a–
c. The EIT-like effect can be observed for V = 0.25 V and V = −3.50 V. The trans-
parency windows are located at different frequencies, i.e., 1.25 GHz for V = 0.25 V
and 1.54 GHz for V = −3.50 V, which correspond to the resonant frequencies of
the trapped modes. Both of these cases show asymmetric transmission spectra that
are peculiar to the Fano resonance, which results from the resonant-frequency mis-
match between the radiative mode and the trapped mode. However, the spectrum for
V = −1.00 V shows a single resonant dip without the EIT-like effect.

For the frequency conversion, the varactor diode of the metamaterial is initially
biased at 0.25 V, and a pulse at 1.25 GHz is sent to the metamaterial. When the rear
part of the pulse enters themetamaterial, the bias voltage is changed to V = −1.00 V
in order to deactivate the EIT-like effect for the storage of the pulse. After some time
interval τ , the bias voltage is changed to V = −3.50 V to release the stored energy.
Figure6.12d shows the output signal transmitted through the metamaterial for the
storage time τ = 20 ns. As expected, the output signal is dropped during the “EIT-
off” period (V = −1.00 V) because the energy is captured in the trapped mode.
The stored energy is released by activating the EIT-like effect with the bias voltage
V = −3.50 V. It should be noted that the retrieved signal is composed of a different
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frequency around 1.54 GHz, which corresponds to the center of the transparency
window for the final state V = −3.50 V, as shown in Fig. 6.12c. This indicates that
the retrieved signal is emitted from the trapped mode, whose resonant frequency is
shifted from 1.25 to 1.54 GHz during the storage and retrieval processes. Unlike con-
ventional frequency conversion using frequency mixing, the conversion frequency
can be tuned within the linewidth of the radiative mode by changing the capacitance
C1. In addition, the efficiency of the frequency conversion is independent of the input
signal, and even small signals can be converted.

6.5 Loss Compensation by Parametric Amplification
for Extension of Storage Time

During the process of the electromagnetic-wave storage in themetamaterial, the stor-
age time is limited by the lifetime of the trapped mode. In the ideal case, the storage
time is determined by the radiation loss of the trapped mode. For the metamaterial
introduced in the previous section, the Ohmic loss in the varactor diode is dominant,
and it seriously degrades the function of the electromagnetic-wave storage. It is pos-
sible to extend the maximum storage time by introducing some gain in the trapped
mode. In this section, we introduce loss compensation to realize an extension of the
storage time by parametric amplification.

Parametric amplification is a nonlinear process, where a fundamental mode oscil-
lating atω is amplified by performing parametermodulation at 2ω. Here, we consider
a double EIT-like metamaterial that has EIT-like properties for both the fundamental
waves and second harmonic waves. The unit cell of themetamaterial is represented in
Fig. 6.13a, which is a composite structure composed of a primary structure, as shown
in Fig. 6.13b, and a secondary structure, as shown in Fig. 6.13c. These two structures
are printed on each side of a substrate with a lateral shift of d. Three capacitors,
C1, C2, and C3, are introduced in the primary structure, and only C1 is a nonlinear
element, whose capacitance is a function of the applied voltage, C1(V ). The primary
structure has three resonant modes and the secondary structure has an electric-dipole
resonant mode. All of the resonant modes are summarized in Fig. 6.13d, which are
labeled by R1, T1, T2, and R2, respectively. Two of the resonant modes in the pri-
mary structure, R1 and T1, are the same as those of the tunable EIT-like metamaterial
discussed in the previous section, and they are responsible for the EIT-like effect for
fundamental waves. The other resonant mode, T2, which is derived from the addi-
tional structure including C3, works as a trapped mode for second harmonic waves
owing to the low radiation loss. The resonance R2 in the secondary structure works
as a radiation mode for the second harmonic waves. The resonant modes T2 and R2
are coupled with each other through the magnetic coupling, which depends on the
separation d.

In the presence of the second harmonic waves, the trapped mode T2 is excited
owing to the EIT-like effect induced by the magnetic coupling of the R2 and T2
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modes, and this effectively modulates the capacitance C1(V ). The modulation of
the capacitance contributes to the parametric amplification (or attenuation) of the
fundamental waves in the trapped mode. In other words, two trapped modes, T1
and T2, are coupled through the parametric process in the nonlinear element, or the
varactor diode. The parametric gain depends on the relative phase of the fundamental
waves and the second harmonic waves.

6.5.1 Parametric Amplification of Continuous Waves

This section deals with the parametric amplification of continuous waves in the
double EIT-like metamaterial. The structures are printed on a dielectric substrate
with a permittivity of 3.3 and thickness of 1.6mm. A varactor diode is introduced
as C1, which varies with the applied voltage. The capacitances are C2 = 1.5 pF,
C3 = 0.7 pF, and C4 = 2.0 pF. The shift d is set to 5mm. The transmission spec-
trum for the single-unit structure placed in an open-type waveguide with V = 0 is
shown in Fig. 6.14a for small signals. As expected, two EIT spectra are observed
around 0.82 and 1.64GHz. For parametric amplification, the mixed waves of a weak
probe signal at f1 = 0.82GHz with −6.9 dBm and a strong pump at f2 = 1.64GHz
with 17 dBm were sent to the waveguide. As discussed, the modulation of C1(V )

at f2 = 2 f1 induces some parametric gain (or loss) in the T1 mode oscillating at



152 T. Nakanishi and M. Kitano

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

tr
an

sm
is

si
on

frequency / GHz

 0.82GHz 1.64GHz V=0 -8
-6
-4
-2
 0
 2
 4
 6

 0  90  180  270  360

ga
in

 / 
dB

                 / degree

(a) (b)
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the frequency of f1. The metamaterial re-radiates the fundamental waves from the
trappedmode T1 through the radiativemodeR1, and the incident waves are amplified
or attenuated, depending on the relative phase θ between the fundamental waves and
second harmonic waves. Figure6.14b shows the parametric gain, which is given by
the transmission power divided by the input power of the probe waves (The origin
of θ is chosen at the location to maximize the gain.). The parametric gain varies
with a period of π , which is a typical characteristic of the parametric process [59].
The maximum gain is 4 dB. In the case of unity gain (0 dB), the dissipation in the
radiation mode and the trappedmode is balanced by the parametric gain, and an ideal
EIT-like effect is realized by the loss compensation.

6.5.2 Extension of Storage Time by Loss Compensation

In this section, we discuss the extension of the storage time by loss compensation
through parametric amplification. The capacitances are C2 = 1.5 pF, C3 = 0.6 pF,
andC4 = 0.9 pF.We adopted two states for the storage of electromagnetic waves: the
EIT on state with V = 0 and the EIT off state with V = −1.2V. The transmission
spectra for these states are shown in Fig. 6.15. For the EIT on state, two EIT-like
spectra are observed around f1 = 0.82GHz and f ′

2 = 1.80GHz. For the EIT off

Fig. 6.15 Transmission
spectra for C2 = 1.5 pF,
C3 = 0.6 pF, and
C4 = 0.9 pF in two cases:
V = 0 (solid line) and
V = −1.2V (dotted line)
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Fig. 6.16 a Demonstration of electromagnetic-wave storage with double EIT-like metamaterial. b
The height of retrieved signals as a function of the phase of the fundamental waves

state, the transparency window around f1 disappears. This is because the coupling
between the R1 and T1 modes is turned off by satisfying C1(V ) ∼ C2.

The storage of electromagnetic waves oscillating around f1 can be demonstrated
using the same procedure, as discussed in the previous section. The dotted lines in
Fig. 6.16a show the intensity of the output signals from the waveguide with the three-
layered metamaterial for the storage time τ = 30 ns (top) and τ = 60 ns (bottom).
The states of themetamaterial are superimposed at the topof eachgraph.The retrieved
pulse for τ = 60 ns is weaker than that for τ = 30 ns. The degradation of the retrieval
is attributed to the damping in the T1 mode during the EIT off state.

The storage time can be extended by loss compensation, which is realized by
illuminating pump waves to induce the parametric gain in the T1 mode. Note that the
resonant frequency of the T1 mode in the EIT off state is around 0.90GHz, which
is slightly shifted from that in the EIT on state. The parametric amplification in the
T1 mode can be realized by the incidence of strong pump waves at 1.80GHz, which
coincides with the location of the transparency window f ′

2 at a higher frequency. The
solid lines in Fig. 6.16a represent the output signals for the probe pulse in the presence
of the pump waves with the power of 17 dBm. The phase θ of the fundamental wave
is adjusted to maximize the retrieval efficiency. It is clear that the retrieved pulses are
reinforced owing to the parametric amplification in the T1mode. Figure6.16b shows
the height of the retrieved signals for various values θ . The height is normalized by
that in the case without the pump waves, and it is found that the parametric gain can
be controlled by θ .

In the experiment, the lifetime of the storage signal with the pump waves with 17
dBm is estimated to be about 380 ns, which is much longer than the lifetime 16 ns
without parametric amplification. It is also possible to further increase the parametric
amplification by increasing the pump power or by decreasing d, which results in a
narrower transparency window at f ′

2. In principle, the storage time could be extended
as long as necessary using stable pump waves that are strong enough to offset the
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loss by parametric amplification. In addition, we confirmed that the amplification
becomes negligible by removing the second structure (Result is not shownhere.). This
is proof that the double EIT configuration contributes to the enhancement of the pump
efficiency. The metamaterial can be considered as a doubly resonant metamaterial
[60–62] that effectively enhances nonlinear interactions between the fundamental
and second harmonic waves.

6.6 Conclusion

In this chapter, we presented dynamically tunable metamaterials that realize the
storage and retrieval of electromagnetic waves in the same way as the atomic EIT
medium. We demonstrated the “coherent” storage of electromagnetic waves in an
EIT-like metamaterial that is designed for operation in the microwave frequency
band. In addition, we showed the frequency conversion using the storage process
and the extension of the storage time by parametric amplification in the double EIT
metamaterial, which effectively enhances the nonlinear interaction between the fun-
damental and second harmonic waves. The experiments demonstrated the partial
storage of an electromagnetic pulse propagating in the waveguide. However, in prin-
ciple, metamaterials could store the whole pulse with any temporal or spatial modes
by distributing the structures in three dimensions.

The EIT-like effect of the metamaterials presented in this chapter is different from
the EIT effect in the strict sense, where the auxiliary light, called the control light,
induces transparency. A recent study has shown a way to implement the true EIT
effect [63], which has the potential to store electromagnetic waves in the exact same
way as the atomic EIT system by the modulation of control waves [64].

The storage of electromagnetic waves and frequency conversion always require
temporal modulation of the metamaterials. The use of “time-varying” metamaterials
may open new avenues as “spatial-varying” metamaterials have led to the rapid
development of transformation optics, including invisible cloaks [65, 66].
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Chapter 7
Temporal Coupled-Mode Theory
for Light Scattering and Absorption
by Nanostructures

Yisheng Fang and Zhichao Ruan

Abstract Nanostructures enrich optical resonances in wavelength and even sub-
wavelength region and consequently influence scattering and absorption properties
profoundly. Temporal coupled-mode theory was initially developed and applied to
analyzing waveguide-resonator interactions in integrated optics. In this chapter, we
develop the temporal coupled-mode theory formalism to describe the coupling pro-
cess and the interference effect involved with optical scattering and absorption in
nanostructures. We first discuss the temporal coupled-mode theory based on the
consideration of energy conservation and time-reversal symmetry and validate the
theory with numerical simulations. Based on the theory, we then elucidate that both
the Fano interference and electromagnetic induced transparency (EIT)-like effect can
be unified in a temporal coupled-mode equation, but with different background phase
shifts. Such a model provides a general line shape formula of scattering and absorp-
tion cross sections for both cases. At last we discuss the super-scattering effect of a
single subwavelength particle, where an arbitrarily large total scattering cross section
can be achieved provided that one maximizes the contributions from a sufficiently
large number of resonances.

7.1 Introduction

The study of light scattering and absorption by nanostructures is of great impor-
tance in nanophotonics and electromagnetics. The presence of resonances profoundly
influences the scattering and absorption properties of nanostructures, resulting in the
enhancement of electromagnetic cross sections far exceeding their geometric cross
sections [1], as well as complex resonance-based interference phenomena including
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Fano interference [2–9], all-optical analogue to electromagnetically induced trans-
parency (EIT) [10–15], super-scattering [16, 17], and the anomalous absorption and
scattering [18, 19]. Therefore it is important to develop a theoretical framework that
elucidates the role of resonances in these nanostructures.

The temporal coupled-mode theory formalism provides a very useful general
framework to study the scattering behavior of obstacles supporting resonances. The
scattering process is well modeled as the interference and coupling between the
external field and the resonance-assisted leaky radiation field. The temporal coupled-
mode theorywas initially developed and applied to study the interaction of resonances
with external waves in waveguide-resonator coupled systems [20–22], and has also
been used to study the interaction of plane waves with grating structures [23–25].

In this Chapter, we introduce the temporal coupled-mode theory formalism,which
has been used to study the scattering properties of two- and three-dimensional
nanoparticles [2, 16, 17, 26] and planar nanostructures [27, 28]. The Fano reso-
nances [4, 5, 29–31] and optical analog of electromagnetic induced transparency
(EIT) [32, 33] are essentially scattering phenomena. In the coupled-mode theory [2,
28, 33], they arise from the interference of two light scattering pathways: the direct
pathway of the background scattering, and the indirect pathway of the resonance-
assisted scattering. We show that both the Fano interference and EIT-like effects can
be unified in the same temporal coupled-mode equation, but with different back-
ground phase shifts.

One intriguing topic in nanophotonics is enhancing the scattering cross sections of
subwavelength nanoparticles to be much larger than their geometric cross sections.
The scattering can be significantly enhanced with the excitation of resonances and
can further go beyond the single channel limit by implementing the superscattering
formalism [16, 17, 28]. Also, in this chapter, the coupled-mode theory is developed
to model the superscattering behavior. With the coupled-mode theory, an arbitrarily
large total scattering cross section is predicted by spectrally aligning a sufficiently
large number of orthogonal resonances.

7.2 Temporal Coupled-Mode Theory for Light Scattering

7.2.1 General Scattering Theory for Arbitrarily Shaped
Scatterers

For the study of individual isolated objects, external waves are naturally expanded
in the cylindrical wave basis in two dimensions, or the spherical wave basis in three
dimensions. Temporal coupled-mode theory with wave expansion in either the cylin-
drical or spherical basis has been developed [2, 34]. Considering the great importance
of a large number of antennas and nanoparticle structures that do not have a sym-
metric shape, we first generalize the temporal coupled-mode theory on a cylindrical
or spherical wave basis to structures without rotational symmetry.
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We start from the general scattering theory in the two-dimensional (2D) case
where a scatterer is invariant along the z direction. Consider the scatterer located at
the origin of the coordinate, surrounded by air. When a TM wave (with its magnetic
field H polarized along the z-direction) impinges on the scatterer, the total field in
the air region outside the scatterer can be written as:

Htotal =
∞∑

m=−∞
A0

(
a+
m H (2)

|m|(kρ) exp(imθ) + a−
m H (1)

|m|(kρ) exp(imθ)
)
, (7.1)

where (ρ, θ) is the polar coordinates oriented at the origin, k is the wave number
in air, and H (1)

m (H (2)
m ) is the m-th order Hankel function of the first (second) kind.

Here we take the convention that the field varies in time as exp(−iωt). So a+
m and

a−
m can be identified as the incoming and outgoing wave amplitudes, respectively.

With the choice of A0 = √
ωε0
2 ,

∣∣a+
m

∣∣2 and
∣∣a−

m

∣∣2 represent the power of the incoming
and outgoing cylindrical waves in the m-th channel. Following [2, 26], we define a
“reflection” matrix R that connects the incoming coefficients a− with the outgoing
coefficients a+ as

a− = Ra+. (7.2)

where a± is a column vector composed by a±
m as

a± =

⎡

⎢⎢⎢⎢⎢⎢⎣

...

a±
−1

a±
0

a±
1

...

⎤

⎥⎥⎥⎥⎥⎥⎦
(7.3)

When the scatterer is lossless, by energy conservation, R is unitary, i.e.

R†R = I. (7.4)

Generally, for a scatterer without rotation symmetry the scattering and absorption
cross sections are functions of incident angle. We consider a plane wave with Hinc =
H0 exp(ik · r) incident upon the scatterer with an incident angle of φ schematically
shown in Fig. 7.1. Here k is the wave vector of the incident plane wave. The total
field in the air region outside the scatterer is then written as

Htotal = H0exp(ik · r) +
∞∑

m=−∞
A0smH

(1)
|m|(kρ) exp(imθ), (7.5)

where sm is the amplitude of the scattered field in the m-th channel. To connect (7.5)
with (7.1), we expand the plane wave into cylindrical waves as
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Fig. 7.1 A plane wave impinges upon a scatterer with an incident angle of φ. The scatterer does not
have rotational symmetry. Reprinted with permission from [26]. Copyright 2012 by the American
Physical Society

exp(ik · r) =
∞∑

m=−∞
i |m| exp(−iφm)

(
H (2)

|m|(kρ) + H (1)
|m|(kρ)

2

)
exp(imθ).

In comparison with (7.1), we then have

a+
m = 1

2
fm (7.6)

a−
m = a+

m + sm, (7.7)

where

fm =
√

2

ωε0
H0i

|m| exp(−iφm). (7.8)

Below, we will use the symbols f , a+, a−, and s to denote the column vectors with
components fm , a+

m , a
−
m , and sm defined above, respectively.

We define a matrix S that connects s and f as s = Sf , and by applying (7.7) we
have

S = 1

2
(R − I). (7.9)

As a result, the total scattered and absorbed powers are

Psct = s†s = 4
(
a+)†

S†Sa+ (7.10a)

Pabs = (
a+)†

a+ − (
a−)†

a− = (
a+)† (

I − R†R
)
a+ (7.10b)

Following the definition, the scattering and absorption cross sections are evaluated

as Csct ≡ Psct/I0 and Cabs ≡ Pabs/I0, where I0 = 1
2

√
μ0

ε0
|H0|2 is the intensity of the

incident plane wave.
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7.2.2 Temporal Coupled-Mode Theory
with a Single-Resonance

Wenowapply the temporal coupled-mode theory to calculateR and thenS for the case
when the scatterer supports a single resonant mode. The amplitude of the resonance
c is normalized such that |c|2 corresponds to the energy inside the resonator [20].
Using the temporal coupled-mode theory formalism [20, 24], the dynamic equations
for the amplitude c are

dc

dt
= (−iω0 − γ0 − γ) c + κT a+ (7.11a)

a− = Ba+ + cd (7.11b)

where ω0 is the resonant angular frequency, γ0 is the intrinsic loss rate due to, for
example, material absorption, γ is the external leakage rate due to the coupling of
the resonance to the outgoing wave, and κ corresponds to the coupling coefficients
between the resonance and the incoming wave. Note that such coupled-mode for-
malism is, strictly speaking, valid only when γ0 + γ � ω0 [20].

As shown in (7.11b) the outgoing waves have contributions from two pathways.
The direct pathway, as described by the term Ba+, forms the background in the
response spectrum. B is the background reflection matrix. In this pathway, scattering
occurs without exciting the resonance. The indirect, or the resonant, pathway is
described by the term cd. The vectord can be determined by considering the scenario,
where the resonance has amplitude c, and there is no incoming wave, i.e. a+ = 0.
For this scenario, the radiation field outside the scatterer can be written as

Heigen = c
∞∑

m=−∞
A0dmH

(1)
|m|(kρ) exp(imθ). (7.12)

Here the coefficients dm , which are components of the column vector d, correspond
to the radiation coefficients of the resonance.

The coupling coefficients B, d and κ in (7.11) are not independent of each other.
They are constrained by the energy conservation and time-reversal symmetry [24]
as

d†d = 2γ. (7.13)

κ = Ôd (7.14)

BÔd∗ + d = 0 (7.15)
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Here Ô has a matrix form of Ômn = δm,−n

Ô =

⎡

⎢⎢⎢⎢⎣

0 . .
.

1
1

1
. .
.

0

⎤

⎥⎥⎥⎥⎦
. (7.16)

From (7.14), we have a general form of the reflection matrix

R = B + ddT Ô

iω0 − iω + γ + γ0
. (7.17)

Below, we will apply (7.17) to calculate the scattering matrix S.

7.3 General Line Shapes of Scattering and Absorption
Cross Sections

Based on the general temporal coupled-mode formalism developed in the above
section, we present a theory for the Fano interference in light scattering by an individ-
ual obstacle. We take an infinite long cylindrical scatterer for example. We show that
for each angular momentum channel, the Fano interference effect can be modeled by
a simple temporal coupled-mode equation, which provides a line shape formula for
scattering and absorption cross sections. Though the following analysis is developed
in the particular case of a cylindrical scatterer, the presented theory and conclusions
can be applied to general scattering processes for scatterers with a single resonance.

In the case where the scatterer has cylindrical symmetry, the resonances in differ-
ent l-th orders are orthogonal to each other. Thus the l-th order incoming wave only
excites the same order resonance and outgoing wave. So the coupling coefficients are
decoupled and the reflection matrixR in the previous section reduces to the diagonal
matrix. We define Rl as

Rl ≡ a−
l

a+
l

, (7.18)

which is the reflection coefficient since it relates the outgoing wave to the incoming
wave in each channel. If the system is lossless, the background reflection coefficient
is B = eiφl , where φl is a real phase factor. Thus in this Section, we consider only the
l-th channel, and for notation simplicity we suppress the subscript l in all variables.

Following the same procedure developed in the previous section, we have

R = i(ω0 − ω) + γ0 − γ

i(ω0 − ω) + γ0 + γ
eiφ (7.19)
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The scattering coefficient S = R−1
2 can be obtained as

S = Sb

[
−i

ω − ω0 − γ0 + qγ

i(ω0 − ω) + γ0 + γ

]
(7.20)

Here Sb provides the background and determines the Fano asymmetric parameter q:

Sb = eiφ − 1

2
(7.21)

and

q = −i(1 + 1

Sb
) = − cot

φ

2
(7.22)

Substituting (7.20) into (7.10), we then have the scattering and the absorption cross
sections as

Csct = 2λ

π

∣∣∣∣
1

2

(i(ω0 − ω) + γ0)(eiφ − 1) − γ(1 + eiφ)

i(ω0 − ω) + γ0 + γ

∣∣∣∣
2

(7.23a)

Cabs = 2λ

π

γ0γ

(ω − ω0)
2 + (γ0 + γ)2

(7.23b)

From (7.23) one can easily prove that the maximum scattering and absorption cross
sections in a single channel cannot exceed 2λ/π andλ/2π respectively. In the lossless
case where γ0 = 0,

S = Sb

[
−i

ω − ω0 + qγ

i(ω0 − ω) + γ

]
. (7.24)

Thus the scattering cross section

Csct = 2λ

π
|Sb|2 [(ω − ω0) + qγ]2

(ω − ω0)
2 + γ2

(7.25)

This is obviously the form of the Fano lineshape. From (7.25) we can see that the
Fano lineshape of the scattering cross section is determined by the phase of the
background scattering through the Fano asymmetry parameter q [see (7.22)].

To further interpret the physical meaning of the q parameter more explicitly, we
find out the relative amplitude and phase differences between the scattered fields
from the direct background scattering pathway and the indirect resonance-assisted
scattering pathway at the resonant frequency ω0 as

c · d
(B − 1) · a+ = −iq − 1 (7.26)
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Fig. 7.2 Scattering cross
section spectra as given by
(7.23) for the lossless case
(γ0 = 0). a–c correspond to
φ = 0,π/2,π, respectively.
Reprinted with permission
from [2]. Copyright 2010
ACS

0

0.5

1

0

0.5

1

C
sc

t (2
λ/

π)

−10 −5 0 5 10
0

0.5

1

(ω − ω0)/γ

φ=π

φ=π/2

φ=0
(a)

(b)

(c)

The Fano asymmetric parameter q describes the amplitude and phase differences
between the fields in the direct and indirect pathways at the resonant frequency, thus
describes how these two portions of scattered field interfere and give out different
styles of Fano lineshape.

We now use (7.25) to illustrate general line shapes of scattering cross section
spectrum in a single channel. Figure7.2 plots the scattering cross section spectra with
different phase factorsφ as arose from the background reflection. For the phase factor
φ = 0, the cross section spectrum always has a Lorentzian line shape (Fig. 7.2a).
Since φ = 0 corresponds to a very weak background scattering [q = ∞ in (7.26)],
in this case the only contribution to the scattering process is from the resonance-
assisted pathway and there is no scattering contribution from the direct pathway. The
resonance createsmaximal scattering at the resonant frequencyω0, and the resonance
line width is determined by the leakage rate γ and the intrinsic loss rate γ0.

When φ = π, the cross section spectrum has an anti-Lorentzian line shape0
(Fig. 7.2c). In this case, q = 0 and the background scattering reaches the maximum.
The scattering contributions from the background and resonance interfere destruc-
tively at the resonance frequency ω0, according to (7.26). Thus the presence of the
resonance creates a dip at ω0—no scattering occurs at the resonance frequency. This
effect is closely related to the all-optical analog of EIT.

For all other cases where φ is neither equal to 0 nor π, the spectrum is not a
Lorentizian, but rather exhibits a Fano asymmetric line shape, which exhibits both
enhancement and suppression of scattering in the vicinity of the resonance. For
example, Fig. 7.2b shows the scattering cross section spectrum for φ = π/2. We
note that in the Fano line shape, neither the minimum nor the maximum in scattering
cross section occurs at the resonant frequency ω0. Through (7.25), we can determine
that the resonance peak and dip occur at the frequency ωmax = ω0 − γ tan φ

2 and

ωmin = ω0 + γ cot φ
2 respectively. Therefore, in order to switch the scattering cross
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Fig. 7.3 Scattering cross
section spectra as given by
(7.23) for the lossy case with
γ0 = γ. Reprinted with
permission from [2].
Copyright 2010 ACS
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section from theminimum to themaximum, the smallest frequency variation required
is 2γ in the case of φ = ±π/2. In particular, at the resonance dip, we can find out
that the fraction in (7.26) equals to −1, thus interprets the presence of the scattering
dip as a result of the destructive interference between the resonance and background.

To show the effect of the intrinsic loss, Fig. 7.3 shows the scattering cross section
spectra when γ0 = γ in (7.23a). Compare it with Fig. 7.2, one can see that the line
shapes are similar to the corresponding lossless cases, but the presence of the loss
reduces the cross section variation as a function of frequency. In particular, the
scattering cross sections can no longer reach 2λ/π, which is the upper limit for
a single channel. Neither can the minimum of the scattering cross sections reach
zero. In other word, in the presence of loss it is no longer possible to completely
eliminate scattering field at a single frequency through Fano interference effect with
the presence of a single resonance.

We then consider the absorption cross section spectrum described by (7.23b). In
contrast to the scattering cross section spectrum, which varies with the background
phase factor, the absorption cross section is independent of the phase factor. Instead,
it always has a symmetric Lorentzian line shape with its maximum at the resonant
frequency. Thus, Fano interference effect does not affect the absorption properties
of the obstacle.

For cylinders and sphereswith rotation symmetry, resonances in different channels
are orthogonal to each other. When we take multiple channels into consideration
and in the situation that there is only one resonance in each channel, the scattering
and absorption cross section spectra show the Fano and Lorentizian line shapes
respectively in each channel, and the total cross section is simply the sum of the
contributions from all channels.
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7.4 Temporal Coupled-Mode Theory for Scattering
with Two Coupled Resonances

In this Section, we consider the coupled-resonator systems where two resonances are
supported in a single channel. In other words, the two coupled resonances c1 and c2
are of the same l-th channel. Thus in this Section, we consider only the l-th channel,
and for notation simplicity we suppress the subscript l in all variables. In such a
system, the coupling and interference process for light scattering can be described
by the following coupled-mode equations,

d

dt

[
c1
c2

]
= (−i�0 − � − �0)

[
c1
c2

]
+

[
d1
d2

]
a+ (7.27a)

a− = a+ + [
d1 d2

] [
c1
c2

]
(7.27b)

where �0 =
[
ω1 0
0 ω2

]
, �0 =

[
γ01 0
0 γ02

]
, and � =

[
γ1 γ3
γ∗
3 γ2

]
. Here ωi and γi are the

resonant frequencies and leakage rates of each single resonance ci (i = 1, 2) respec-
tively. γ3 denotes the cross coupling of two resonances, γ0i is the intrinsic loss rate
due to material absorption, and d1, d2 correspond to the coupling coefficients of
two resonances to the incoming wave. To simplify the derivation, in the following
discussions, we consider the lossless case, i.e. γ0i = 0.

First of all, we analyze the eigenmodes by solving the eigen-problem equation

det [i(� − �0) − �] = 0 (7.28)

We assume that ca and cb are sub-radiant and super-radiant modes with the eigen-
value −iωa − γa and −iωb − γb, respectively, where γa < γb. These hybridized
sub-radiant and super-radiant modes overlap in the spectrum, and their interference
leads to the Fano resonance. The coupled-mode equations (7.27) can be further writ-
ten as

d

dt

[
ca
cb

]
=

(
−i

[
ωa 0
0 ωb

]
−

[
γa 0
0 γb

])[
ca
cb

]
+

[
da
db

]
a+ (7.29a)

a− = a+ + [
da db

] [
ca
cb

]
(7.29b)

Consequently, the scattering coefficient is obtained as

S = γa

i(ωa − ω) + γa

−(ωa − ωb) + i(γa + γb)

(ωa − ωb) − i(γa − γb)
− γb

i(ωb − ω) + γb

(ωa − ωb) + i(γa + γb)

(ωa − ωb) − i(γa − γb)
(7.30)
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To compare with the single resonance case, (7.30) can be rewritten as

S = Sb

[
−i

ω − ωa + qγa

i(ωa − ω) + γa

]
(7.31)

where

Sb = −γb

i(ωb − ω) + γb

(ωa − ωb) + i(γa + γb)

(ωa − ωb) − i(γa − γb)
(7.32)

provides the background with a slowly varying Lorentzian line shape and q is the
Fano asymmetry parameter.

We take the approximation that the bandwidth of the super-radiant mode is much
larger than the sub-raidant one (γb � γa) and consider a limited spectrum range
in the vicinity of the anti-bonding resonance (ω ≈ ωa). The background scattering
coefficient in (7.31) is approximated as

Sb = −γb

i(ωb − ω) + γb
, (7.33)

and the Fano asymmetry parameter

q ≈ −i(1 + 1

Sb
) (7.34)

is determined by the background scattering, which coincides with (7.22) in Sect. 7.3.
Therefore, we come to the characteristic Fano formula of the scattering cross section
for the two-resonance case, which is similar to the single-resonance case of (7.25):

Csct = 2λ

π
|Sb|2 |ω − ωa + qγa|2

(ωa − ω)2 + γ2
a

. (7.35)

The optical analog of EIT occurs in the particular case of q = 0. Such condition is
realized when resonant frequencies of the two coupling modes nearly match with
each other, that is, ω1 = ω2.

We can view such a two-resonance interference effect as a two-step process.
Firstly the scattering process of the super-radiant mode can be described by the
coupled-mode equations for a single resonance as

dcb
dt

= (−iωb − γb)c + dba
′+ (7.36a)

a′− = a′+ + cbdb (7.36b)

Such a super-radiant mode coupling process creates the background scattering Sb for
the sub-radiant mode, which coincides with (7.33). Secondly, under this background
path, the coupled-mode equation for the sub-radiant mode is
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dca
dt

= (−iωa − γa)c + daa
+ (7.37a)

a− = Ba+ + cada (7.37b)

where the background coefficient B = 2Sb + 1. As results, the Fano resonance cor-
responds to the case that the radiation path of the sub-radiant mode is out of phase
from the background path of the super-radiant mode, while the EIT corresponds to
the off-phase case that B = −1 with Sb = −1 and q = 0. Therefore, in principle,
we can unify the pictures of any multiple resonances with the single resonance one
in this way.

7.5 Fano Resonance in the Scattering of Nanostructures

The Fano resonance was first observed in the autoionizing states of atoms [35]. In
contrast to the symmetric Lorentzian line shape for individual resonance, the Fano
resonance is featured of its asymmetric line shape which exhibits a successive reso-
nant peak and dip in the spectra. This phenomenon originates from the coupling and
interference of a narrowband discrete resonance with a broadband continuum. In the
past years, the Fano interference effects in light scattering in classical optical systems
have attracted significant attentions [30, 31]. As discussed in the previous sections,
in the temporal coupled-mode formalism [2, 26], the Fano resonance for both the
single and multiple modes can be unified in the view of the interference between two
light scattering pathways: the direct pathway of the background scattering and the
indirect pathway of the resonance-assisted scattering. The direct scattering pathway
provides a slowly-varying background phase while the scattered light in the reso-
nant pathway has a rapid π phase change near the resonant frequency. Such phase
difference results in a steep transition from constructive interference to destructive
interference between these two pathways in the vicinity of the resonant frequency,
thus gives rise to the scattering peak and dip respectively. The Fano resonances in
the scattering and extinction cross section spectra were observed in a variety of opti-
cal systems, ranging from plasmonic resonators, all-dielectric resonators to photonic
crystals and optomechanical cavities. Below we review these Fano resonance cases
and classify them according to the background scattering, whether it arises from the
individual scattering or from the super-radiant mode in the multiple-resonance cases.

7.5.1 Fano Resonances in Plasmonic Resonators

Metallic nanostructures are able to confine and manipulate light in subwavelength
scale and realize subwavelength resonances with strong field enhancement [36–39].
The Fano resonance has been realized in a broad range of nanoscale plasmonic
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systems, ranging from individual plasmonic nanoparticles to coupled plasmonic
nanostructures.

For individual plasmonic nanoparticles, theFano resonances in the scattering cross
section have been discussed, for both nanocylinders (two-dimensional scattering)
and nanospheres (three-dimensional scattering) [2, 7, 13, 40–42]. In these cases,
the background scattering field is provided by the direct reflection when the external
light illuminates on the particle surface. The out-of-phase interference, between the
background scattering and the re-emission of the localized resonances, gives rise to
asymmetric Fano line shape in the scattering cross section spectra. The occurrence
of such Fano resonances is absence from the Rayleigh scattering diagram, when the
wavelength is much larger than the particle size. Thus the plasmonic Fano resonance
is named as “anomalous scattering” in previous studies, and can be fully interpreted
by applying theMie scattering theory in the vicinity of the plasmon resonance [18, 40,
41, 43]. For the scattering of a single sphere, the Fano line shapes in the differential
scattering cross section spectra, for example, the forward scattering or backward
scattering, have been studied [4, 41]. In these cases, the Fano resonances result
from the interference between scattering fields in different l-th orders, thus the Fano
resonances occur in differential scattering cross sections rather than total scattering
cross sections, because the radiation patterns of resonances with different l-th orders
have different angular distributions. In other studies, the Fano line shape in the total
scattering cross section spectra have been realized when two interfered scattering
fields are of the same l-th order, by introducing core-shell coated structures [2, 44,
45].

Apart from individual nanoparticles, Fano resonances were also realized in cou-
pled plasmonic nanostructures. These coupled plasmonic nanostructures are often
composed of two or more slightly separated resonators and they each supports a
resonance. These metallic nanostructures have characteristic sizes of subwavelength
scale and are in the quasi-static regime, thus the most common supported modes are
plasmonic dipolar modes. In the coupled plasmonic systems, Fano resonances arise
from the interference between the super-radiant and the sub-radiant modes. Here the
super-radiant mode provides the broadband background while the sub-radiant mode
acts as the narrowband resonance. These sub-radiant narrowband resonances in cou-
pled plasmonic nanostructures canbe introduced in twoapproaches, the hybridization
approach [46, 47] and the symmetry-breaking approach [48–52].

The hybridization approach is usually implemented in spatially symmetric plas-
monic nanocluster systems, where several individual metallic nanoparticles are
placed in proximity in a symmetric configuration with subwavelength separations
between each other. In such systems, the two resonances c1 and c2 supported by
two coupled resonators feature the same l-th order, typically the dipolar plasmon
modes. Interactions of the dipolar modes of these individual nanoparticles form dif-
ferent collective oscillation modes, according to (7.28) in Sect. 7.4. For example, in
the ring-disk cluster configuration [46], the central disk and the surrounding ring
each supports a dipolar mode respectively (Fig. 7.4a), corresponding to c1 and c2
in (7.27). When the two resonators are placed in proximity and their eigenmodes
overlap in the spectrum, they hybridize to form two new modes, a lower-energy
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bonding mode cb and a higher-energy anti-bonding mode ca . In the bonding mode
cb, the dipolar plasmons in the central and the surrounding disks oscillate in phase,
resulting in the strong radiative feature of this mode, thus it is referred to as the
super-radiant mode. In the anti-bonding mode ca , however, dipolar plasmons in the
central and the surrounding disks oscillate out of phase, cancelling out the total dipole
moments, thus this mode hardly couples to the external field and is referred to as
the sub-radiant mode. The coupling and interference process for light scattering in
the above-mentioned systems can be generally described by the coupled-mode equa-
tions for hybridized modes (7.27). These hybridized sub-radiant and super-radiant
modes overlap in the spectrum, and their interference lead to the Fano resonance.
Similarly, symmetric four-nanorod configuration was studied, where a gold dipole
nanoantenna is placed between two gold nanorods [47]. The hybridization originates
from the dipolar modes supported by the central nanoantenna and the nanorod pair
(Fig. 7.4b).

As for the symmetry-breaking approach, higher-order multipolar modes are
involved by introducing spatial symmetry-breaking into coupled plasmonic nanos-
tructures. In the symmetric structure, the odd-symmetric modes cannot be excited by
the incident plane wave and only the even-symmetric modes are accessible from the
far field due to the consistence of symmetry. Thus such symmetric nanostructures
support only dipolar modes while quadrapolar and higher-order multipolar mode
remain dark. When symmetry-breaking is introduced, the higher-order multipolar
modes are no longer dark, particularly the quadrupolar mode can be excited. In
such a system, the dipolar mode acts as the super-radiant mode and provides the
broadband background, while the quadrupolar mode is sub-radiant and acts as the
narrowband resonance. By appropriately choosing the geometric parameters of the
nanostructure, the sub-radiant quadrupolar mode spatially and spectrally overlaps
with the super-radiant dipolar mode, thus their coupling and interference give rise
to the Fano resonance as (7.31). What is most interesting in the symmetry-broken
coupled plasmonic systems is that the spectral profile of the Fano resonance can be
dynamically tuned. By tuning the geometric sizes of and spacing between individual
elements in the nanostructure [49–52] (Fig. 7.4c, d), as well as the incident angle
and polarization [48, 50, 52] of the incident plane wave, one can dynamically vary
the extent of the spatial mode overlapping between the super-radiant and sub-radiant
modes, thus the coupling strength between them, which leads to the tunability of the
Fano spectral profile.

Themost commonly studied coupledplasmonic systems implementing symmetry-
breaking are the nonconcentric core-shell structures [48–50] (Fig. 7.4c) and the
three-bar configurations [51] (Fig. 7.4d). In the nonconcentric core-shell metallic
nanostructure with the diameter of several hundreds nanometers [48], the dipolar
modes in the ring and the disk form hybridized dipolar modes. The anti-bonding
dipolar mode provides the super-radiant mode. The super-radiant dipolar mode can
be directly excited by the incident field, providing a broad background. When the
concentric structure evolves into a nonconcentric one, the geometric symmetry is
broken and higher-order plasmon modes arise. The sub-radiant quadrupolar mode
can be excited indirectly through near-field coupling with the dipolar mode, thus



7 Temporal Coupled-Mode Theory for Light Scattering … 171

Fig. 7.4 a The calculated charge distributions at the Fano peak and Fano dip, where in the former
case the dipolar plasmons in the central and the surrounding disks oscillate in phase, while in
the latter case they oscillate out of phase. Reprinted with permission from [46]. Copyright 2016
ACS. b Symmetric four-nanorod configuration structure made of gold. The scattering cross sections
simulated (red solid line) and fitted by model (black dashed line) are plotted. The bottom panels
show the near-field intensity corresponding to the Fano dip and peak positions in the cross section.
The right panel shows the electric field distributions at the wavelength of 580nm. Reprinted with
permission from [47]. Copyright 2013 ACS. c Extinction spectra for nonconcentric Ag ring/disk
cavity (solid line) and the concentric one (dashed line). Insets show the electric field distribution at
the resonance. Reprinted with permission from [48]. Copyright 2008 ACS. d Experimental (black)
and calculated (red) reflectance spectra of the planar three-bar configuration metamaterial. The
left column shows the scanning electron microscopy images of the structures. s denotes the lateral
displacement of the central antenna to the symmetric position. Reprinted with permission from
[51]. Copyright 2010 ACS

the interference between the narrowband sub-radiant and broadband super-radiant
modes leads to the Fano resonance in the infrared region, observed as an asymmetric
line shape in the extinction cross section spectrum (Fig. 7.4c). The Fano resonance
can be tuned from the visible to the mid-infrared spectrum by changing the geom-
etry parameters [49]. The asymmetric Fano resonances were also observed in the
three-bar configurations in near-infrared extinction or reflection spectrum [50–52].
Here a pair of side nanobars act as the quadrupole antenna and support the sub-
radiant quadrupolar mode, while the middle nanobar acts as the dipole antenna and
supports the super-radiant dipolar mode. With the spatial symmetry breaking, the
sub-radiant quadrupolar mode can be excited indirectly through near-field coupling
with the dipolar mode. The sub-radiant quadrupolar plasmon mode interferes with
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the super-radiant hybridized dipolar mode, leading to the Fano resonance (Fig. 7.4d).
Furthermore, experimentally measured and numerically calculated near-field distri-
butions reveal the interactions between the super-radiant and sub-radiant modes and
therefore the nature of the Fano resonance [50, 52]. At the Fano resonance dip, the
electromagnetic field mainly localizes in the sub-radiative antenna while the super-
radiative antenna is absent of field, demonstrating the destructive interference of two
excitation pathways.

The Fano resonance possesses narrow spectral linewidth and the resonance
frequency displays high sensitivity to the variations of geometry or environment
refractive-index. These features altogether promise the Fano resonances as plat-
forms for nanoscale optical sensing. Efficient sensors in the near-infrared region
were proposed based on the Fano resonances in metallic nanostructures [48–50, 52].

7.5.2 Fano Resonances in All-Dielectric Resonators

Fano resonances are also plentiful in dielectric nanoscale resonators. Using the high
refractive index dielectric material overcomes the high dissipative losses of the plas-
monic systems counterparts, thus gives rise to higher Q-factors of the Fano reso-
nances, and promises applications for sensors [53]. Due to its asymmetric and highly
dispersive line shape feature, as well as the steep transition from resonant peak to dip,
the Fano resonance can also be implemented to realize optical switches or slow-light
devices. One main difference is that while in plasmonic resonators the most com-
mon resonances are the dipolar surface plasmon modes, the resonances supported in
the dielectric nanostructures are volume cavity modes, which have the field concen-
trated inside the dielectric resonators. In analogy with the plasmonic systems, Fano
resonances in dielectric resonators are also tunable.

In individual dielectric obstacles, Fano resonances in the scattering spectra have
been studied. It was revealed that the Mie scattering by individual high-refractive-
index dielectric two-dimensional cylindrical nanorods [54, 58] or three-dimensional
nanospheres [59, 60] can be represented as a cascade of Fano resonances. The Fano
resonances arise from the interference between the direct scattering pathway,which is
the slowly varying background provided by non-resonant scattering of the incident
wave, and the resonant-assisted indirect scattering pathway, which is the leakage
radiation from the excited eigenmode of the cylinder. For homogeneous cylinder
with high refractive index, the Fano formula in the scattering cross section can be
analytically derived from the Mie theory. By fitting the calculated Mie scattering
spectra with the Fano formula, Fano asymmetry parameters for different eigenmodes
of the nanorod are extracted (Fig. 7.5a). When individual cylinders are further lined
in a periodic linear chain, interference gives rise to even narrower Fano resonances
[61]. When the cylinder rows are placed in succession and develop into a two-
dimensional cylinder array, the former Fano resonances further develop into narrow
Fano bands. Apart from cylindrical and spherical nanoparticles, Fano resonances
are also observed in individual planar slab structures. In 2014, Fan et al. studied the
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Fig. 7.5 aRed curve presents the normalized amplitude of the scattered light (squared Lorentz-Mie
coefficient) for a cylindrical nanorod. Blue, green and black curves present the Fano fitting of TE02,
TE05 and TE07 modes. Reprinted with permission from [54]. Copyright 2013 OSA. b Simulated
total scattering efficiency spectra and absorption efficiency spectra of a Si slab at different incident
angles. The Fano resonances are observed in the scattering spectra. Reprinted by permission from
Macmillan Publishers Ltd: [Nature Materials] [55], copyright 2014. c Planar nanodimers consisted
of two adjacent subwavelength silicon nanoblocks [56]. With permission of Springer. d Dielectric
symmetric ring-disk clusters made of silicon nanospheres. Reprinted with permission from [57].
Copyright 2012 ACS. e Transmission spectrum through a photonic crystal structure under normal
incidence. Reprinted with permission from [24]. Copyright 2003 OSA

scattering spectra of the subwavelength semiconductor slab [55]. The Fano resonance
was obtained in the visible region at the excitation of the waveguide mode in the slab
(Fig. 7.5b). As an advantage of the semiconductor-based nanostructure, the scattering
and absorption spectra can be simultaneously analyzed.

Fano resonances in coupled dielectric nanostructures have been widely studied.
In asymmetric dielectric metamaterials, Fano resonance arises from the interference
between the super-radiant dipolar mode and the sub-radiant quadrupolar mode. One
example is the planar nanodimers consisting two adjacent subwavelength silicon
nanoblocks [56] (Fig. 7.5c). Dielectric symmetric ring-disk clusters made of sili-
con nanodisks [62] or nanospheres [57] are also able to achieve Fano resonance
(Fig. 7.5d), resulting from the interference between the magnetic dipole mode of
the central particle and the collective mode in the surrounding particles. In periodic
sphere arrays, the interference between the sub-radiant mode of discrete Bragg band
and the super-radiant Mie scattering gives rise to the Fano resonance [63]. Fano res-
onance also appears in the reflection spectra of the multilayer Bragg gratings [64],
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where the excited Bloch surface wave provides the discrete narrow resonance. Inter-
ference of two reflection pathways, the direct reflection from the surface and the
remission through exciting the surface waves, leads to the Fano resonance.

In two-dimensional (2D) photonic crystal slab (PCS) systems, Fano resonances
arise from the coupling of the discrete guided resonance with the background of
free space radiation modes. The guided resonances have their field strongly confined
within the slab and are leaky modes that can couple to external fields [23]. The Fano
resonances can be attributed to the interference of a direct pathway of background
reflection/transmission and an indirect resonance-assisted pathway that light couples
into guided resonances and then radiates out to the free space. The physical process
is described and the asymmetric lineshape is well fitted by the analytical model of
temporal coupled-mode theory [24] (Fig. 7.5e).

7.6 All-Optical Analog to Electromagnetically Induced
Transparency

Electromagnetic induced transparency (EIT) is a coherent quantum interference
effect originally observed in three-level atomic gas systems, resulting from the
destructive quantum interference of different pathways for excitation of the state
[11, 12]. However, the occurrence of EIT-like effects is not necessarily limited to
quantum systems. It has been observed in a variety of classical systems, ranging from
mechanical systems and electrical circuits to coupled plasmonic and dielectric optical
resonators and optomechanical systems, all with the similar mechanism of coupling
between two frequency-degenerate modes with remarkable different Q-factors [33].
These EIT-like effects were generally described by several physical diagrams such as
the mechanical coupled two-oscillator model [12, 15, 65] and the coupled electrical
circuits model [66, 67].

The optical analog of EIT is featured by a narrowband transparency window
in the electromagnetic response of a system. The characteristic line shape shows
that a narrow transmission window superimposes on the center of a broad scattering
background. In optical resonator systems, theEIT-like effect results from the classical
destructive interference of different scattering pathways of the electromagneticwaves
(Fig. 7.6a). Here the presence of a sub-radiant mode resembles the metastable level
in the atomic systems, which is necessary for realizing EIT, and the weak coupling
is enabled by spatial overlapping of the modes rather than a pump beam [11, 12].

Following the theory we developed in Sects. 7.3 and 7.4, the optical analog of EIT
occurs in the case that resonant frequencies of two couplingmodes nearlymatch with
each other, that is, ω1 ≈ ω2. In this condition, it is easily deduced from (7.31) that
q ≈ 0 in the vicinity of the resonant frequency, thus the scattering spectrum lineshape
exhibits a narrowband anti-Lorentizian dip in the vicinity of the resonant frequency
superimposed on the broadband Lorentizian background. Particularly, it can be fur-
ther derived out that at the resonance, the super-radiant mode and the sub-radiant
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Fig. 7.6 Plasmonic and dielectric nanostructures supporting EIT. a A three-level prototype of the
plasmonic EIT nanostructure. The bottom nanobar pair supports the super-radiant mode (|1〉) and
the top bar supports the sub-radiant mode (|2〉). δ denotes the detuning of resonances |1〉 and |2〉.
κ denotes the coupling strength between resonances |1〉 and |2〉. γ1 and γ2 denote the damping
rates of resonances |1〉 and |2〉. The EIT-like phenomenon arises from the destructive interference
between two pathways, the direct pathway |0〉 − |1〉 and the indirect pathway |0〉 − |1〉 − |2〉 − |1〉.
b Simulated electric field distribution at the resonance. There is nearly no field in the top bar.
Reprinted by permission from Macmillan Publishers Ltd: [Nature Materials] [15], copyright 2009.
c Planar metamaterial composed of two coupled SRRs. Reprinted with permission from [12].
Copyright 2009 by the American Physical Society. d Plasmonic three-bar planar metamaterial and
the electric field distribution at resonance. Reprinted with permission from [11]. Copyright 2008 by
the American Physical Society. e All-dielectric metasurface composed of rectangular bars and ring
resonators. Reprinted by permission from Macmillan Publishers Ltd: [Nature Communications]
[65], copyright 2014

mode have equal amplitudes but with a phase difference of π. Thus the destructive
interference of these two modes at the resonance cancels out the total scattering field
and results in a narrow transparencywindow.This is the essential physicalmechanism
of the optical analog of EIT. In addition, in other studies, temporal coupled-mode
theory of two resonances was also developed to describe these coupling processes
[33, 68, 69], involving a set of two differential equations describing the dynamics
of the super-radiant and sub-radiant modes respectively.

In analogy with the Fano resonances discussed above, EIT can be realized in
subwavelength coupled plasmonic systems. The transparency is induced as a result
of the interference between the super-radiant and sub-radiant modes. Introducing the
spatial symmetry breaking allows the excitation of a sub-radiant higher-order mode.
In the scattering process, two pathways contribute to the excitation of the broad
plasmon mode, the direct excitation by the external field and the indirect resonant-
assisted pathways through the backward coupling of the sub-radiantmode (Fig. 7.6a).
At the resonant frequency, two optical pathways destructively interfere, thus result
in suppression of the total scattering field (Fig. 7.6b). Coupling strength between the
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two modes can be dynamically controlled by changing the geometric size of and the
spatial separation between the coupled resonators.

Optical analogs of EIT were experimentally studied in plasmonic three-bar planar
[11] (Fig. 7.6c) and stacked [15, 70]metamaterials. By introducing symmetry-broken
spatial shift, the sub-radiant quadrupole mode in the paring bars can be excited
through plasmonic coupling with the super-radiant dipolar mode in the perpendicular
single bar. At the resonant transparency, simulated near-field distributions show that
the electromagnetic field in the radiative dipole antenna is indeed suppressed, while
the field mainly localizes in the sub-radiant resonator. EIT effects were also studied
in coupled split ring resonators (SRR) systems, composed of two SRRs [12, 71]
(Fig. 7.6d), a cut-wire with a double-split SRR [67], an SRR pair separated by a cut-
wire [72], or even three-dimensional SRRs [73]. Here one of the SRR or a cut-wire is
directly excited by the incident wave and functions as a super-radiant resonator, while
another SRR does not couple directly to the external field and functions as a sub-
radiant resonator. The EIT-like spectrum results from the interference between the
super-radiant resonance and the LC resonance in the sub-radiant SRR. EIT in other
planar metamaterial has been studied, for example, bilayer fishlike-pattern metallic
strips [10]. In the induced-transparency region, modes in the two layers are excited
with a phase shift of π and their far field emissions interfere destructively, thus the
reflection is reduced while the transmission is enhanced at the same time.

Optical analogs of EIT were also studied in a wide range of dielectric resonators.
For a metasurface with its periodic lattice composed of a rectangular bar and a
ring resonator, the EIT effect arises from the interference between the super-radiant
electric dipole mode supported by the rectangular bars and the sub-radiant magnetic
dipole mode supported by the ring resonator [65] (Fig. 7.6e). EIT in other dielectric
systems were also demonstrated, for example, in waveguide-cavity systems [74–78],
coupled whispering-gallery-mode microcavities [33, 79–83], and optomechanical
cavity systems [84–88].

The distinct features of the EIT line shape give rise to a variety of applications. The
induced transparency peak has a narrow spectral width and its resonant frequency
is sensitive to changes of the environment refractive index [65, 70] or the structure
geometric parameters [89], thus promises high-performance sensors for refractive
index or structure displacement. Based on the steep transition from zero to complete
transmission, EIT allows dynamical switching on and off of optical processes [90],
useful for wave modulations [91] and unidirectional transmissive electromagnetic
diode [92]. Steep dispersion of the transparency peak indicates the reduction of group
velocity, which can be utilized for slowing of light pulses [32]. Slowing of light pulses
have been demonstrated in many dielectric [75, 77, 78, 80] and plasmonic [10–12]
nanoresonator systems. Furthermore, EIT effects can be implemented for enhancing
nonlinear processes [32], and useful for quantum memory applications [87].
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7.7 Design of Super-Scattering Nanoparticles

Enhancing the scattering of subwavelength objects is important in nano-optics, and
has practical significance for applications such as imaging, biomedicine, optical
antenna, and photovoltaics [18, 48, 93–102]. When the subwavelength object is a
single atom in three-dimensional (3D) vacuum, one can rigorously prove that in the
absence of dephasing, the scattering cross-section due to spontaneous emission of the
atom reaches a maximum value of (2l + 1)λ2/2π at the atomic resonant frequency,
where l is the total angular momentum of the atomic transition. Most subwavelength
nanoparticles have a scattering cross section less than 3λ2/2π since the underlying
resonance has a total angular momentum l = 1 [93, 94, 97]. Theoretically, in two-
dimension, one can similarly prove that themaximumcross section of an atom cannot
exceed 2λ/π (7.23). Thus for subwavelength rotational symmetry nanostructures,
a common observation has been that the scattering cross section is typically less
than the single-channel limit, that is, 2λ/π in two dimensions (such as nanowires) or
(2l + 1)λ2/2π in three dimensions (such as nanospheres) [18, 93–97]. Here we refer
to a subwavelength particle having a total scattering cross section exceeding 2λ/π in
two dimensions and (2lmax + 1)λ2/2π in three dimensions as a superscatterer, where
lmax is the maximal total angular momentum involved.

In this Section, we answer a fundamental question that how large a scattering
cross section can be achieved by an individual subwavelength particle. Following
the theoretical suggestion of [16], we show that even though there is a rigorous
upper limit of cross sections related with each individual scattering channel, there
is no general theoretical constraint on the total cross section for an object with a
given geometric dimension. Rather, in principle, arbitrarily large total cross-sections
can be reached, provided that one maximizes the contribution from sufficiently large
number of channels and creates an accidental degeneracy of resonant modes with
different total angular momenta. We numerically demonstrate subwavelength spher-
ical particles with a scattering cross section beyond the single channel limit (2λ/π
in two dimensions and (2l + 1)λ2/2π in three dimensions), by employing multiple
resonances with different total angular momenta, and by ensuring that all these res-
onances have almost the same frequency and operate in the over-coupling region
[16].

Wewant to mention that although the superscattering and the EIT effect both stem
from the superposition of two degenerate resonances, a broad super-radiant one and a
narrow sub-radiant one, these two phenomena arise in different conditions. Accord-
ing to the coupled-mode theory [28], the specific conditions for realizing EIT and
superscattering are theoretically determined by the degree of orthogonality between
the radiation patterns of these two involved eigenmodes. EIT requires destructive
interference between these two resonances. The perfect EIT occurs in the extreme
case that the radiation patterns of super-radiant and sub-radiant modes are identically
aligned. On the contrary, the superscattering is achieved in another extreme case that
two modes are exactly orthogonal.
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Fig. 7.7 Total scattering cross section of a nanorod in the lossless case, and the contributions
from individual channels. The m = ±1 channel is near-resonant in the plotted frequency range. Its
resonant line shape is not apparent since its resonant linewidth is much larger than the frequency
range plotted here. (Inset) Schematic of the nanorod. The dark and gray areas correspond to a
plasmonic material and a dielectric, respectively. The geometry parameters are ρ1 = 0.3485λp ,
ρ2 = 0.5623λp , and ρ3 = 0.6370λp , where λp = 2πc/ωp , with c being the speed of light in vac-
uum. Reprinted with permission from [16]. Copyright 2010 by the American Physical Society

As anumerical demonstration,wepresent subwavelength nanorod andnanosphere
with a plasmonic-dielectric-plasmonic layer structure, where the scattering cross-
section far exceeds the single-channel limit, even in the presence of loss. For the
two-dimensional super-scatterer, we consider the nanorod schematically shown in
the inset of Fig. 7.7, which consists of multiple concentric layers of dielectric and
plasmonic materials. The plasmonic material is described by the Drude model. We
consider a lossless structure first. The rod layers’ thicknesses are designed to realize
near-degeneracy of nanorod resonances at different angular momentum channels and
the over-coupling condition. The contribution from each channel between m = ±1
and m = ±4 has a Lorentzian line shape that peaks with a value of 2λ/π, at a fre-
quency around 0.2542ωp (Fig. 7.7). The leakage rates of these resonances decrease as
one increases the angular momentum. The scattering cross section spectra are shown
in Fig. 7.7. The total scattering cross-section reaches a peak value of 7.94(2λ/π),
which is far beyond the single-channel limit, even though the scatterer just has a
subwavelength diameter of 0.32λ. Such a large total scattering cross-section is a
result of near-degeneracy of resonances in multiple channels.

Figure7.8a plots the real part of the total magnetic field distribution and the
pointing vector lines at the frequency of 0.2542ωp, when a plane wave, with unity
amplitude, illuminates the nanorod. The nanorod leaves a large “shadow” behind it.
The size of the shadow is much larger than the diameter of the rod. The presence
of the rod also leads to significant redistribution of the power flow around the rod
(Fig. 7.8a).We emphasize that the super-scattering effect is not an automatic outcome
with the use of plasmonic material. A uniform plasmonic cylinder of the same size
has a much smaller scattering cross section (Fig. 7.8b).
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(a) (b)

Fig. 7.8 Real part of the total field distribution and the pointing vector lines at the frequency of
0.2542ωp a for the nanorod shown in Fig. 7.7, b when the rod is replaced by a same-size uniform
plasmonic cylinder. Here the amplitude of an incident plane wave is unity. The white circle at the
center indicates the size of the rod. Reprinted with permission from [16]. Copyright 2010 by the
American Physical Society

Consider the lossy case, the total scattering cross section reaches a maximum
value of 1.92(2λ/π), which is still about two times the single-channel limit. The
contributions to scattering is mostly from the m = ±1,±2 channels. In the higher
angular momentum channels, the loss rate dominates over the radiation leakage
rate. These resonances are therefore no longer in the over-coupled limit and do not
contribute significantly to the scattering. Since the radiation leakage rate is generally
smaller for higher angular momentum channel [18, 103, 104], the presence of loss
has a more significant effect in higher angular momentum channels in general.

For the three-dimensional super-scatterer, similarly, we consider a nanosphere
which consists of concentric metal-dielectric-metal layer. We start with lossless case
first. With a proper choice of the dielectric layer thickness, we can realize near-
degeneracy in the nanosphere between TM modes (with the magnetic field parallel
with the interface) with different total angular momenta. The total scattering cross
section reaches a peak value of 15.2(λ2/2π) or 2.42λ2, in comparison to the geo-
metric cross section of the particle of 0.18λ2, for such a subwavelength particle with
a diameter of 0.485λ. In consistency with (7.23a), the contribution from different
total angular momentum l each has a Lorenztian lineshape that peaks with a value
of (2l + 1)λ2/2π. The total cross section also exceeds 7λ2/2π where lmax = 3. We
have thus indeed designed a superscattering nanosphere.

We now consider the lossy case. The total scattering cross section maximum is
reduced to 6.1λ2/2π, which nevertheless still exceeds (2lmax + 1)λ2/2π, since the
contributions to scattering aremostly from the l = 1, 2 channels. The resonanceswith
l = 3 do not contribute, since they are no longer in the over-coupling regime due to
the material loss. To summarize, our results show that a superscattering nanosphere
can be designed even in the presence of realistic loss.

In the above-mentioned examples, homogeneous core-shell cylindrical and spher-
ical nanoparticles are considered, where the electric modes with different angular
momentums aremade spectrally aligned. These configurationswere extended further
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by taking the dispersion of realistic material into consideration [105]. The design-
ing of the multi-layer cylindrical superscatterer at any desired wavelength was also
achieved [106]. Furthermore, superscatterers based on the co-existence of electric and
magnetic resonances were proposed. For example, the electric dipole and magnetic
dipole resonances can be made degenerate in metal-dielectric core-shell nanowires
[107], in spherical particles with radial anisotropy [108]. Even further, overlapping
of electric quadrupole and magnetic quadrupole resonances was also demonstrated
in core-shell nanosphere with nonlocality taken into consideration [109]. Finally, in
analogy to the superscattering, one can seek to enhance the absorption cross section
to go beyond the single channel limit as well, named as super-absorption. This has
been realized in multilayer nanowires [110] and nanoparticles [111].

7.8 Summary

In this Chapter, the temporal coupled-mode theory is developed to provide a gen-
eral description of the scattering behavior for subwavelength obstacles supporting
resonances. The scattering process is well modeled as the interference and coupling
between the external field and the resonance-assisted leaky radiation. In Sect. 7.2,
we first discuss the temporal coupled-mode theory based on the consideration of
energy conservation and time-reversal symmetry, and provide the general form of
the scattering matrix and the scattering cross section. In Sects. 7.3 and 7.4, we then
show that the Fano interference effect and EIT can be modeled by a simple tempo-
ral coupled-mode equation, which provides line shape formulas for scattering and
absorption cross sections [2]. In Sects. 7.5 and 7.6, a brief review of the optical ana-
log of Fano resonances and EIT in nanostructures is presented, and the temporal
coupled-mode theory with the presence of two resonances is developed to provide a
general modelling of the Fano and EIT lineshapes in these nanostructures. Finally, in
Sect. 7.7, we discuss the super-scattering effect of a single subwavelength particle,
where an arbitrarily large total scattering cross section can be achieved provided
that one maximizes contributions from a sufficiently large number of resonances. In
conclusion, we develop a theoretical framework that elucidates the influence of the
resonance in subwavelength obstacles on the scattering properties, including Fano
interference, all-optical analog to EIT, and super-scattering.
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35. U. Fano, Phys. Rev. 124(6), 1866 (1961)
36. J.A. Schuller, E.S. Barnard, W.S. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater.

9(3), 193 (2010)
37. M.L. Brongersma, V.M. Shalaev, Science 328(5977), 440 (2010)
38. V. Giannini, A.I. Fernandez-Dominguez, S.C. Heck, S.A. Maier, Chem. Rev. 111(6), 3888

(2011)
39. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70(1), 1 (2007)
40. B.S. Luk’yanchuk,M.I. Tribelsky,V.Ternovsky, Z.B.Wang,M.H.Hong, L.P. Shi, T.C.Chong,

J. Opt. A 9(9), S294 (2007)
41. M.I. Tribelsky, S. Flach, A.E. Miroshnichenko, A.V. Gorbach, Y.S. Kivshar, Phys. Rev. Lett.

100(4), 043903 (2008)
42. N. Liu, S. Kaiser, H. Giessen, Adv. Mater. 20(23), 4521 (2008)
43. B.S. Luk’yanchuk, M.I. Tribelsky, Z.B. Wang, Y. Zhou, M.H. Hong, L.P. Shi, T.C. Chong,

Appl. Phys. A 89(2), 259 (2007)
44. T.J. Arruda, A.S. Martinez, F.A. Pinheiro, Phys. Rev. A 87(4), 043841 (2013)
45. H.L. Chen, L. Gao, Opt. Express 21(20), 23619 (2013)



182 Y. Fang and Z. Ruan

46. M. Yorulmaz, A. Hoggard, H.Q. Zhao, F.F. Wen, W.S. Chang, N.J. Halas, P. Nordlander, S.
Link, Nano Lett. 16(10), 6497 (2016)

47. A. Lovera, B. Gallinet, P. Nordlander, O.J.F. Martin, ACS Nano 7(5), 4527 (2013)
48. F. Hao, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, N.J. Halas, P. Nordlander, Nano Lett. 8(11),

3983 (2008)
49. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, S.A. Maier, ACS Nano 3(3), 643 (2009)
50. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P. Van Dorpe, P.

Nordlander, S.A. Maier, Nano Lett. 9(4), 1663 (2009)
51. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonichsen, H.

Giessen, Nano Lett. 10(4), 1103 (2009)
52. W. Khunsin, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, K. Kern,

ACS Nano 10(2), 2214 (2016)
53. J.F. Zhang, W. Liu, Z.H. Zhu, X.D. Yuan, S.Q. Qin, Opt. Express 22(25), 30889 (2014)
54. M.V. Rybin, K.B. Samusev, I.S. Sinev, G. Semouchkin, E. Semouchkina, Y.S. Kivshar, M.F.

Limonov, Opt. Express 21(24), 30107 (2013)
55. P.Y. Fan, Z.F. Yu, S.H. Fan, M.L. Brongersma, Nat. Mater. 13(5), 471 (2014)
56. N. Muhammad, A.D. Khan, Plasmonics 12(5), 1399 (2017)
57. A.E. Miroshnichenko, Y.S. Kivshar, Nano Lett. 12(12), 6459 (2012)
58. M.I. Tribelsky, A.E. Miroshnichenko, Y.S. Kivshar, EPL 97(4), 44005 (2012)
59. X.H. Kong, G.B. Xiao, J. Opt. Soc. Am. A 33(4), 707 (2016)
60. M.I. Tribelsky, A.E. Miroshnichenko, Phys. Rev. A 93(5), 053837 (2016)
61. P. Markos, Phys. Rev. A 92(4), 043814 (2015)
62. K.E. Chong, B. Hopkins, I. Staude, A.E. Miroshnichenko, J. Dominguez, M. Decker, D.N.

Neshev, I. Brener, Y.S. Kivshar, Small 10(10), 1985 (2014)
63. M.V. Rybin, A.B. Khanikaev, M. Inoue, K.B. Samusev, M.J. Steel, G. Yushin, M.F. Limonov,

Phys. Rev. Lett. 103(2), 023901 (2009)
64. I.V. Soboleva, V.V. Moskalenko, A.A. Fedyanin, Phys. Rev. Lett. 108(12), 123901 (2012)
65. Y.M. Yang, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nat. Commun. 5, 5753 (2014)
66. C.L.G. Alzar, M.A.G. Martinez, P. Nussenzveig, Am. J. Phys. 70(1), 37 (2002)
67. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Opt. Express 17(7), 5595

(2009)
68. W. Suh, Z. Wang, S. Fan, IEEE J. Quantum Electron. 40(10), 1511 (2004)
69. R. Adato, A. Artar, S. Erramilli, H. Altug, Nano Lett. 13(6), 2584 (2013)
70. Z.G. Dong, H. Liu, J.X. Cao, T. Li, S.M.Wang, S.N. Zhu, X. Zhang, Appl. Phys. Lett. 97(11),

114101 (2010)
71. R. Singh, C. Rockstuhl, F. Lederer, W.L. Zhang, Phys. Rev. B 79(8), 085111 (2009)
72. X.J. Liu, J.Q. Gu, R. Singh, Y.F. Ma, J. Zhu, Z. Tian, M.X. He, J.G. Han, W.L. Zhang, Appl.

Phys. Lett. 100(13), 131101 (2012)
73. S. Han, L.Q. Cong, H. Lin, B.X. Xiao, H.L. Yang, R. Singh, Sci. Rep. 6, 20801 (2016)
74. S.H. Fan, Appl. Phys. Lett. 80(6), 908 (2002)
75. M.F. Yanik, W. Suh, Z. Wang, S.H. Fan, Phys. Rev. Lett. 93(23), 233903 (2004)
76. D.D. Smith, H. Chang, K.A. Fuller, A.T. Rosenberger, R.W.Boyd, Phys. Rev. A 69(6), 063804

(2004)
77. Q.F. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S.H. Fan, M. Lipson, Phys. Rev. Lett. 96(12),

123901 (2006)
78. X.D. Yang, M.B. Yu, D.L. Kwong, C.W. Wong, Phys. Rev. Lett. 102(17), 173902 (2009)
79. A. Naweed, G. Farca, S.I. Shopova, A.T. Rosenberger, Phys. Rev. A 71(4), 043804 (2005)
80. K. Totsuka, N. Kobayashi, M. Tomita, Phys. Rev. Lett. 98(21), 213904 (2007)
81. M. Tomita, K. Totsuka, R. Hanamura, T. Matsumoto, J. Opt. Soc. Am. B 26(4), 813 (2009)
82. C.H. Dong, C.L. Zou, Y.F. Xiao, J.M. Cui, Z.F. Han, G.C. Guo, J. Phys. B 42(21), 215401

(2009)
83. B.B. Li, Y.F. Xiao, C.L. Zou, X.F. Jiang, Y.C. Liu, F.W. Sun, Y. Li, Q.H. Gong, Appl. Phys.

Lett. 100(2), 021108 (2012)



7 Temporal Coupled-Mode Theory for Light Scattering … 183

84. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg,
Science 330(6010), 1520 (2010)

85. C.H. Dong, V. Fiore, M.C. Kuzyk, H.L. Wang, Science 338(6114), 1609 (2012)
86. K.N. Qu, G.S. Agarwal, Phys. Rev. A 87(6), 063813 (2013)
87. A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill,

D.E. Chang, O. Painter, Nature 472(7341), 69 (2011)
88. K.Y. Fong, L.R. Fan, L. Jiang, X. Han, H.X. Tang, Phys. Rev. A 90(5), 051801 (2014)
89. N. Liu, M. Hentschel, T. Weiss, A.P. Alivisatos, H. Giessen, Science 332(6036), 1407 (2011)
90. B.D.Clader, S.M.Hendrickson, R.M.Camacho, B.C. Jacobs, Opt. Express 21(5), 6169 (2013)
91. N. Dabidian, I. Kholmanov, A.B. Khanikaev, K. Tatar, S. Trendafilov, S.H. Mousavi, C.

Magnuson, R.S. Ruoff, G. Shvets, ACS Photonics 2(2), 216 (2015)
92. Y. Sun, Y.W. Tong, C.H. Xue, Y.Q. Ding, Y.H. Li, H.T. Jiang, H. Chen, Appl. Phys. Lett.

103(9), 091904 (2013)
93. J.B. Jackson, N.J. Halas, Proc. Natl. Acad. Sci. 101(52), 17930 (2004)
94. J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Käll, G.W. Bryant, F.J. Garcia de Abajo, Phys.

Rev. Lett. 90(5), 057401 (2003)
95. J.A. Schuller, T. Taubner, M.L. Brongersma, Nat. Photonics 3, 658 (2009)
96. A.E. Miroshnichenko, Phys. Rev. A 80(1), 013808 (2009)
97. R. Bardhan, S. Mukherjee, N.A. Mirin, S.D. Levit, P. Nordlander, N.J. Halas, J. Phys. Chem.

C 114, 7378 (2009)
98. H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 73, 3815 (1998)
99. S. Nie, S.R. Emory, Science 275(5303), 1102 (1997)
100. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J.

Halas, J.L. West, Proc. Natl. Acad. Sci. 100(23), 13549 (2003)
101. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, J. Appl. Phys. 101, 093105 (2007)
102. H.A. Atwater, A. Polman, Nat. Mater. 9(3), 205 (2010)
103. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
104. Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14(18), 8247 (2006)
105. A. Mirzaei, I.V. Shadrivov, A.E. Miroshnichenko, Y.S. Kivshar, Opt. Express 21(9), 10454

(2013)
106. A. Mirzaei, A.E. Miroshnichenko, I.V. Shadrivov, Y.S. Kivshar, Appl. Phys. Lett. 105(21),

011109 (2014)
107. W. Liu, A.E. Miroshnichenko, R.F. Oulton, D.N. Neshev, O. Hess, Y.S. Kivshar, Opt. Lett.

38(14), 2621 (2013)
108. W. Liu, Opt. Express 23(11), 14734 (2015)
109. Y. Huang, L. Gao, J. Phys. Chem. C 118(51), 30170 (2014)
110. A. Mirzaei, I.V. Shadrivov, A.E. Miroshnichenko, Y.S. Kivshar, Nanoscale 7(42), 17658

(2015)
111. K. Ladutenko, P. Belov, O. Pena-Rodriguez, A.Mirzaei, A.E.Miroshnichenko, I.V. Shadrivov,

Nanoscale 7(45), 18897 (2015)



Chapter 8
A Full-Retarded Spectral Technique
for the Analysis of Fano Resonances
in a Dielectric Nanosphere

Carlo Forestiere, Giovanni Miano, Mariano Pascale and Roberto Tricarico

Abstract We introduce a representation of the electromagnetic field scattered by
a homogeneous sphere in terms of a set of full-retarded modes independent of its
permittivity. Within this framework, we introduce the orthogonality properties of
the modes, their resonance conditions, and their classification into narrow and broad
modes. We also discuss the role played by the material properties in determining the
resonant width of a given mode and in enabling or preventing the multimode inter-
ference. We use this theory to unveil the origin of Fano lineshapes in the scattering
efficiency of a spherical nanoparticle, by identifying the interfering modes responsi-
ble for peaks and dips. Eventually, by using the introduced theoretical approach, we
design the permittivity of a homogeneous sphere of size comparable to the incident
wavelength to cancel its backscattering through directional multimode interference.

8.1 Introduction

The electromagnetic resonant properties of metal and dielectric nanoparticles (NPs)
have attracted the interest of many scientist and engineers. The free electron plasma
of metal NPs may display coherent oscillations, named localized surface plasmons
[1]. This phenomenon can be exploited to engineer the electromagnetic fields at the
nanoscale and to enhance linear and nonlinear optical response of nanomaterials [2],
triggering many potential applications, including biosensors of improved sensitivity
[3], nonlinear optics [4], and solar energy harvesting [5].

Unfortunately metals are plagued by high losses in the visible and mid-IR part
of the spectrum, and this fact is currently inhibiting the development of commercial
devices [6]. Therefore, the replacement of metals with high index dielectrics may
be beneficial for many applications as pointed out in [7–11], especially to manip-
ulate light and enhance light-matter interactions at the nanoscale. This interest was
stimulated by the evidence that the enhancement of electric and magnetic fields in

C. Forestiere (B) · G. Miano · M. Pascale · R. Tricarico
Department of Electrical Engineering and Information Technology,
Università degli Studi di Napoli Federico II, via Claudio 21, 80125 Napoli, Italy
e-mail: carlo.forestiere@unina.it

© Springer Nature Switzerland AG 2018
E. Kamenetskii et al. (eds.), Fano Resonances in Optics and Microwaves, Springer
Series in Optical Sciences 219, https://doi.org/10.1007/978-3-319-99731-5_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99731-5_8&domain=pdf


186 C. Forestiere et al.

high-index structures is of the same order of magnitude of the one achievable in
plasmonics. However, we should bear in mind that both the electric and magnetic
hotspots are found within the dielectric particle, while in plasmonic NPs the hotspot
is more easily accessible, being always located outside the metal region. Neverthe-
less, by using dimers of dielectric particles coupled in the near field zone high values
of enhancement of electric and magnetic fields have been demonstrated [12–20].

The strong electromagnetic response of high index NPs suggested an increasing
number of applications, including the enhancement of non linear effects [21], Raman
scattering [22, 23], enhanced emission from quantum dots [24], and biosensing [25].

The physics governing the scattering from high index dielectric NPs is far richer
than the physics behind metal NPs scattering, due to the possibility of exciting mag-
netic modes, and due to presence of multimode interference, which may lead to the
formation of Fano resonances [26].Magnetic (TE) scattering has been experimentally
measured from an isolated nanosphere [27] and nanodisk [28], and high magnetic
field enhancement has been also achieved in different geometries [20, 29]. This
strong magnetic response has also suggested novel strategies to enhance the weak
magnetic transitions of molecules [30–34]. Contrarily to high index nanosphere, the
magnetic modes (TE) in isolatedmetal nanospheres at optical frequencies have never
been observed. In this chapter, we also justify this fundamental difference based on
the properties of a suitable set of modes that do not depend on the permittivity of the
nanosphere.

Fano resonances, which are associated with an asymmetric scattering profile,
originate from the interference of broad and narrow modes. They may manifest

• in the spectrum of the total scattered power,
• in the spectrum of the power scattered in a given angular direction (directional
Fano resonances).

Fano resonances have been observed in the total scattering spectrum of a Si nano-
sphere, see Fig. 1a of [28], of isolated disks [35], of oligomers [36–39], and of silicon
dolmen structures [40]. Fano resonances are particularly interesting for practical
applications, including, for instance, lasing and switching schemes, and for optical
sensors which, taking advantage of their sharp resonant lineshape, could potentially
offer a significant improvement in sensitivity [26]. It is worth to note that Fano
lineshapes in the total scattering spectrum have never been observed in isolated
plasmonic spheres. We theoretically justify also this difference in this chapter.

Directional Fano Resonances [26], are often associated with cancellation of the
backscattering [41–50], where the scattering is suppressed in one direction, due to
distructive multipole interference and enhanced in the opposite direction. Enhancing
the directionality of nano-scatterers may have a great impact in optical wireless
nano-antenna links.

The correct description of Fano lineshapes, where interference phenomena play
a key role, requires not only the identification of the resonant modes but also a
rigorous decomposition of the total scattered field in terms of these modes. Only
in this way the interfering modes can be unambiguously identified, contrarily to
qualitative approaches which are often prone to ambiguities and errors.
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In order to accomplish this task we need a full electrodynamic spectral theory. It
is worth to point out that the Mie theory cannot be considered a spectral theory. In
addition, quasi normal modes (QNM) cannot address these problems, because they
diverge at infinity [51], thus the representation of the field scattered in the far zone
in terms of QNM is not practical.

However, in the quasi-electrostatic regime, spectral theories enabling the iden-
tification of plasmon resonances have been previously proposed. As an example,
for a sphere of radius much smaller than the wavelength of the incident field and
permittivity εr , the Fröhlich condition [1], i.e.:

|εr (ω) + 2| = Minimum
ω

, (8.1)

enables the calculation of the resonant value of the permittivity. Moreover, many
authors introduced quasi-electrostatic techniques allowing the calculation of res-
onances of arbitrarily shaped particles [52–56]. In the framework of electrostatic
approaches, the Fano resonances in complex plasmonic nanostructrues have been
theoretically modelled in [57]. However, although the applicability domain of these
approaches can be reasonably extended using perturbation techniques [55, 56, 58],
they break down when the particle size is of the order of the incident wavelength.

In this chapter, we derive a full-retarded spectral theory for the description of the
electromagnetic scattering from a sphere. This theory enables the identification of the
resonances and interference effects in the electromagnetic scattering from an isolated
spherical particle. It is based on a series expansion of the scattered electric field in
terms of addends of the form (γh − εr )

−1 Ch (r), where γh and Ch are respectively
the h-th eigenvalue and eigenfunction of the auxiliary eigenvalue problem introduced
in [59], which do not depend on the permittivity εr . For this reason we denote these
eigenfunctions as material-independent modes. The investigation of the properties
of these eigenvalues and eigenfunctions enables the derivation of the general prop-
erties of the electromagnetic scattering from a sphere. Specifically, we explain the
differences between the spectrum of the total scattered power of dielectric and metal
NPs, which stem from the disjoint subset of narrowmodes excited in these two cases
[60]. Similar methods have been formulated in previous works [61, 62] and applied
to either the quasi-static or long wavelength limit [54–56, 61–64], to the retarded
single dipole approximation [65], to the scalar Mie scattering [66], and to the full-
wave electromagnetic scattering from a slab [67]. In [59] we presented the spectral
theory of electromagnetic scattering from a homogeneous sphere. Subsequently, we
extended this approach to a coated sphere [68], and to an arbitrarily shaped homo-
geneous object exploiting a volume integral formulation of the Maxwell’s equations
[69].

In particular, in Sect. 8.2, we introduce the material independent modes for the
general case of an arbitrarily shaped object, pointing out in 8.2.1 the main differ-
ences between the material independent modes and the quasi normal modes. In
Sect. 8.3, we particularize the results of Sect. 8.2 to the case of a sphere, deriving
the characteristic power series, the expression of the modes, the orthogonality con-
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ditions, the expansions of the scattered field. In this framework, we also provide the
analytic form of the expansion coefficients of the scattered field, together with the
expression of the radiation pattern and of the scattering efficiency, when the incident
field is a plane wave. Next, in Sect. 8.4, we investigate the spectral properties of the
electromagnetic scattering from a homogeneous sphere, showing the universal loci
described by the eigenvalues as a function of the sphere’s size parameter, systematiz-
ing within this framework the properties of plasmonic and photonic modes. We also
classify the modes in terms of their width, separating them into narrow and broad
modes, regardless of the excitation conditions. Then, in Sect. 8.5, we apply the intro-
duced theoretical framework to the study of the resonances and interference effects
in Silver and Silicon NPs. Eventually, in Sect. 8.6, we demonstrate that the design
of the permittivity of a sphere to cancel its backscattering can be greatly simplified
by expressing the scattered electromagnetic field in terms of material-independent
eigenmodes, exploiting the fact that the expansion coefficients are rational functions
of the permittivity.

8.2 Material Independent Modes for Electromagnetic
Scattering

Let us consider the electromagnetic scattering by an object occupying a regular
region�with boundary ∂�, sketched in Fig. 8.1. The object is excited by a time har-
monic electromagnetic field incoming from infinity Re

{
Ei (r) e−iωt

}
. The medium

is a non-magnetic isotropic homogeneous dielectric with relative permittivity εr (ω),
surrounded by vacuum. LetE+

S andE−
S be the scattered electric fields in� andR3\�̄,

respectively. The Maxwell’s equations lead to

∇2E+
S + k20εr (ω)E+

S = k20 [1 − εr (ω)]Ei in�, (8.2)

∇2E−
S + k20E

−
S = 0 inR3\�̄, (8.3)

n̂ × (
E−

S − E+
S

) = 0 on ∂�, (8.4)

n̂ × (∇ × E−
S − ∇ × E+

S

) = 0 on ∂�, (8.5)

where k0 = ω/c0, c0 is the light velocity in vacuum and n̂ is the outgoing normal
to ∂�. Equations (8.2)–(8.5) have to be solved with the radiation conditions for the

Fig. 8.1 Sketch of the
homogeneous scatterer
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scattered field, namely the regularity and Silver-Müller conditions at infinity. This
problem has a unique solution if Im {εr } ≥ 0 [70].

Aiming at the reduction of the scattering problem to an algebraic form, we intro-
duce the following auxiliary eigenvalue problem

− k−2
0 ∇2C = γC in �, (8.6)

n̂ × ∇ × C = Ce
{
n̂ × C

}
in ∂�, (8.7)

where γ is the eigenvalue. We introduced the exterior outgoing Calderón operator
Ce [70] that takes the tangential component of the scattered electric field on ∂�, i.e.
n̂ × E−

S

∣∣
∂�

, whereE−
S is solution of the scattering problem, and returns the tangential

component of its curl n̂ × ∇ × E−
S

∣∣
∂�

:

Ce
{
n̂ × E−

S

∣∣
∂�

} = n̂ × ∇ × E−
S

∣∣
∂�

. (8.8)

The Calderón operator only depends on the geometry of ∂�. The spectrum of the
operator−∇2 in�with the boundary condition (8.7) is countably infinite. This fact is
a consequence of the radiation conditions at infinity, which are implicitly accounted
for by the exterior Calderón operator. We denote the aforementioned spectrum as
{γr }r∈N, made of complex eigenvalues with Im {γr } < 0.

In this case, the operator −∇2 is symmetric, and the eigenmodes Cr and Cs

corresponding to different eigenvalues γr and γs are not orthogonal in the usual
sense, i.e. 〈C∗

r ,Cs〉� �= 0, where

〈A,B〉V =
˚

V
A · B dV. (8.9)

Nevertheless, it can be proved that [59]:

〈Cr ,Cs〉� = 0 γr �= γs, (8.10)

and

γr = 1

‖Cr‖2�

[
‖∇ × Cr‖2R3

k20
− ‖Cr‖2R3\�̄ − i

"
S∞

|Cr |2
k0

dS

]

(8.11)

where ‖A‖2V = 〈A∗,A〉V . The eigenmodes Cr are extended in R
3 by requiring that

they satisfy (8.3), the boundary conditions (8.4)–(8.5) and the radiation conditions
at infinity. Equation (8.11) suggests that Re {γr } does not have a definite sign, while
Im {γr } is strictly negative. In particular, Im {γr } is proportional to the contribution of
the corresponding mode to the power radiated to infinity, accounting for its radiative
losses.

In the presence of an arbitrary external excitationEi , the solution of the scattering
problem is:
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E+
S = (1 − εr )

∞∑

r=1

1

εr − γr

〈Cr ,Ei 〉�
〈Cr ,Cr 〉�Cr . (8.12)

The eigenvalues γr and the eigenfunctions Cr are permittivity independent, they
only depend on the geometry of the dielectric object. The permittivity appears in the
multiplicative factors only as 1/ (εr − γr ).

8.2.1 Differences Between Material Independent Modes
and Quasi Normal Modes

Open systems are often investigated by using quasi normal modes (QNM) [71].
When applied to a dielectric sphere they are also known as morphology-dependent
resonances (MDR’s) or whispering gallery modes [72, 73]. Therefore, we feel com-
pelled to highlight the major differences between QNMs and material independent
modes.

The QNMs are solution of the following eigenvalue problem:

−∇2F+ = ξ2

c2
εrF+ in�, (8.13)

−∇2F− = ξ2

c2
F− inR3\�̄, (8.14)

n̂ × (
F− − F+) = 0 on ∂�, (8.15)

n̂ × (∇ × F− − ∇ × F+) = 0 on ∂�, (8.16)

with the Silver-Müller conditions at infinity, namely

F− + c

iξ
r̂ × ∇ × F− = o

(
1

r

)
, (8.17)

where ξ is the eigenvalue.
It is worth noting that in this case the spectral parameter ξ also appears in the

Silver-Müller conditions at infinity. This fact makes the spectral problem (8.13)–
(8.17) fundamentally different from the problem of (8.6)–(8.7), where the radiation
conditions at infinity are independent of the spectral parameter instead.

The problem (8.13)–(8.17) exhibits a countably infinite spectrum {ξr }r∈N with the
property Im {ξr } < 0. This property, together with the radiation condition at infinity,
(8.17) has the consequence that QNMs diverge exponentially at large distances [74].
Therefore, to be used in any practical application, they need to be normalized [75].
On the contrary, the material-independent modes approach zero at infinity and no
normalization is needed.
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Furthermore, an additional major difference is that the eigenvalues {ξr }r∈N and
the corresponding QNMs {F}r∈N are dependent on the permittivity of the material εr .
This fact makes the QNMs unattractive for the design of the permittivity of an object
to achieve a prescribed tailoring of the scattered field, because the expansion in terms
of QNMs of the electric field, that solves the inhomogeneous scattering problem, is
a very complicated function of the permittivity.

8.3 Spectral Theory of Electromagnetic Scattering
from a Sphere

From now on, we assume that the region � is a sphere of radius R, sketched in
Fig. 8.2, with size parameter x = 2π R/λ, where λ is the wavelength. The vector
field C, solution of the problem (8.6)–(8.7), can be described in � in terms of the
Vector Spherical Wave Functions [76] (VSWFs) expansion:

C (r) =
∞∑

n=1

n∑

m=0

{
CemnM(1)

emn

(√
γk0r

) + ComnM(1)
omn

√
γk0remn

+ DemnN(1)
emn

(√
γk0r

) + DomnN(1)
omn

√
γk0remn

}
, (8.18)

where the subscripts e and o denote even and odd, and the superscript (1), appended
to the VSWFs, denotes that the radial dependence is given by the Bessel function
j (1)n (·), which are regular at the origin. The explicit expressions of the VSWFs are
reported in the Appendix of the present document.

The extension of C in the external region R
3\�̄ can be written as:

Fig. 8.2 Spherical
coordinate system centred on
the sphere of size parameter
x occupying the region �.
We denote with r the radial
distance, and with θ and φ
the polar and azimuthal
angles, respectively
(Adapted from [59].
Copyright (2016) by the
American Physical Society)
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C (r) =
∞∑

n=1

n∑

m=0

{
BemnM(3)

emn (k0r) + BomnM(3)
omn (k0r)

+ AemnN(3)
emn (k0r) + AomnN(3)

omn (k0r)
}
, (8.19)

where the superscript (3), appended to theVSWFs, denotes that the radial dependence
is given by the Hankel function h(1)

n (·), which satisfies the Silver-Müller condition
at infinity.

By enforcing the continuity of the tangential components of C and ∇ × C on the
surface of the sphere and exploiting the orthogonality of the VSWFs, we obtain, for
a given indices pair m, n, the equations:

(
h(1)
n (x) −√

γ jn
(√

γx
)

√
γ

[
x h(1)

n (x)
]′ − [√

γx jn
(√

γx
)]′

) (
Ae
omn

De
omn

)

= 0, (8.20)

(
h(1)
n (x) − jn

(√
γx

)
[
x h(1)

n (x)
]′ − [√

γx jn
(√

γx
)]′

) (
Be
omn

Ce
omn

)

= 0, (8.21)

where the prime denotes differentiation with respect to the argument in parenthe-
ses. Non trivial solutions of the linear problems described by (8.20) and (8.21) are
obtained by zeroing the determinant of the corresponding matrices, i.e.

h(1)
n (x)

[√
γx jn

(√
γx

)]′ − γ jn
(√

γx
) [
x h(1)

n (x)
]′ = 0,

h(1)
n (x)

[√
γx jn

(√
γx

)]′ − jn
(√

γx
) [
x h(1)

n (x)
]′ = 0.

(8.22)

We now use the properties of the derivatives of the Bessel and Hankel functions
shown below: [

zh(1)
n (z)

]′ = (n + 1) h(1)
n (z) − zh(1)

n+1 (z) ,

[z jn (z)]′ = (n + 1) jn (z) − z jn+1 (z) ,
(8.23)

and we obtain, after some algebraical manipulations:

[
− (n + 1)

(γ − 1)

x
h(1)
n (x) + γh(1)

n+1 (x)

]
jn

(√
γx

) − √
γh(1)

n (x) jn+1
(√

γx
) = 0,

h(1)
n+1 (x) jn

(√
γx

) − √
γh(1)

n (x) jn+1
(√

γx
) = 0.

(8.24)

Thus, we apply the multiplication theorem for the Bessel functions, namely:

jn
(√

γx
) = (√

γ
)n

∞∑

h=0

(−1)h

h! (γ − 1)h
( x
2

)h
jn+h (x) , (8.25)

and (8.24) become respectively:
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∞∑

h=0

(−1)h

h!
( x
2

)h
(γ − 1)h

{
− (γ − 1)

x
(n + 1) h(1)

n (x) jn+h (x)

+ γ
[
h(1)
n+1 (x) jn+h (x) − h(1)

n (x) jn+h+1 (x)
]}

= 0,

∞∑

h=0

(−1)h

h!
( x
2

)h
(γ − 1)h

[
h(1)
n+1 (x) jn+h (x) − γ h(1)

n (x) jn+h+1 (x)
]

= 0.

(8.26)
We recast the equations above in the following power series expansions:

Pn (γ) =
∞∑

h=0

pnh (γ − 1)h = 0, Qn (γ) =
∞∑

h=0

qnh (γ − 1)h = 0, (8.27)

where the coefficients pnh = pnh (x) and qnh = qnh (x) are defined for any given n,
x , and h ≥ 1 as follows:

pn0 = qn0 = h(1)
n+1 (x) jn (x) − h(1)

n (x) jn+1 (x) ,

qnh = − (−1)h−1

(h − 1)!
( x
2

)h−1 [
h(1)
n (x) jn+h (x)

]

+ (−1)h

h!
( x
2

)h [
h(1)
n+1 (x) jn+h (x) − h(1)

n (x) jn+h+1 (x)
]
,

pnh = qnh − (−1)h−1

(h − 1)!
( x
2

)h−1
[
xh(1)

n (x)
]′

x
jn+h−1 (x) ,

jn are the spherical Bessel functions of the first kind, h(1)
n are the Hankel functions

of the first kind. The infinite countable set of eigenvalues is the union of two sets
{αnl}(n,l)∈N2 and {βnl}(n,l)∈N2 , being αnl (resp. βnl) the l-th root of the power series
Pn (resp. Qn). The eigenspaces corresponding to the eigenvalues αnl and βnl are
spanned by the eigenfunctions:

C(α)
pmnl =

⎧
⎨

⎩

N(1)
pmn

(√
αnlk0r

)
r ∈ �

√
αnl jn(

√
αnl x)

h(1)
n (x)

N(3)
pmn (k0r) r ∈ R

3\�̄ , (8.28)

C(β)

pmnl =
⎧
⎨

⎩

M(1)
pmn

(√
βnlk0r

)
r ∈ �

jn(
√

βnl x)
h(1)
n (x)

M(3)
pmn (k0r) r ∈ R

3\�̄ . (8.29)

The modes C(α)
pmnl have no radial magnetic field component and are therefore called

electric type or TM modes. Vice versa the modes C(β)

pmnl have no radial elec-
tric field component and are denoted as magnetic type or TE modes. The modal
indices p,m, n, l have the followingmeaning. The subscript p ∈ {e, o} distinguishes
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between even and odd modes with respect to the azimuthal dependence. The num-
bers n ∈ N and 0 ≤ m ≤ n define the angular dependence of the mode:m defines the
number of oscillations along the azimuth, n is associated with the number of lobes of
the mode amplitude at any given radial distance. In particular, the modes with n = 1
are the dipolar modes, those with n = 2 are the quadrupolar modes, and so on. The
mode number l ∈ N gives the number of maxima of the mode amplitude along the
radial direction inside the sphere. We denote the electric and the magnetic modes as
fundamental when l = 1, and as higher order modes when l ≥ 2. It is worth noting
that higher order electric modes and magnetic modes are not contemplated by the
electrostatic resonance theory [56], and it is not possible to include them within the
electrostatic framework by using perturbation techniques.

In general, due to the bi-orthogonality property of (8.10), we have

〈C(δ)
pmnl , C(δ′)

p′m ′n′l ′ 〉� = 0 ∀ (δ, p,m, n, l) �= (
δ′, p′,m ′, n′, l ′

)
(8.30)

where δ, δ′ ∈ {α,β}. Furthermore, due to the spherical symmetry, we also have that
a subset of the modes is orthogonal on every spherical surface

2πˆ

0

πˆ

0

(
C(δ)

pmnl

)∗ · C(δ′)
p′m ′n′l ′ sin (θ) dθdφ = 0 ∀ (δ, p,m, n) �= (

δ′, p′,m ′, n′) .

(8.31)

For instance, two modes sharing the values of all the indices δ, p,m, n are not
orthogonal, even if they have different values of l. On the contrary, two modes
differing in at least one of the indices δ, p,m, n are orthogonal according to the
definition (8.31).

As an example,we now show the eigenmodes of a sphere of size parameter x = 2π
for m = 1, associated with the eigenvalues given in Tables 8.1 and 8.2.

Specifically, in Fig. 8.3 we plot the eigenmodes of the electric type C(α)
e1nl for n =

1, 2, 3 and l = 1, 2, 3. The eigenmode obtained for n = 1 and l = 1 shows a dipolar
character; increasing the index l, while keeping fixed the order n to 1, we observe for
l = 2 and l = 3 two and three oscillation of the eigenmode as we move away from
the center of the sphere. For n = 2 and l = 1 the eigenmode shows a quadrupolar

Table 8.1 Eigenvalues αnl of a sphere of size parameter x = 2π for n = 1, 2, 3 and l = 1, 2, 3

αnl

l = 1 l = 2 l = 3

n = 1
0.1670 − 0.0812i 0.7485 − 0.3238i 1.5809 − 0.4144i

n = 2
0.3147 − 0.2035i 1.0223 − 0.4323i 2.1294 − 0.4210i

n = 3
0.4955 − 0.3990i 1.3503 − 0.5145i 2.7598 − 0.4524i
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Table 8.2 Eigenvalues βnl of a sphere of size parameter x = 2π for n = 1, 2, 3 and l = 1, 2, 3

βnl

l = 1 l = 2 l = 3

n = 1
0.4442 − 0.1722i 1.1043 − 0.3993i 2.2314 − 0.3737i

n = 2
0.6786 − 0.2832i 1.4928 − 0.4007i 2.9304 − 0.3464i

n = 3
0.9159 − 0.3709i 1.9836 − 0.3638i 3.7095 − 0.3142i

Fig. 8.3 Cone plots of the real part of the electric type eigenmodes C(α)
e1nl for n = 1, 2, 3 and

l = 1, 2, 3. The eigenmodes are calculated for a sphere of size parameter x = 2π. The direction of
each cone represents the direction of the eigenmode in the corresponding point of the space, while
the length of the cone is proportional to its amplitude (Adapted from [59]. Copyright (2016) by the
American Physical Society)
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Fig. 8.4 Cone plots of the real part of the magnetic-type eigenmodes C(β)
e1nl for n = 1, 2, 3 and

l = 1, 2, 3. The eigenmodes are calculated for a sphere of size parameter x = 2π. The direction of
each cone represents the direction of the eigenmode in the corresponding point of the space, while
the length of the cone is proportional to its amplitude (Adapted from [59]. Copyright (2016) by the
American Physical Society)

character, while for n = 3 and l = 1 the eigenmode is of octupolar type. In both cases,
by increasing l, the number of oscillation along the radius increases. In Fig. 8.4 we
plot the eigenmodes of the magnetic type C(β)

e1nl for n = 1, 2, 3 and l = 1, 2, 3. In
particular, we show the fundamental magnetic dipole (n = 1, l = 1), quadrupole
(n = 2, l = 1), and octupole (n = 3, l = 1). Also in this case, by increasing l, we
notice an increasing number of oscillation along the radial direction.
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8.3.1 Coupling with an External Excitation

Let us consider an external excitation Ei , assumed to be solenoidal and solution of
the Maxwell’s equations in vacuum. Thus, it can be represented within the spherical
region � in terms of the eigenmodes C(α)

pmnl (r) and C(β)

pmnl (r):

Ei (r) =
∑

pmnl

(
ApmnlC

(α)
pmnl (r) + BpmnlC

(β)

pmnl (r)
)

∀r ∈ �, f (8.32)

where
∑

pmnl

=
∑

p∈{e,o}

∞∑

n=1

n∑

m=0

∞∑

l=1

, and

Apmnl = 〈C(α)
pmnl ,Ei 〉�

〈C(α)
pmnl ,C

(α)
pmnl〉�

, Bpmnl = 〈C(β)

pmnl ,Ei 〉�
〈C(β)

pmnl ,C
(β)

pmnl〉�
. (8.33)

Therefore, it is straightforward to obtain the scattered field inside the sphere by
using (8.12):

E+
S (r) = (εr − 1)

∑

pmnl

(
Apmnl

αnl − εr
C(α)

pmnl (r) + Bpmnl

βnl − εr
C(β)

pmnl (r)
)

, (8.34)

whereαnl ,βnl are the roots of seriesPn andQn give in (8.27),while the corresponding
eigenfunctions C(α)

pmnl , C
(β)

pmnl are provided in (8.28) and (8.29).

8.3.1.1 Coupling with a Plane Wave

We now present the expansion of a plane wave in terms of eigenmodes C(α)
pmnl and

C(β)

pmnl . An x-polarized plane wave propagating along z has the following expression:

Ei (r) = E0e
ikz êx , (8.35)

which, expressed in terms of VSWFs, has the form [76]:

Ei (r) =
∞∑

n=1

En

(
M(1)

o1n (k0r) − iN(1)
e1n (k0r)

)
, (8.36)

where:

En = E0i
n 2n + 1

n (n + 1)
. (8.37)
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Starting from the expression (8.36), it is easy to obtain the expansion of Ei in the
volume � in terms of the material independent eigenmodes:

Ei (r) =
∞∑

n=1

En

∞∑

l=1

(
BnlC

(β)

o1nl − i AnlC
(α)
e1nl

)
, (8.38)

through the projections:

Anl = 〈N(1)
e1n

(√
αnlk0r

)
,N(1)

e1n (k0r)〉�
〈N(1)

e1n

(√
αnlk0r

)
,N(1)

e1n

(√
αnlk0r

)〉�
,

Bnl = 〈M(1)
o1n

(√
βnlk0r

)
,M(1)

o1n (k0r)〉�
〈M(1)

o1n

(√
βnlk0r

)
,M(1)

o1n

(√
βnlk0r

)〉�
.

(8.39)

In this case, both Anl and Bnl have an analytical closed-form expression:

Anl = 2

x (αnl − 1)

num {Anl}
den {Anl} ,

Bnl = 2

x (βnl − 1)

jn−1 (x) jn
(√

βnl x
) − √

βnl jn−1
(√

βnl x
)
jn (x)

j2n
(√

βnl x
) − jn+1

(√
βnl x

)
jn−1

(√
βnl x

) ,

(8.40)

where:

num {Anl} = (n + 1)
[
jn−2 (x) jn−1

(√
αnl x

) − √
αnl jn−2

(√
αnl x

)
jn−1 (x)

]

+ n
[
jn (x) jn+1

(√
αnl x

) − √
αnl jn+1 (x) jn

(√
αnl x

)]
,

den {Anl} = (n + 1)
[
j2n−1

(√
αnl x

) − jn−2
(√

αnl x
)
jn

(√
αnl x

)]

+ n
[
j2n+1

(√
αnl x

) − jn
(√

αnl x
)
jn+2

(√
αnl x

)]
.

Once the coefficients Anl and Bnl are known, we can write the expression of the
internal scattered field:

E+
S (r) = (εr − 1)

∞∑

n=1

En

∞∑

l=1

[
Bnl

βnl − εr
M(1)

o1n

(√
βnl k0r

)

− i
Anl

αnl − εr
N(1)

e1n

(√
αnl k0r

)]
, (8.41)

while the field outside the sphere is readily obtained using the boundary conditions
(8.20)–(8.21):
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E−
S (r) = (εr − 1)

∞∑

n=1

En

h(1)
n (x)

∞∑

l=1

[
Bnl jn

(√
βnl x

)

βnl − εr
M(3)

o1n (k0r)

− i
Anl

√
αnl jn

(√
αnl x

)

αnl − εr
N(3)

e1n (k0r)

]

. (8.42)

8.3.2 Radiation Pattern and Scattering Efficiency

The radiation pattern is defined by [77]

E∞
S (θ,φ) = lim

r→∞
[
re−ik0rE−

S (r, θ,φ)
]
. (8.43)

Thus, substituting (8.42) into (8.43), we obtain its explicit form for the problem at
hand:

E∞
S (θ,φ) = (εr − 1)

k0
×

∞∑

n=1

En

h(1)
n (x)

∞∑

l=1

[
Bnl jn

(√
βnl x

)

βnl − εr
M(∞)

o1n (θ,φ) − i
Anl

√
αnl jn

(√
αnl x

)

αnl − εr
N(∞)
e1n (θ,φ)

]

, (8.44)

where:
M(∞)

o1n (θ,φ) = lim
r→∞

[
k0re

−ik0rM(3)
o1n (θ,φ)

]
,

N(∞)
e1n (θ,φ) = lim

r→∞

[
k0re

−ik0rN(3)
e1n (θ,φ)

]
.

(8.45)

The explicit expressions ofM(∞)
o1n (θ,φ) andN(∞)

e1n (θ,φ) are reported in theAppendix.
The scattering cross section can be defined as [76, 77]:

Csca = 1

‖E0‖2
c0
ω

"

Sc

êr · Im {(∇ × E−
S

)∗ × E−
S

}
dS, (8.46)

where Sc is an auxiliary surface enclosing�. We also define the scattering efficiency
σsca as [76, 77]:

σsca = Csca

G
, (8.47)

where G is the particle cross-sectional area projected onto a plane perpendicular to
the incident beam (e.g., G = πR2 for a sphere of radius R). By combining (8.42),
(8.46), (8.47), assuming the auxiliary surface Sc to be a spherical surface concentric
with �, and exploiting the orthogonality of the VSWFs, we finally get:
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(a) (b)

Fig. 8.5 Scattering efficiency σsca of a dielectric sphere with size parameter x = π (a) and x = 2π
(b) excited by a linearly polarized plane wave, as a function of εr ∈ [−4, 6] calculated using (8.48)
and with the standard Mie theory. In all the calculations we have assumed nmax = 10 (Panel b was
adapted from [59]. Copyright (2016) by the American Physical Society)

σsca = x−2
∑

n

(∣∣
∑

l

unl
∣∣2 + ∣∣

∑

l

vnl
∣∣2), (8.48)

where:

unl = (εr − 1)

√
2 (2n + 1)

h(1)
n (x)

√
αnl jn

(√
αnl x

)
Anl

αnl − εr
,

vnl = (εr − 1)

√
2 (2n + 1)

h(1)
n (x)

√
βnl jn

(√
βnl x

)
Bnl

βnl − εr
.

(8.49)

Equation (8.48) shows that two electric (magnetic) modes sharing the value of the
index n, but having different values of l, may interfere in the scattering efficiency.
On the contrary, two modes differing in n cannot interfere. Also electric and mag-
netic modes cannot interference between them. These are all consequences of the
orthogonality condition of (8.31).

In order to validate the proposedmodal expansion, we now calculate the scattering
efficiency σsca of a sphere, when it is excited by a linearly polarized plane wave of
unit intensity. Specifically, in Fig. 8.5 we plot σsca for x = π (a) and x = 2π (b) as a
function of εr . As a reference solution we use the standard Mie Theory [58], where
the scattered electric field has been expanded in terms of VSWFs:

E−
S =

nmax∑

n=1

En

(
ianN

(3)
e1n (k0r) − bnM

(3)
o1n (k0r)

)
, (8.50)

where an and bn are the Mie scattering coefficients, which can be found in [58] and
En = i n(2n + 1)/ [n(n + 1)]. The cross section is:
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σsca = 2

x2

nmax∑

n=1

(2n + 1)
(|an|2 + |bn|2

)
(8.51)

where we assumed nmax = 10.
In Fig. 8.5a we plot the scattering efficiency of the sphere with x = π, truncating

the inner sum of (8.48) to lmax = 1 (blue line) and to lmax = 3 (red line). When
only the fundamental modes (lmax = 1) are considered, we have agreement with the
standard Mie theory only for small values of εr , while increasing lmax to 3 the results
of the two approaches closely agree.

The scattering efficiency of the sphere with size parameter x = 2π is shown in
Fig. 8.5b. Here, we truncated the inner sum to lmax = 3 (blue line) and to lmax =
6 (red line). Although for lmax = 3 it is apparent a moderate disagreement with
the Mie theory, for lmax = 6 the outcomes of the two approaches become almost
indistinguishable.

8.4 Resonances’ Properties of a Homogeneous Sphere

From the expansion (8.34) it is possible to deduce the general properties of the
scattering resonances of a sphere. For passive materials (Im {εr } ≥ 0), the quan-
tities |αnl − εr | and |βnl − εr | do not vanish as ω varies for a given R, because
Im {αnl} < 0 and Im {βnl} < 0. Nevertheless, themode amplitudes Apmnl/(αnl − εr )
and Bpmnl/(βnl − εr ) reach theirmaximumwhen, for a given R and εr (x), the residua
r (α)
nl and r (β)

nl are minimum as a x varies, namely:

r (α)
nl = |εr (x) − αnl (x)| = Minimum

x
,

r (β)

nl = |εr (x) − βnl (x)| = Minimum
x

,
(8.52)

respectively. These are the conditions that maximize the contribution of the modes
C(α)

pmnl and C
(β)

pmnl as x varies and define their resonance frequencies. In other words,
(8.34) exemplifies that, for a fixed frequency, when the scatterer’s material closely
approaches an eigenvalue, the corresponding mode undergoes a boost, namely a
resonance in a material picture. This picture is dual with respect to the usual fre-
quency picture, where the material is instead fixed and the frequency plays the role
of the spectral parameter. The material picture is particularly relevant in light of the
latest advances in the design of Metamaterials and fabrication techniques, which are
enabling the effective values of permittivity and permeability of the material to be
engineered with increasing precision.

We denote the specific values of x thatminimize the residua introduced in (8.52) as
x (α)
nl and x (β)

nl , the corresponding values of the poles as α̂nl and β̂nl , and the minimum
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residua as r̂ (α)
nl and r̂ (β)

nl . We also point out that the resonant frequencies can be
determined from the values of x (α)

nl and x (β)

nl by using the relation ω = c/R x .
Thewidth of amode is related to theminimumvalue of the residuum. Specifically,

a larger residuum is associated with a wider resonance. We denote a given mode as
narrow if its minimum residuum is less than a given threshold ρ,

r̂ (δ)
nl < ρ, (8.53)

as broad otherwise. In the following, we assume ρ = 5. It is worth to note that the
resonant conditions (8.52) and the definition (8.53) do not depend on the excitation.

We recall that both αnl and βnl are independent of the permittivity of the sphere,
but they only depend on the size parameter x . Therefore, they can be exhaustively
described by the loci they span in the complex plane as a function of x . The resulting
diagrams are universal, because they apply to any homogeneous sphere, and represent
an invaluable tool to investigate NPs resonances.

The real part of αnl and βnl can be either positive or negative. If negative, the
condition (8.52) can be satisfied by metals in the visible spectral range (Re {εr } <

0), causing a plasmon resonances. If positive, the condition (8.52) is verified by
dielectrics (Re {εr } ≥ 0), causing a photonic resonances.

In Fig. 8.6a we plot the locus spanned by the eigenvalue α11, which is associated
with the fundamental electric dipoleC(α)

pm11. For x � 1,α11 approaches the value−2,
in agreementwith the Fröhlich condition [1]. This is consistent with (8.11) that shows
that Re {γn} < 0 in the quasi-electrostatic limit where ∇ × Cn ≈ 0. Therefore, for
finite values of x , the condition (8.52) applied to the fundamental dipole represents
the natural extension of the Fröhlich condition to the full retarded case. By increasing
x , both the real and the imaginary part of α11 move toward more negative values.
The decrease of the real part implies, for low losses Drude metals, a red shift of
the corresponding resonant frequency [78]. When x ≈ 0.72, the quantity Re {α11}
reaches aminimum and then starts increasing. For larger x ,α11 lies in fourth quadrant
of the complex plane. Then, Re {α11} increases until x ≈ 2 where it reaches the
maximum value of 0.48, and eventually α11 asymptotically approaches the origin of
the complex plane.

The loci spanned by higher order electric dipole modes α1l with l = 2, 3, 4, 5,
shown in Fig. 8.6b, manifest a very different nature. In fact, α1l always lies in the
fourth quadrant of the complex plane irrespectively of the mode order l ≥ 2. More-
over, for x → 0, the real part of α1l → ∞, while Im {α1l} approaches zero. This
fact means that, for x � 1, these modes cannot be practically excited. By increasing
x , Re {α1l} moves toward smaller values, while the imaginary part decreases and
reaches a minimum. Eventually, α1l approaches the origin of the complex plane for
very high values of x .

In Fig. 8.6c, e we plot the loci spanned by α21 and α31 of the fundamental (l = 1)
electric quadrupole and octupole eigenmodes. In this case, for x → 0, the eigenvalues
α21 and α31 approach respectively the values −1.5 and −1.33, which agree with the
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Fig. 8.6 Universal loci spanned in the complex plane by the eigenvalues αnl of the electric type
eigenmodes of a dielectric sphere by varying its size parameter x ∈ [0.01, 100]. We show the
eigenvalues of the fundamental (a) and higher order dipole modes (b), fundamental (c) and higher
order (d) quadrupole modes, fundamental (e) and higher order (f) octupole modes. The panels a,
c, e are in linear scale. The panels (b, d, f) are in semilog scale (Adapted from [59]. Copyright
(2016) by the American Physical Society)

quasi-static approximation [55, 56]. In Fig. 8.6d, f we show the loci of higher order
electric quadrupole and octupole modes, which display a behavior similar to higher
order electric dipole modes.
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Fig. 8.7 Universal loci spanned in the complex plane by the eigenvalues βnl of the magnetic-
type eigenmodes of a dielectric sphere by varying its size parameter x ∈ [0.01, 100]. We show the
eigenvalues of the fundamental (a) and higher order (b) dipole modes, fundamental (c) and higher
order (d) quadrupole modes, fundamental e and higher order (f) octupole modes. The panels a, c,
e are in linear scale. The panels b, d, f are in semilog scale (Adapted from [59]. Copyright (2016)
by the American Physical Society)

Let us now consider the eigenvalues βnl of the magnetic type eigenmodes.
The eigenvalues of both the fundamental magnetic eigenmodes, i.e. βn1 shown in
Fig. 8.7a, c, e for n = 1, 2, 3, and higher ordermagnetic eigenmodes, i.e.βnl shown in
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Fig. 8.7b, d, f for l = 2, 3, 4, 5, exhibit the same behavior of the eigenvalue of higher
order electric modes. In particular, in the limit for x → 0, the quantity Re {βn1}
diverges. Therefore, the fundamental magnetic eigenmodes cannot be practically
excited in the electrostatic limit, consistently with [55, 56].

In conclusion, the loci spanned by the eigenvalues associatedwith the fundamental
electric dipoleC(α)

pm11, quadrupoleC
(α)
pm21, and octupoleC

(α)
pm31 are confined in a limited

region of the complex plane, because −3 ≤ Re {α11} ≤ 0.48, −2.94 ≤ Re {α21} ≤
0.71, and −3.1578 ≤ Re {α31} ≤ 1.0176, respectively. Therefore, according to the
definition of (8.52) and (8.53), these modes are broad for spheres with moderately
positive permittivity, e.g. Si (εr ≈ 16). Instead, theymay be narrow for metal spheres
in the visible spectral range, whose permittivity belongs to the second quadrant of
the complex plane.

The loci spanned by higher order electric modes and by all the magnetic modes
have very different properties. These modes always belong to the fourth quadrant
of the complex plane, for any value of x . Thus, they are broad in metal sphere and
may be narrow in particles with moderately positive permittivity. Moreover, they
asymptotically approach the positive real axis for x → 0, playing no role in the
scattering of any particle much smaller than the incident wavelength.

In conclusion, the only narrow modes in a metal sphere are the fundamental elec-
tric ones. These modes form an orthogonal set, according to (8.31). This fact forbids
interference among them in the total scattered power. In principle, the interference
between a narrow and a broad mode is possible, e.g. between the fundamental and
the higher order electric dipoles, but it requires a careful tailoring of the excitation,
since broad higher order electric modes poorly couple with a plane wave excitation.

Vice versa, the narrow modes in a dielectric sphere with positive permittivity
are the magnetic modes and the higher order electric modes (l ≥ 2). Some of these
modes are non-orthogonal. This fact allows interference phenomena among narrow
modes. Moreover, the narrow higher order electric dipole modes are not orthogonal
also with the broad fundamental dipole mode, and their interference may give rise
to Fano lineshapes in the scattering power spectrum. This interference is easy to
observe, because the broad fundamental electric dipole mode efficiently couples
with a plane wave, as we will see in Sect. 8.5.

8.5 Resonances and Interferences in the Scattering by Si
and Ag Spheres

In this section, we analyse the effects of resonances and interferences found in the
spectrum of scattered power from silicon (Si) and silver (Ag) spheres with R =
100 nm and 60 nm, respectively. We describe the Ag permittivity εr,Ag by using
experimental data [79], while for Si we employ a constant permittivity, i.e. εr,Si = 16.
In Tables 8.3 and 8.4 we list, for some representative modes of the investigated Si
and Ag sphere, the quantities x (α)

nl and x (β)

nl , which are the values of x minimizing
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Table 8.3 Values of x minimizing the residua, corresponding poles and residua for a 100 nm Si
sphere

n l x (α)
nl α̂nl r̂ (α)

nl x (β)
nl β̂nl r̂ (β)

nl

1 1 2.20 0.48 −
0.96i

15.6 0.75 16.2 −
1.07i

1.08

1 2 1.06 16.3 −
2.15i

2.17 1.55 15.9 −
0.96i

0.97

2 1 2.99 0.70 −
1.33i

15.3 1.09 16.2 −
0.21i

0.27

2 2 1.38 16.0 −
0.31i

0.31 1.89 16.0 −
0.45i

0.45

3 1 3.86 1.00 −
1.67i

15.1 1.42 15.9 −
0.04i

0.07

Table 8.4 Values of x minimizing the residua, corresponding poles and residua for a 60 nm Ag
sphere

n l x (α)
nl α̂nl r̂ (α)

nl x (β)
nl β̂nl r̂ (β)

nl

1 1 0.92 −2.42 −
2.61 i

3.0 1.08 7.6 − 1.17
i

8.55

1 2 1.25 11.8 − 2.2
i

10.3 1.08 33.0 −
1.04 i

33.9

2 1 1.0 −2.03 −
0.11 i

0.35 1.08 16.5 −
0.20 i

17.4

2 2 1.25 19.8 −
0.19 i

17.6 1.08 50.5 −
0.19 i

51.3

the residua introduced in (8.52). We also show the corresponding values of the poles
α̂nl and β̂nl , and the minimum residua r̂ (α)

nl and r̂ (β)

nl . The resonant frequencies can
be immediately obtained from x (α)

nl and x (β)

nl by using the relation ω = c/R x . We
highlight in bold the narrow modes, according to the definition (8.53) with ρ = 5.
We searched for the minima in the range x ∈ [0.01, 100] and x ∈ [0.19, 1.08] for Si
and Ag, respectively.

For the Si sphere, Table8.3 shows that the minimum residua associated with the
fundamental electric modes (dipole, quadrupole, and octupole) are roughly one order
of magnitude larger than the ones associated with higher order electric modes and
the magnetic modes. For this reason, the fundamental electric modes are broad,
while the higher order electric modes and to magnetic modes are narrow, according
to the definition (8.53). This fact is consistent with the conclusions of Sect. 8.4.
Furthermore, Table8.3 shows that the real parts of the poles associated with the
higher order electric modes and to the magnetic modes all approach the value of
εr,Si = 16.

For Ag particles exactly the opposite happens. Table8.4 shows that the residua
exhibited by all the magnetic modes and by higher order electric modes are much
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(a)

(b)

(c)

(d)

Fig. 8.8 Scattering efficiency σsca of the investigated Si (a) and Ag (c) spheres as function of x .
Absolute value of the coefficients unl and vnl as a function of x for Si (b) and Ag (d) spheres. The
vertical dashed lines represent the resonance positions x (α)

nl and x (β)
nl , as listed in the third and sixth

columns of Tables 8.3 and 8.4 (Adapted from [60]. Copyright (2017) by IOP Publishing)

larger than the ones of the fundamental electric modes. In particular, the former
modes are broad, while the latter are narrow, according to the condition (8.53),
consistently with the results of the previous section.

In conclusion, the narrow modes in metal and silicon spheres constitute two dis-
joint sets. This fact explains why silicon and metal nano-sphere of comparable size
exhibit remarkably different resonant behaviour. In particular, magnetic-type modes
are always broad in metal spheres, regardless of x .

We now investigate the scattering efficiencyσsca of Si andAg spheres as a function
of the size parameter x , when they are excited by a linearly polarized plane wave.
Due to the symmetry of Ei , only even electric modes and odd magnetic modes with
m = 1 are excited. The scattering efficiency σsca of a sphere excited by a plane wave
is provided in (8.48). It is worth noting that the coefficient unl and vnl introduced
in (8.49) are associated with the action of the mode C(α)

e1nl and C
(β)

o1nl , respectively. In
Fig. 8.8 we plot σsca of the 100 nm Si (a) and 60 nm Ag (c) sphere as a function of
x . In Fig. 8.8b, d we show the absolute value of the coefficients unl and vnl for the
Si and Ag spheres, respectively, as a function of the electric size x . We also show
with vertical dashed lines the resonant values of x , namely x (α)

nl and x (β)

nl , as listed
in the third and sixth columns of Tables 8.3 and 8.4. We recall that x (α)

nl and x (β)

nl

are the values of x in correspondence of which the amplitudes of C(α)
e1nl and C(β)

o1nl ,
respectively, are maximized.
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Fig. 8.9 Near field pattern of the magnitude of the total electric field in the equatorial plane of the
Si sphere orthogonal to the propagation direction of the incident field in correspondence of the first
peak of σsca at x = 0.91 (a), second peak at x = 1.01 (b), scattering dip at x = 1.076 (c), third
peak at x = 1.096 (d), forth peak at x = 1.376 (e), fifth peak at x = 1.419 (f)

Now, we describe σsca of the Si nanosphere, shown in Fig. 8.8a. All σsca peaks
but one can be attributed to the dominant contribution of a single resonant mode. In
particular, the first peak from the left occurs exactly at x (β)

11 , where the contribution of
the fundamental magnetic dipole C(β)

o111 is maximum. This fact is also demonstrated
by Fig. 8.8b, where v11 is also peaked in correspondence of x (β)

11 and it is dominant
compared to the remaining coefficients. In correspondence of this peak, we show
in Figs. 8.9a and 8.10a the magnitude of the total electric and magnetic fields in the
equatorial plane of the sphere orthogonal to the propagation direction of the incident
field. We note that the magnetic field magnitude is enhanced 25 times.

Instead, no mode resonates in correspondence of the second peak. This peak
is localized at x = 1.02 and originates from the positive interplay between two off-
resonance modes, namely the fundamental electric dipoleC(α)

e111 and the second order
electric dipole C(α)

e112, as demonstrated by Fig. 8.8b, where u11 and u12 have compa-
rable magnitude. The near field distributions of the electric and magnetic fields are
shown in Figs. 8.9b and 8.10b.

The third σsca peak is caused by the fundamental magnetic quadrupole C(β)
o121.

In correspondence of this peak we have an enhancement of both the electric and
magnetic field, as apparent from Figs. 8.9d and 8.10d.

The fourth peak is due to second order electric dipole C(α)
e122, and the fifth one

to the fundamental magnetic octupole C(β)
o131. The corresponding near field plots are

shown in Figs. 8.9e, 8.10e and 8.9f, 8.10f, respectively.
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Fig. 8.10 Near field pattern of the magnitude of the total magnetic field in the equatorial plane of
the Si sphere orthogonal to the propagation direction of the incident field in correspondence of the
first peak of σsca at x = 0.91 (a), second peak at x = 1.01 (b), scattering dip at x = 1.076 (c), third
peak at x = 1.096 (d), forth peak at x = 1.376 (e), fifth peak at x = 1.419 (f)

The scattering dip enclosed by peaks 2 and 3 at x = 1.076, and the corresponding
Fano lineshape of σsca originates from the destructive interference between the broad
fundamental electric dipole C(α)

e111 and the narrow second order electric dipole C(α)
e112,

which are not orthogonal according to the definition (8.31). In correspondence of this
dip the values of the coefficients are u11 = 0.78 − 0.95i and u12 = 0.063 + 1.83i .
We point out that, although the scattering dip is in the close proximity of the third
peak, the magnetic quadrupoleC(β)

o121 is not responsible for it, because it is orthogonal
to both C(α)

e111 and C(α)
e112 due to (8.31), and interference cannot take place.

In conclusion, the scattering efficiency of a Si sphere features a Fano lineshape,
where the dip is due to the interference between the fundamental and the higher
order electric dipoles, while the peak is due to the fundamental magnetic quadrupole
mode. In correspondence of the scattering dip, we plot the near field distribution
of the electric and magnetic field in Figs. 8.9c and 8.10c, respectively. Furthermore,
the Fano-dip corresponds to a weakly radiative state that features a magnetic near
field distribution resembling the one of the magnetic quadrupole, and only slightly
smaller values of magnetic field enhancement.

We now investigate the role played by the fundamental electric dipole in the
scattering from a Si sphere. The definition (8.53) implies that C(α)

e111 is broad for a Si
sphere. Nevertheless, this mode significantly contributes to the scattering efficiency,
because the coefficient A11 is very large compared to Anl and Bnl of the remaining
modes. This is due to the fact that the fundamental dipole C(α)

e111 more easily couples
with the exciting plane wave and more strongly radiates into the far field.
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It is possible to qualitatively compare the σsca spectrum shown in Fig. 8.8a
for a R = 100 nm Si sphere with the dark-field scattering spectrum measured by
Kuznetsov et al. [28] for a R = 91 nm Si NP laying on a Si substrate. The experi-
mental and theoretical peaks are found into one to one correspondence.

Next, we investigate the σsca spectrum of the Ag nanosphere. It can be completely
described by considering only the fundamental electric dipole and quadrupolemodes,
namely C(α)

e111 and C(α)
e121. These modes are narrow according to (8.53). The peak

associated with the mode C(α)
e111 is wider compared to C(α)

e121, due to large imaginary
part of the pole α̂nl , as shown in Table8.4. Moreover, we found no Fano lineshapes in
the spectrum, due to the orthogonality of the fundamental electric modes according
to (8.31).

8.6 Backscattering Cancellation

More than three decades ago Kerker et al. first demonstrated the suppression of the
back-scattering inmagneto-dielectric spheres of arbitrary sizewith ε = μ [80]. In that
case, cancellation of the backward scattering results from the destructive interference
between magnetic and electric multipoles of corresponding order.

More recently, Nieto et al. [41] predicted that, when the scattering response of
a small non-magnetic sphere is dominated by the multipolar orders associated with
magnetic and electric dipoles, vanishing backscattering can result from their destruc-
tive interference. This scenario, that generalizes the Kerker’s condition, has been
experimentally observed both in the microwaves [42] and in the visible spectral
range [43, 44]. An additional extension of the Kerker’s conditions, that describes
the suppression of the backscattering from a sphere when excited by a local dipole
source, has also been introduced in [45]. Furthermore, the generalized Kerker con-
ditions have been also verified in subwavelength metal-dielectric core-shell particles
[46], core shell nanowires [47], silicon nanodisks [81], and to particles with cylindri-
cal symmetry [48]. The cancellation of the backscattering have been also achieved
in a nanoring antenna by balancing the electric dipole and quadrupole [49], and in a
core-shell particle by balancing multipoles of different orders [50].

It is also worth to point out that the backscattering cancellation from a dielectric
sphere is also possible even when the size of the particle is comparable with the
incident wavelength and many scattering orders are involved, as shown in [59]. The
cancellation of the backscattering is often associated with an enhanced directionality
of the scattering, which may have a great impact in optical wireless nano-antenna
links.

In this section we describe the procedure, introduced in [59], to cancel the
backscattering of a homogeneous sphere by designing its permittivity. We assume
that the sphere has radius R, corresponding size parameter x = 2πR/λ, and is excited
by a x-polarized plane wave of unit intensity, propagating along the z-axis. Within
the framework of spectral theory introduced in the previous sections, the determina-
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tion of the permittivities of the sphere that cancel the backscattering only requires
one to find the roots of a polynomial equation.

The radiation pattern is defined in (8.43). Due to symmetry consideration, the
only non-vanishing component of the radiation pattern in the backscattering direction
(θ = π) is E∞

S · iθ. Our task is to find the zeros of E∞
S · iθ as a function of εr , where

E∞
S · iθ can be obtained from (8.44):

E∞
S · iθ (εr ) = εr − 1

k0

∞∑

n=1

∞∑

l=1

{
δnl (x, θ,φ)

βnl (x) − εr
+ γnl (x, θ,φ)

αnl (x) − εr

}
, (8.54)

where:

γnl (x, θ,φ) = −i En

√
αnl jn

(√
αnl x

)

h(1)
n (x)

AnlN
(∞)
e1n (θ,φ) · iθ,

δnl (x, θ,φ) = En
jn

(√
βnl x

)

h(1)
n (x)

BnlM
(∞)
o1n (θ,φ) · iθ,

En = i n (2n + 1) / [n (n + 1)], Anl and Bnl are defined in (8.39), (8.40) M(∞)
o1n =

limr→∞
[
k0re−ik0rM(3)

o1n

]
, N(∞)

e1n = limr→∞
[
k0re−ik0rN(3)

e1n

]
, and the functions N(3)

e
omn

and M(3)
e
omn

are the radiative VSWFs.

Therefore, we put all the terms in the sum of (8.54) over a common denominator,
obtaining a rational function of εr and we zero the resulting numerator, which is a
polynomial in εr .

We apply this procedure to find the permittivity of a homogeneous sphere of
radius R = λ/4 that cancels the backscattering. We set x = π/2, θ = π and φ = 0
in the expression (8.54) truncated with nmax = 10 and lmax = 8. Among the different
solutions, we choose εr = −1.475 + 5.937 · 10−3i . To validate this result, we plot
in Fig. 8.11a the squared magnitude of the radiation pattern of the sphere with the
designed permittivity as a function of the angle θ for φ = 0, computed by using
the standard Mie theory with nmax = 10. We achieved a ratio between the back-
and the forward- scattered power of −53 dB. It is worth noting that the achieved
backscattering suppression originates from a complex interplay between the electric
dipole, electric quadrupole and magnetic dipole multipolar scattering orders. This
fact is demonstrated with the help of Fig. 8.11c, d where we show the magnitude of
theMie coefficients as defined in (8.50). In Fig. 8.11b we show in a semi-logarithmic
scale the ratio between the backscattering and the forward scattering as a function
of the size parameter x for the sphere with the designed value of permittivity. As
expected, in correspondence of the x = π/2 this ratio has a dip.

Now, following the same algorithm, we find the permittivity of a homogeneous
sphere of radius R = λ that cancels the backscattering. Among the different solu-
tions, we choose the only one that is physically realizable by a passive material, i.e.
εr = −2.2747 + 8.188 · 10−2i . Then, we plot in Fig. 8.12a the squared magnitude
of the radiation pattern of the sphere with x = 2π with the designed permittivity
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(a) (b)

(c) (d)

Fig. 8.11 a Squared magnitude of the radiation pattern for φ = 0 as a function of the angle θ for the
sphere of size parameter x = π/2. b Ratio between the squared magnitudes of the electric field in
the back- and forward- scattering direction as a function of the size parameter x . c–dMagnitude of
Mie coefficients (as defined by (8.50)) for the sphere of size parameter x = π/2. All the calculations
have been performed with the standard Mie theory assuming nmax = 10. The permittivity of the
sphere is the designed value εr = −1.475 + 5.937 · 10−3i

as a function of the angle θ for φ = 0 computed by using the standard Mie theory
with nmax = 10. We achieved a ratio between the back- and the forward-scattered
power of −54 dB. In this case, since the size of the sphere is equal to the incident
wavelength, many electric and magnetic modes take part in the interference. This
fact is demonstrated by Fig. 8.12c, d where we show that the magnitude of the Mie
coefficients, as defined by (8.50), is significant up to the multipoles of order 9. In
Fig. 8.12b we show, in a semi-logarithmic scale, the ratio between the backscattering
and the forward scattering as a function of the size parameter x for the sphere of the
designed value of permittivity. As expected, we note that in correspondence of the
x = 2π this curve has a dip.

This method can be also used to design the permittivity of the sphere to pursue
many different goals, including zeroing or focusing a given field component in an
arbitrary point of space, in the near or in the far zone. These objectives can be all
easily achieved by zeroing a polynomial. Finally, we note that the proposed method
leads to high computational burden when x � 1 because many modes have to be
considered to accurately describe the field.
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(a) (b)

(c) (d)

Fig. 8.12 a Squared magnitude of the radiation pattern for φ = 0 as a function of the angle θ for
the sphere of size parameter x = 2π. bRatio between the squared magnitudes of the electric field in
the back- and forward-scattering direction as a function of the size parameter x . c–d Magnitude of
Mie coefficients (as defined by (8.50)) for the sphere of size parameter x = 2π. All the calculations
have been performed with the standard Mie theory assuming nmax = 10. The permittivity of the
sphere is the designed value εr = −2.2747 + 8.188 · 10−2i

8.7 Conclusions and Outlook

We derived a representation of the electromagnetic field for the analysis of the full-
wave scattering by a homogeneous sphere in terms of a set of eigenmodes inde-
pendent of its permittivity. The expansion coefficients are rational functions of the
permittivity. Within this framework, we introduced rigorous conditions that define
the resonances and the corresponding widths of a nanosphere in the full retarded
regime. Moreover, we classified the modes according to their width into narrow and
broad modes, independently of the excitation conditions. Then, we showed that the
fundamental electric modes are the only narrow modes of a metal sphere with nega-
tive permittivity. Vice versa, the magnetic modes and the higher order electric modes
are the only narrow modes of a dielectric sphere with moderately positive permit-
tivity. Therefore, since the narrow modes of metal and dielectric spheres constitute
two disjoint sets, dielectric and metal nanospheres of comparable size exhibit deeply
different resonant behaviours. In particular, magnetic modes are narrow only for a
dielectric sphere, but not for a metal one.

Moreover, the narrow modes of a metal sphere constitute an orthogonal set: this
fact prevents interference among them in the total scattered power. In a metal sphere,
interference among the broad higher order electric modes and the corresponding
narrow fundamental electric mode is also difficult to achieve, because broad higher
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order electric modes poorly couple with a plane wave excitation, unless a proper
tailoring of the excitation is considered.

On the contrary, the narrow modes of a dielectric sphere may be non-orthogonal.
This fact enables interference phenomena among them.Moreover, the narrow higher
order electric dipole modes are not orthogonal with the broad fundamental electric
dipole mode, which efficiently couples with a plane wave excitation, enabling the
formation of Fano lineshapes in the scattered power spectrum.

As an example, we investigated the scattered power properties of Ag and Si
isolated spheres. In particular, we found that the scattering efficiency of a Si sphere
features a Fano lineshape, where the dip is due to the interference between the
fundamental and the higher order electric dipole modes, while the peak is due to the
fundamental magnetic quadrupole mode. At the position of the scattering dip, we
found a great enhancement of electric and magnetic fields.

Eventually, we used the introduced theoretical framework to design the permittiv-
ity of a homogeneous sphere of size comparable to the incident wavelength to cancel
its backscattering through directional multimode interference. In the investigated
examples, where many electric and magnetic multipoles take part in the destructive
interference, the scattering in the forward direction exceeded the backscatteringmore
than 50 dB.

This approach can be also extended to interacting spheres by integrating the
presented theory with the translation addition theorem for vector spherical wave
function. This fact will enable to describe resonances and interferences of more
complex dielectric systems, such as dielectric oligomers.

Appendix: Vector Spherical Wave Functions

The explicit expressions of the vector spherical wave functions (VSWF) are [76]:

Ne
om n (k r) = n (n + 1)

(
cosmφ
sinmφ

)
Pm
n (cos θ)

zn (k r)

k r
êr

+
(
cosmφ
sinmφ

)
dPm

n (cos θ)

dθ

1

k r

d

dr
[r zn (k r)] êθ

+ m

( − sinmφ
cosmφ

)
Pm
n (cos θ)

sin θ

1

k r

d

dr
[r zn (k r)] êφ,

Me
om n (k r) = m

( − sinmφ
cosmφ

)
Pm
n (cos θ)

sin θ
zn (k r) êθ −

(
cosmφ
sinmφ

)
dPm

n (cos θ)

dθ
zn (k r) êφ.

(8.55)
where the subscripts e and o denote even and odd, and Pm

n (·) are the associated
Legendre function of thefirst kind of degreen andorderm.Moreover, the superscripts
(1) and (3) are appended to the functions Me

om n and Ne
om n to denote the function zn ,

namely Bessel functions of the first kind jn and Hankel functions of the first kind
hn , respectively.

Starting from (8.55) it is possible to derive the expression of (8.45):
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Chapter 9
Dark-Mode Characteristics
of Metasurfaces Engineered
by Symmetry Matching of Resonant
Elements and Electromagnetic Fields

A. Lupu, E. Bochkova, S. N. Burokur and A. de Lustrac

Abstract We revisit the engineering of metasurfaces displaying sharp spectral fea-
tures and conventionally relying on electromagnetically induced transparency result-
ing from Fano-type interference between dark and bright resonant elements. The
aim of the developed approach based on symmetry considerations is to show that
electromagnetically induced transparency and dark mode excitation are not neces-
sarily associated. We bring theoretical and experimental evidence in the microwave
domain that electromagnetically induced transparency and dark mode excitation can
be achieved in an independent manner by using distinctly different mechanisms. The
use of these distinctly different mechanisms provides higher flexibility for metasur-
faces engineering and results in a great improvement of their spectral performances.

9.1 Plasmonic EIT Viewed as Bright and Dark Modes Fano
Interference

The phenomenon of electromagnetically induced transparency (EIT), initially intro-
duced in atomic physics, results from quantum destructive interference of two reso-
nant pathways in atomic three-level system [1]. During the last decade, the classical
analogs of this concept widely pervaded the fields of photonics [2, 3], plasmonics [4]
and metamaterials [5]. The interest in EIT-like resonances is driven by their ability
to demonstrate much narrower linewidths than those of individual resonators.
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Applied to plasmonic metasurfaces (MSs), such sharp spectral features with steep
intensity variation are highly desirable for sensing applications [6–8]. The sensing
principle exploits the high sensitivity of the localized surface plasmons to the change
of their immediate dielectric environment. The adsorption of the analyte species
on the surface of metamaterial elements results in a shift of the resonance spectral
position. The sensing detection limit and accuracy are greatly increased by using
narrow width spectral features associated with EIT.

Despite the seemingly great variety of studied designs, most of them actually
share the same principle. The interaction of plasmonic resonant elements with the
external electromagnetic field causes collective oscillations of conductivity elec-
trons. In the quasi-electrostatic approximation such systems may be described in
terms of the plasmonic eigenmodes interacting with the external field. The Fano res-
onance and its associated EIT effect occur due to the interference between plasmonic
eigenmodes. The eigenmodes with strong dipolar momentum correspond to in-phase
oscillation of coupled resonators and are called bright or radiative modes. In contrast,
the eigenmodes with low dipolar momentum correspond to opposite-phase oscilla-
tion of coupled resonators and are called dark modes. Such modes weakly couple
with external field because of practically zero net dipolar momentum and therefore
demonstrate higher quality factor.

One of the widely used methods for dark modes excitation consists in breaking
the symmetry in a system of coupled resonators. Such breaking enables excitation of
antisymmetric currents in the near vicinity of the resonance frequency. The radiation
emitted by oppositely directed electric dipoles is strongly suppressed, leading thus
to the appearance of a transparency window in a narrow frequency range. Strong
impetus to this approach was brought by the Fedotov’s et al. seminal paper [9]
reporting the experimental demonstration of dark mode excitation in the microwave
domain. The demonstration was performed by using an array of paired metallic
arcs of slightly different length. The narrow maximum observed in the transmission
spectrum was associated with antiphase current oscillations in the arcs that induce a
dipolar magnetic momentum.

Later a theoretical model introducing a general description of an EIT like plas-
monic “molecule” was proposed in [10]. The authors have considered an artificial
plasmonic molecule consisting of two “atoms”. The bright resonant element corre-
sponding to the superradiant pasmonic mode |a〉 � ã(ω) exp(iωt) strongly couples
with the incident field and has a broad resonance linewidth. The dark atom that cor-
responds to a subradiant pasmonic mode |b〉 � b̃(ω) exp(iωt) is weakly coupled to
the incident light and has a narrow resonance linewidth. The field amplitude of both
elements is described by a system of linearly coupled Lorentzian oscillators:

(
ã

b̃

)
� −

(
�ω + iγa κ

κ �ω + iγb

)−1(
gẼ0

0

)
(1)

where the detuning from resonance �ω �ω − ω0 �ω0, the damping factors of
the two resonators satisfy γ b �γ b �ω0, κ is the coupling between two atoms
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and g is the factor indicating the coupling of superradiant element with the incident
electromagnetic field.

It is assumed that there is no direct coupling between the dark element and the
incident field and the polarizability of the plasmonic molecule is proportional to the
amplitude of the dipole response of the bright element:

ã � −κE0(�ω + iγb)

(�ω + iγa)(�ω + iγb) − κ2
(2)

It should be noted that such a resonant behavior is typical for many systems,
which can be described by a model of coupled oscillators: RLC contour, mechanical
systemswithmasses and springs or nano-particles coupled through the near field. For
instance it describes the dynamic of two coupled oscillatorswith resonant frequencies
ω1 and ω2, damping factors γ1 and γ2, and driven by external harmonic forces f 1 and
f 2 is described by a system of motion equations:

ẍ1 + γ1 ẋ1 + ω2
1x1 � κx2 + f1e

iωt

ẍ2 + γ2 ẋ2 + ω2
2x2 � κx1 + f2e

iωt (3)

where κ is a coupling between two oscillators. The complex steady-state solutions
for the displacement of oscillators are periodic and can be written as x1 � c1eiωt and
x2 � c2eiωt , where c1 and c2 are the complex amplitudes:

c1 � κ f2 + f1(ω2
2 − ω2 + iγ2ω)

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω) − κ2

c2 � κ f1 + f2(ω2
1 − ω2 + iγ1ω)

(ω2
1 − ω2 + iγ1ω)(ω2

2 − ω2 + iγ2ω) − κ2
(4)

In classical analog of Fano resonance, the external force f 1 excites only the heavier
damped mode, e.g. x1, while the narrow resonance mode x2 (dark mode) is excited
only through the coupling interaction (f 2 �0). The variation of spectral response of
the driven oscillator normalized amplitude |c1| with resonance frequency detuning
δ �ω1 − ω is shown in Fig. 9.1a. A characteristic asymmetric Fano type line-
shape due to the constructive/destructive interference is observedwhen the resonance
frequencies of the two oscillators are different. In contrast, a marked dip of resonance
amplitude corresponding toEIT effect due to destructive type interference is observed
in the when the resonance frequencies of both oscillators coincide. It is important to
note that efficiency of constructive-destructive interference characteristic for a Fano
resonance strongly depends on losses. The impact of the damping strength variation
of second oscillator γ 2 is depicted in Fig. 9.1b. With the increase of the damping
strength γ 2 the transmission dip almost completely disappears though γ 2 is still
much lower than γ 1.

Since the works published in [9, 10] a plethora of EIT effect demonstrations
exploiting the concept of interacting bright and dark modes have been reported.
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Fig. 9.1 Normalized amplitude |c1| of the driven oscillator in the classical coupled oscillators
system. a Variation of the resonance frequency detuning δ�ω1 − ω2 at ω1 �100 Hz,γ 1 �0.25 Hz,
γ 2 �0, κ �5 Hz2; b influence of the damping strength variation γ 2 of the second oscillator at δ=0

Several designs based on dolmen type geometry [8, 11, 12] plasmonic oligomers
[13–16], ring-disk nanocavities [17, 18] nanoshells [19, 20], asymmetric coupled
split-ring resonators [9, 21–24] and cut wires plasmonic lattices [25–27] have been
proposed and investigated for EIT characteristics.

Selected examples of plasmonic nanostructures reporting the demonstration of
EIT effect in the NIR domain are detailed below.

9.1.1 Symmetry-Broken Dolmen Metamolecules

Following the conceptual precepts elaborated in [10], the experimental demonstration
of EIT-like effects in dolmen type structure was performed later in [10]. The dolmen
structure unit cell consists a gold bar stacked above two symmetric goldwires. The top
gold bar acting as radiative dipole antenna plays the role of the bright mode strongly
coupled to the incident light. The bottom gold wire pair acts as a non-radiative
quadrupole antenna and represents the dark mode, which excitation is forbidden for
normally incident light. The symmetry breaking renders this normally dark mode
active and excitable.

The EIT appears as the consequence of interaction between the narrow dark and
broad bright modes. For instance, it was found that in agreement with the general
physical considerations, the damping strength of both bright and dark mode are
practically constant and do not depend of the asymmetry parameter. In contrast,
the coupling strength displays an approximately linear dependence of the lateral
displacement.
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9.1.2 Symmetry-Broken Ring-Disk Nanocavities

Similar behavior was also reported for system composed of ring-disk nanocavities
[17]. The superradiant antibonding dipolar mode acts as the bright resonant element.
The rings’ quadrupolar electric mode acts as the dark resonant element. Its excitation
is forbidden for normally incident light in concentric ring-disk nanocavities, but
becomes allowed when the symmetry of the system is broken.

9.1.3 Plasmonic Oligomer Clusters

Another family of nanostructures used for the investigation of Fano resonances end
EIT concerns plasmonic oligomers [15, 19, 28, 29]. In such structure, the bright
dipolar mode is produced by the collective in-phase oscillation of electrons both
of the central and of the outer ring nanoparticles. The dark mode is produced by
the anti-phase oscillation of collective charges in the outer ring with respect to the
central oligomer nanoparticle. One important difference with respect to the previ-
ous examples of dolmen and coupled disk-ring nanostructures, is that in the case of
oligomer clusters the dark mode cannot be assigned to a separate cluster element. It
appears instead as the result of near field interaction between plasmonic nanoparti-
cles, a phenomenon known also as hybridization mechanism [13, 14, 16, 19, 25, 28,
30]. The plasmon hybridization approach is based on a quasi-electrostatic approx-
imation. The dressed eigenmodes of a system of interacting nanoparticles are con-
sidered as a hybridized linear combination of the “primitive” or “diabatic” plasmon
modes of the individual particles [13, 20]. In the quantum mechanical description,
the hybridization process represents the first order approximation in the perturbation
theory approach. As known, in the approximation of weak perturbation the solutions
of the perturbed Hamiltonian are found as power series of terms using solutions of
unperturbed Hamiltonian.

Another notable difference is that Fano interference between the bright and dark
modes does not rely on symmetry breaking scheme of the oligomer arrangement.
However, as reported in [13], the variation of the geometrical dimensions of the
inner oligomer particle can significantly modify the efficiency of Fano interference
mechanism. The generation of a marked Fano resonance in the extinction spectrum
was argued by matching the dipole moments of the outer ring and the center particle.
In a similar manner as for dolmen or ring-disk coupled structures, the EIT effect is
by far more pronounced when the bright dressed mode is highly supper-radiant and
the dark dressed mode is very sub-radiant.

The provided examples show that the simple model of coupled mechanical oscil-
lators captures the essential features of Fano interference occurring in plasmonic
systems. However, as it was pointed in several works [31–33] it suffers from a num-
ber of deficiencies detailed below. Furthermore, the parameters entering the coupled
mode equation are obtained through a fitting procedure from modeling or experi-



224 A. Lupu et al.

mental scattering spectra instead of being calculated directly from the radiative char-
acteristics of the individual unhybridized modes. This issue motivated scientists to
develop novel approaches oriented to achieve the predictive power when considering
an ab initio design.

9.2 Plasmonic EIT Revisited

The initial interpretation given to the phenomenon of Fano resonance and EIT in
plasmonic systems was based on the concept of interference between a bright mode
and a darkmode. The assumptionmadewhen using themodel of coupledmechanical
oscillators is that the incident light is for essential scattered by the bright mode. To
verify the validity of this conjecture based on the quasi-electrostatic approach [32]
considered the scattering in a plasmonic system with two or more bright modes. The
performed analysis showed that the coupling between at least two bright modes gives
rise to Fano-like resonances in the scattering spectrum. The authors have determined
in a very clear way the contribution of each plasmon mode to the scattering and
absorption processes. The obtained results highlighted the fact that the Fano-type
interference and its associated plasmonic equivalent of EIT are by far more pro-
nounced as the radiative strengths of both plasmonic modes are similar. In contrast,
the interference of two modes with very dissimilar radiative strengths increases the
asymmetry of the scattering response but the amplitude of EIT is greatly reduced.

The apparent contradiction with the previous model of bright-dark mode inter-
action stems from the fact that in [32] Forestiere et al. considered the interaction
of dressed and not diabatic eigenmodes of the plasmonic system. The considered
approach is fully consistent with the experimental results reported for oligomers
clusters, namely what concerns the influence of the size of the central nanoparticle.
As reported in [15], Fano interference is by far more pronounced when the size and
related with it dipolar moment of the central nanoparticle is matched with that of the
outer ring.

Yet one important moment, while not explicitly expressed but de facto taken
into account in [32] analysis is related to the condition of the orthogonality of the
eigenmodes. As known, no interference effect should exist in the case of an orthog-
onal basis of eigenmodes. By consequence it is not clear why Fano interference is
observed, especially when dealing with an oligomer assembly having a high degree
of symmetry. The initial explanation of this result was based on the non-Hermitian
nature of considered system due to metal related losses. However later results have
shown the possibility for occurrence of a Fano resonance in all-dielectric symmetric
oligomers [34].

The relevant explanation of this discrepancy was done in [35]. As it was pointed
by the authors of this publication “The key is that the symmetry approach produces
orthogonal modes by definition, whereas the interaction matrix, which describes the
coupling between the dipole moments of each particle, is non-Hermitian.” The non-
Hermitian character of interaction matrix is due to the presence of both electric and
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magnetic polarizabilities in the system of interacting particles [36]. The resulting
eigenvectors form a complete set, but are not orthogonal. The fact that the eigen-
vectors are not orthogonal means that even though the eigenmodes are themselves
decoupled; their excitations are coupled. On this basis it was shown in [35] that the
true modes of the oligomer assembly are bright instead of dark and then concluded
that “the Fano resonance in this system is explicitly due to the interference between
bright modes only, and it does not involve any dark mode.”

It appears thus that the non-Hermiticity of interaction matrix is the key feature
to observe Fano-type interference of eigenmodes. This non-Hermiticity can be also
viewed as the consequence of the open character of the system where the scattered
wave corresponds to resonance-continuum coupling [37, 38].

One elegant way to take into account the open character of the system was pro-
posed in [33]. The authors of this publication proposed an extended coupled oscillator
(ECO)model,which consists in introducing in the systemof coupled (3) an additional
term accounting for the radiative dumping:

ẍ1 + γ1 ẋ1 + ω2
1x1 + κx2 � 0.5

...
Ptot + f1e

iωt

ẍ2 + γ2 ẋ2 + ω2
2x2 + κx1 � 0.5

...
Ptot + f2e

iωt (5)

where the total dipole moment of the system Ptot �P1 +P2 �α1x1 +α2x2 is the sum
of the dipole momentum of oscillators 1 and 2, αj � f j/Eext are the polarizabilities
related to the diabatic plasmon modes.

On the example of plasmonic assembly made of a gold dipole nanoantenna sur-
rounded by two gold nanorods it was demonstrated that ECO model results are in a
very good agreement with numerical modeling simulations obtained by using Sur-
face Integral Equation (SIE) method as well as with experimental measurements
[33].

Another highly efficient analytical approach that takes into account the open
character of the systemof interacting plasmonic resonators is the use of the formalism
of the scattering matrix based on temporal coupled mode theory (TCMT), which was
originally proposed by H. Haus for a system of coupled optical resonators in [39]
and later considerably developed by Fan et al. [40–42]. Following this approach,
a resonator system considered to be open can freely couple to free space through
radiation. Propagation of electromagnetic waves through such system occurs via
two channels that incorporate direct non-resonance pathway and resonance-assisted
pathway. In this formalism and by using same notations as in [43], the scattering
matrix for the system of coupled resonators can be expressed as:

S � C + iV
[
wI − Hef f

]−1
V † (6)

where C is the background scattering which does not interact with resonator and
accounts also for the higher order resonances far away from considered frequency
range, V is the coupling between radiation and resonator,Heff is the effective Hamil-
tonian that can be described as:
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Hef f � H0 + i
1

2
VV † + i�L (7)

Eigenvalues of unperturbed Hermitian Hamiltonian H0 represents the discrete
resonator states. The second term is the coupling between radiation and discrete states
and the third term involves extraneous losses. Owing to the presence of latter terms
the effectiveHamiltonian becomenon-Hermitian and possesses non-orthogonal basis
of eigenmodes.

It follows thus from all the above that even though we consider open systems
with initially bright and dark diabatic modes, the Fano type interference resulting
from their non-Hermicity turns out to occur between bright adiabatic modes. Fur-
thermore, the efficiency of Fano interference and its associated EIT effect is optimal
when both interacting modes are having similar strength. An obvious question aris-
ing in this context and that we address by the following is whether it is possible to
achieve Fano interference in a more efficient manner, by considering from the begin-
ning system with equal strength, i.e. identical resonant elements? Another question
associated with the previous one is what in this case the meaning of the dark mode
and whether can it be excited without losing the “dark” properties? Based on the
symmetry considerations these questions are addressed in the next sections.

9.3 Direct Dark Mode Excitation Mechanism Based
on Symmetry Matching

The fact that dark mode is forbidden means that it cannot be excited due to zero net
electric dipolar momentum. To illustrate the concept of such a mode we consider the
archetypical example of cut-wires (CWs)metasurface shown in the inset of Fig. 9.2a.
Details on theCWs structure used for this study canbe found in [44]. The transmission
and reflectance spectral responses of the CWs metasurface calculated using ANSYS
HFSS modeling software [45] are displayed in Fig. 9.2a. The transmission dip at f 0
�8.3 GHz is related to the m0 fundamental CWsmode excitation that corresponds to
that of an electric dipole. The excitation by a plane wave of the first higher mode m1

sketched in Fig. 9.2b is forbidden by symmetry and consequently this mode remains
dark.

Nevertheless the excitation by a plane wave of the first higher mode is possi-
ble when considering resonant elements with inversion symmetry geometry. One of
the simplest inversion symmetry structures is the example of two connected anti-
symmetric V-antennas (AVA), shown as inset in Fig. 9.3a. Under normal incidence,
the structure exhibits only fundamental electric dipole excitation at 8.1 GHz corre-
sponding to the dip in transmission spectrum shown in Fig. 9.3a. The excitation of
the first higher order mode is forbidden since electric field cannot interact with this
antisymmetric dark mode due to zero net dipole moment.

The situation becomes however drastically different for oblique incidence config-
uration sketched in Fig. 9.3b when the magnetic component of the incident field is
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Fig. 9.2 a Normal incidence reflection and transmission spectra of a CWs metasurface shown in
inset; b Sketch of the charges distribution for the fundamental-m0 and first higher order mode
mode-m1

Fig. 9.3 a Normal and 45° oblique incidence reflection and transmission spectra of a AVA meta-
surface shown in inset; b Sketch of the antisymmetric mode electric and magnetic dipole moments
induced by normally and obliquely incident field

crossing themetasurface.As it can be seen fromFig. 9.3a, under oblique incidence the
transmission and reflection spectra exhibit not only the fundamental dipolar mode
at 8.1 GHz but also an additional resonance at 14.8 GHz related to the magnetic
dipole excitation. The magnetic momenta induced by opposite currents in the top
and bottom V-antennas are oriented in the same direction resulting in a net non-zero
magnetic dipolar momentum. Thus, as illustrated in Fig. 9.3b, under oblique inci-
dence the magnetic component of the incident field can produce a direct excitation
of the antisymmetric dark mode. Note that the quality factor of the dark mode (Q
�9.5) is almost an order of magnitude higher as compared to that of fundamental
resonance (Q �1.1).

The provided above results show that even with a raw design that was not sub-
jected to any optimization the excitation at 14.8 GHz of the magnetic dipole instead
of electric one indeed provides a significant improvement of the spectral response
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Fig. 9.4 Darkmode excitation in Z-shaped resonator. Simulated transmission and reflection spectra
under normal and oblique incidence

selectivity. By consequence it seems possible to have a room for further performance
enhancement.

To this end for a fixed resonator length we consider a unit cell design. where two
V-antennas are transformed to the Z-shaped resonator with two legs perpendicular
to the E-field as displayed in Fig. 9.4. The dimensions of the unit cell is px �py �
6 mm. The length of the Z-element along x- and y-directions is, respectively, lx �
5.8 mm and ly �5.7 mm, and the width is 0.3 mm.

Similarly to two asymmetric V-antennas design, under normal incidence the Z-
shaped resonator displays only one resonance at 4.5 GHz corresponding to the fun-
damental mode excitation. This is confirmed by instantaneous charges distribution
shown in Fig. 9.5a. Under oblique incidence transmission and reflection spectra
exhibit an additional resonance feature at 13.7 GHz related to the dark mode exci-
tation. As it can be seen from Fig. 9.5b, at this resonance two opposite currents are
excited leading to non-zero magnetic moment. While having a behavior similar to
that of two connected V-antennas, Z-shaped design brings a notable improvement of
the dark mode resonance quality factor.

As it can be observed from Figs. 9.3 and 9.4, for an identical resonator length,
passing from two V-antennas to Z-shaped design reduces the induced electric dipole
projection on the direction of external electric field. The narrowing of the funda-
mental mode frequency bandwidth proves this. The bandwidth narrowing of the
antisymmetric dark mode for Z-shaped resonator turns out to be much more signif-
icant. In summary for Z-shaped design, the quality factor of fundamental and dark
mode resonances is Qfund �0.9 and Qdark �23, respectively.

It should be emphasized, that dark mode resonance in the Z-shaped design does
not rely on coupling between adjacent resonators but is related only to excitation
in individual elements. This is evidenced by spectral characteristics for increased
dimensions of unit cell in Fig. 9.6. As it can be seen, both the dark mode and fun-
damental mode are present when the period of unit cell becomes equal to px �py �
9mm. The influence of resonators couplingmanifests as frequency shift of resonance
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Fig. 9.5 Instantaneous current distributions: a fundamental resonance at 4.5 GHz; b magnetic
dipole excitation at 13.7 GHz

Fig. 9.6 Reflection under normal and oblique incidence for Z-elements with identical geometry
but different size unit cell a px �py �6 mm; b px �py �9 mm

positions from 4.5 GHz to 6.9 GHz and from 13.7 GHz to 12.8 GHz for fundamen-
tal and dark mode, respectively. In terms of LC-contour, the frequency shift can be
explained as the variation of capacitance formed by the top and bottom legs of two
adjacent Z (Fig. 9.5). The fundamental resonance moves to higher frequency since
the capacitance is decreased when the separation distance between legs is increased.
In contrast the frequency of dark mode moves to lower frequency because of same
sign charges accumulation on the legs of Z.

It is worthy to mention that the fundamental resonance is little sensitive to the
variation of incidence angle while the amplitude of dark mode excitation noticeably
increases with the incidence angle, as it can be seen in Fig. 9.6. It is because the
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Fig. 9.7 Dual behavior for Z-shaped resonator: a reflection for the original Z; b transmission for
the complementary Z

resonance amplitude augments for higher projection of the magnetic component
of the incident field penetrating the structure. This feature represents an additional
evidence of magnetic nature of the dark mode resonance.

Note also that in contrast to the usual case where dark mode excitation is associ-
atedwithmaximum in transmission due to the EIT effect, in the present configuration
dark mode manifests as a peak in reflection and minimum in transmission. Consid-
ering complementary metasurface design relying on Babinet’s principle allows to
easily inverse situation and achieve dual to original design electromagnetic behavior
[46–50].

To this end, we consider complementary Z-shaped metasurface displayed as inset
in Fig. 9.7b. According to Babinet’s principle, polarization of complementary inci-
dent field is such that its electric component is horizontally orientated while the
magnetic field vertically. As it can be observed in Fig. 9.7, the peak in reflection is
replaced now by a maximum in transmission for the complementary Z-structure. As
it can be seen from Fig. 9.7b, under oblique incidence when electric field component
is crossing the metasurface, dark mode resonance is excited at 12.9 GHz.

In order to validate experimentally the modeling results, prototypes of Z-shaped
and complementary Z metasurface were fabricated by using classical printed circuit
board technology (Fig. 9.8). The total sample size is 35×35 cells on a 210 mm×
210 mm dielectric substrate. The material parameters of the substrate and the geo-
metrical dimensions used for the experimental validation are the same as in numerical
simulations.

Themicrowave transmissionmeasurements were conducted in an anechoic cham-
ber using an Agilent 8722ES network analyzer and two wide band horn antennas.
Oblique incidence measurements were performed by using a goniometric setup
schematically shown inFig. 9.9b. Phase referencing and normalization have been per-
formed in transmission by removing the sample from the signal path, and in reflection,
by replacing the sample with a copper plate. Measured reflection and transmission
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Fig. 9.8 Prototypes used in microwave experiments. a Z-MS; b complementary Z-MSs

Fig. 9.9 Microwave measurements experimental setup. a Normal; b oblique incidence

coefficients are compared to the simulated ones, as represented in Fig. 9.10. A good
qualitative agreement between simulations and measurements is found.

It should be noticed that complementary structure also exhibits a significantly
higher quality factor for darkmode resonanceQdark �39 as compared to fundamental
resonanceQfund �1.8. The difference with respect to the original Z-MS, whereQfund

�0.85 and Qdark �29, results from smaller absorption in dielectric substrate due to
less uncovered dielectric surface.

The considered examples show that antisymmetric dark mode indeed provides
lower radiative losses. The excitation does not rely on coupling between elements, i.e.
mode hybridization, and is related to direct interaction with incident field. The con-
ditions required for antisymmetric dark mode excitation are based only on symmetry
matching considerations. Consequently, such a design not relying on hybridization
mechanism through near field interaction is expected to be more robust with respect
to technological imperfections, especially when considering fabrication of structures
intended for operation in the optical domain.
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Fig. 9.10 Normal and oblique incidence transmission spectra for Z-MSs (left column) and com-
plementary Z-MSs (right column): a, c HFSS modeling results; b, d experimental data

9.4 Fano Interference is a System with Identical Coupled
Resonators

Our next goal is to provide evidence that Fano type interference can be achieved in
a system with two identical coupled resonators. Paradoxically, an example of such a
system with identical resonant elements displaying Fano interference was provided
in the same seminal paper by Fedotov et al. [9]. The schematic of the investigated
structure is displayed in Fig. 9.11a. The metasurface unit cell is composed of an
enantiomeric arrangement of circle arcs having a different angular split of 10° and
30° on the left and right side, respectively. The observation that can be done now one
decade later is that the design with identical resonant elements has attracted much
less attention as compared to its simultaneously proposed asymmetric counterpart.
The lack of interest to the considered solution is probably due to the fact that the
displayed performances in terms of Fano resonance contrast was substantially lower
than that obtained by using asymmetric type design. However no detailed investiga-
tions aiming to enhance the performances and assess the potential of this approach
were performed so far. To contribute filling this gap, we consider a unit cell design
with obliquely oriented cut wires (CWs) sketched in Fig. 9.11b. Basically it repre-
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Fig. 9.11 Enantiomeric arrangement of coupled resonators. a Pair of circle arcs with different
angular split [9]; b Pair of obliquely oriented CWs

sents a simplified version of design shown in Fig. 9.11a. The interest of this simplified
version is to facilitate the understanding of Fano interference mechanism occurring
in a system with two interacting identical resonant elements.

For practical implementation and HFSS modeling, we consider a rectangular
unit cell design with dimensions along x- and y-axis px �9 mm and py �6 mm,
respectively. The angle θ formed by obliquely oriented CWs is 10°. The CWs of
length l �5.8 mm and width w �0.3 mm used for HFSS simulations are assumed
to behave like an ideal metal (perfect conductor). They are printed on a dielectric
substrate with εr �2.2, tangential losses tan(δ)�0.0009 and thickness d �0.5 mm.

Simulation results for the transmitted and reflected intensity calculated for x- and
y-polarized normally incident electromagnetic (EM) wave are shown in Fig. 9.12a
and 9.12c, respectively. As it can be seen, in contrast to the conventional Lorentzian
type resonant behavior observed for x-polarization, a marked Fano resonance effect
occurring at 18.8 GHz is observed for y-polarized EM wave. As it can be seen in the
inset of Fig. 9.12c, the very narrow drop in transmission (|S12|2) is reaching 98%. The
resonance quality factor for y-polarization Qy �209 obtained from the absorption
line bandwidth is almost two orders of magnitude higher as compared to the Qx �
3.5 for x-polarization. Furthermore, a marked difference in the resonance behavior
is observed when comparing the phase spectral response of x- and y-polarized EM
wave shown in Fig. 9.12b and 9.12d, respectively. As it can be seen in the inset of
Fig. 9.12d, a characteristic forth and back jump phase of reflected wave is observed
in the vicinity of Fano resonance frequency.

To explain the origin of Fano resonance, it is meaningful to examine the instanta-
neous currents and charges distribution shown in Fig. 9.13 for y-polarized wave. As it
can be seen at all frequencies, the current flow along the x-axis in the upper and lower
CWs are circulating in opposite directions. The dipolar momentums P1yx and P2yx

shown in Fig. 9.11b corresponding to such charges distribution can be associated to
the excitation of antisymmetric dark mode. At the same time the motion of charges
along the y-axis and its associated dipolar momentumsP1yy andP2yy that are oriented
in the same direction corresponds to the excitation of bright mode, for which reso-
nance occurs at much higher frequencies. As discussed above, the non-orthogonality
of the eigenmodes leads to the Fano type constructive/destructive interference in the
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Fig. 9.12 HFSS numerical modeling results for obliquely oriented CWs. Left column x-, right
column y-polarized normally incident EM wave; a, c Transmitted and reflected intensity; b, d
Phase of transmitted and reflected wave

vicinity of dark mode resonance frequency, which roughly corresponds to that of
x-polarization CWs redshifted due to the coupling [33].

The main difference with respect to the most of the previous studies is that in the
present case the resonance frequencies of the bright and dark mode are not close but
rather far apart. The very low slope of reflection and transmission outside the Fano
resonance region for y-polarized EM wave attests the fact that the resonance of the
bright mode should occur well beyond the considered frequency range. This feature
ensures a high non-resonant transmission and low reflection. As it will be shown
below, a very high contrast Fano type interference can be achieved in this case. The
considered situation is distinctly different from that when the resonance frequencies
of bright and dark mode are close resulting in EIT effect. As detailed above EIT
manifests as a narrow maximum occurring in the middle of attenuated transmission
band. Here the situation is exactly opposite.

It may seem that the obtained results are in contradiction with previous studies
[32] stating that efficient Fano interference is observed when the radiative strengths
of both modes are similar. To show that there is no any contradiction we consider the
simple model of coupled oscillators described by the (3), which solutions are given



9 Dark-Mode Characteristics of Metasurfaces … 235

Fig. 9.13 HFSS numerical modeling results for a pair obliquely oriented CWs: a Instantaneous
currents flow; b Instantaneous charges distribution

by the (4). To this end we examine the solution for the amplitude of bright mode,
which is convenient to express as:

cb � fb

(ω2
b − ω2 + iγbω) − κ2

(ω2
d−ω2+iγdω)

(8)

Since ωb �ωd the following approximation holds in �ω vicinity of dark mode
resonance:

cb � fb(
ω2
b + iγb(ωd + �ω)

) − κ2

(−2ωd�ω+iγd (ωd+�ω))

(9)

As evident cb may attain very high values when the denominator of (9) approaches
zero. This happens when the following condition for the real part of denominator is
met:

�ω ≈ κ2

2ωdω
2
b

(10)

It means that when increasing the bright mode frequency ωb, the coupling coeffi-
cient κ should be roughly increased in a similar proportion. The amplitude of bright
mode is then determined by the residual imaginary part of the denominator that
is inversely to �ω. In contrast to the conventional dolmen type [8, 11, 12], plas-
monic oligomers [13–16], ring-disk nanocavities [17, 18] arrangements, the present
system is operating in the regime of strong coupling. Such a strong coupling can-
not be ensured through the tunneling type near field interaction but can be instead
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Fig. 9.14 a HFSS |S11|2 transmission spectrum and Fano model fitted results; b Experimentally
measured transmission spectrum and Fano model fitted results

achieved through direct electrons driving by the external electric field projection on
the obliquely oriented CWs.

The validity of the considered approach was verified by comparing numerical
simulations and experimental results for transmission spectrum with those obtained
by using the model of bright and dark coupled oscillators. As it can be observed from
results shown in Fig. 9.14a there is a good overall agreement between the fit obtained
with the Fano model and HFSS numerical simulations. Similar good agreement,
except for the absolute value of transmission level, is also observed when comparing
experimental data and Fano model results shown in Fig. 9.14b. The parameters of
the model of coupled oscillators used for the fitting procedure are: ωd �19.25 GHz,
ωb �34 GHz, γ d �0.05 GHz, γ b �2.5 GHz, κ �120 GHz2.

The considered design based on a pair of obliquely oriented CWs brings a great
flexibility for the control of the parameters of the system. Thus the dark mode fre-
quency can be tuned by changing the length of CWs, the dark mode damping factor
γ d can be also tuned on the angles between CWs. For instance a further increase
of Fano resonance quality factor can be achieved by using a smaller angle between
CWs, the ultimate quality factor being limited essentially by the radiative losses. The
considered approach can be easily generalized to other kind of geometries based on
an enantiomeric arrangement of identical resonant elements.

9.5 Summary and Conclusions

We revisit the engineering of metasurfaces displaying sharp spectral features and
conventionally relying on electromagnetically induced transparency resulting from
Fano-type interference between dark and bright resonant elements. On the basis of
recent theoretical advances we highlight the fact that Fano resonance in such systems
is due to the interference between bright modes only. In contrast, Fano interference
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between two modes with substantially different radiative strength results in a very
weak EIT effect. The origin of this discrepancy is related to the non-orthogonality
of eigenmodes base due to non-Hermiticity of interaction matrix as the consequence
of the open character of the system.

In this context one of the purposes of our study is to bring evidence of direct dark
mode excitation mechanism that does not depend on near-field coupling between
resonant elements. On the basis of symmetry matching considerations we show that
direct excitationmechanism is possible for an anti-symmetric type higher ordermode
having a zero net electric dipolar momentum but different from zero magnetic one.
The excitation of magnetic dipolar momentum can be achieved under field oblique
incidence on metasurface having anti-symmetric unit cell geometry. In our exam-
ples we consider single-element-based metasurface composed of two V antennas
connected in an anti-symmetric arrangement or more simply Z-shaped meta-atoms.
Both experimental and modeling results show an efficient excitation of magnetic
dipolar mode in such structures.

The great advantage of the considered approach is that dark mode excitation
is entirely determined by structures’ geometry symmetry and does not depend on
coupling between elements. The considered approach opens promising perspectives
for new type of nanostructure designs and greatly relaxes technological constraints
for the optical domain.

Another goal of our study is to show that efficient high contrast Fano resonance
effect can be achieved by considering a systemwith identical resonant elements from
the beginning. To this end we consider examples of such systems and discuss the
condition necessary to achieve sharp Fano resonance features. We provide modeling
and experimental demonstration in the microwave domain of such metasurface dis-
playing a high contrast ratio (~98%) and high quality factor (~209) Fano resonance.
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Chapter 10
Light-Tunable Fano Resonance
in Metal-Dielectric Multilayer Structures

Shinji Hayashi, Dmitry V. Nesterenko and Zouheir Sekkat

Abstract Recent progress on Fano resonances exhibited by metal-dielectric mul-
tilayer structures is reviewed. The Fano resonance in the multilayer structures is
caused by coupling between a surface plasmon polariton mode supported by a metal-
dielectric interface and a waveguide mode supported by a system of three dielectric
layers. Electromagnetic calculations of attenuated total reflection spectra demon-
strate the feasibility of realizing the Fano resonance, and the predicted Fano reso-
nance was indeed observed experimentally. Since the structure is simple, it is easy
to add the photofunctionality to the structure. Incorporation of photofunctional dye
molecules into the waveguide layer made it possible to tune the Fano resonance by
light irradiation.

10.1 Introduction

Over the past decade, asymmetric line shapes appearing in optical responses of plas-
monic nanostructures and metamaterials attracted much attention and have been
analyzed in terms of Fano resonances [1–6]. A variety of nanostructures such as
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metallic nanowire arrays [7], clusters of nanoparticles [8–12], disk/ring nanocavi-
ties [13–15] and metal-insulator-metal waveguides coupled to resonators [16], are
known to exhibit Fano line shapes in their optical spectra. The Fano-resonant nanos-
tructures offer the opportunities for achieving high-Q resonances that induce highly
enhanced electromagnetic fields in the vicinities of the nanostructures. Therefore,
they have potentials for achieving high performances in photonic devices, such as
optical sensors, switches and platforms for surface-enhanced spectroscopies [2, 3,
5]. One of the key issues in developing such devices is the realization of dynamic
tuning of the Fano resonance [5]. Cui et al. [17] demonstrated mechanical tuning
of Fano resonances supported by a gold heptamer structure embedded in a flexible
membrane. Integrating single-layer graphene with plasmonic Fano-resonant meta-
surfaces, Shvets et al. [18, 19] succeeded in modulating mid-IR Fano resonances
using electrostatic gating. Electric-field modulation of the Fano resonance was also
demonstrated for gold nanowire gratings [20] and silicon nanohole arrays [21] inte-
grated with liquid crystals. In spite of great efforts made so far, the fabrication of the
nanostructures is not always easy and time consuming, preventing their real appli-
cations. Therefore, it is highly demanded to exploit structures exhibiting the Fano
line shapes that can be fabricated by a low-cost, fast and easy method. The quest
for simpler structures that do not require the use of nanofabrication techniques and
exhibit high Q Fano resonances still remains a challenge. Realization of the dynamic
tuning in such structures is highly demanded.

Very recently, we demonstrated both theoretically and experimentally the feasibil-
ity of realizing sharp Fano line shapes in attenuated total reflection (ATR) spectra of
planar multilayer structures consisting of a metallic layer and dielectric layers [22–
29]. The structures studied do not require the use of nanofabrication techniques and
consequently, they are verymuch suited for realistic applications. The purpose of this
Chapter is to discuss the fundamental aspects of the Fano resonances in such simple
metal-dielectric multilayer structures. It is common to explain the Fano resonances
in nanostructures as due to the interference of a bright mode with a broad resonance
and a dark mode with a narrow resonance. The physical origin of the Fano line shape
in our multilayer structures has clearly been identified as the coupling between a
surface plasmon polariton (SPP) mode localized at a metal-dielectric interface and
a planar waveguide (PWG) mode supported by a stack of dielectric layers. The SPP
mode can be regarded as a bright mode and the PWG mode as a dark mode. The
simplicity in the structure andmechanism of the Fano resonance allows us to develop
a novel method for tuning the Fano resonance by light irradiation. In this Chapter, we
review recent progress in theoretical and experimental studies on the Fano resonance
and its light tuning realized in the metal-dielectric multilayer structures.

The multilayer structure discussed in this Chapter is schematically shown in
Fig. 10.1. Each layer can be a metal (M) or a dielectric (D). The dielectric con-
stant and the thickness of the i-th layer is written as εi and di , respectively. When
light is incident from the layer 0, a part is reflected back at the 0–1 interface and
the rest is transmitted into the multilayer system. At each interface, the light wave
is reflected and transmitted, generating backward and forward waves inside each
layer. After multiple reflection and transmission processes of the light waves in the
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Fig. 10.1 Multilayer
structure considered
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system, reflected light finally exits from the layer 0 and transmitted light exits from
the medium N . When the values of εi and di are known, electromagnetic (EM) the-
ories allow us to calculate the intensities of the reflected and transmitted light as
well as the distributions of the electromagnetic fields inside the layers. Methods for
the EM calculations are well established [30]; in this Chapter, we present results of
EM calculations obtained by a 2 × 2 transfer matrix method [31, 32]. To perform
the EM calculations, a light wave (a plane wave) is assumed to be incident on the
0–1 interface at an angle of θin. Throughout this Chapter, the layer 0 is assumed to
be a glass prism to discuss the ATR spectra in the Kretschmann configuration [33].
In the following sections, we consider various combinations of a metal and dielec-
tric layers and demonstrate the feasibility of realizing the Fano resonances in the
metal-dielectric multilayer structures.

10.2 How to Realize Fano Resonances in Metal-Dielectric
Multilayer Structures

10.2.1 SPP Mode in MD Structure and PWG Modes in DDD
Structure

Let us consider the optical responses of simple multilayer systems schematically
shown in Fig. 10.2a, b. We consider here two different structures. One consists of a
metal layer and a dielectric layer (MD structure) attached to a prism (Fig. 10.2a). This
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Fig. 10.2 MD (a) and DDD
(b) structures attached to a
glass prism (Kretchmann
configuration of ATR
spectroscopy)
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is a Kretschmann configuration in the ATR spectroscopy [33]. The other is a stack
of three dielectric layers (DDD structure) (Fig. 10.2b). It is well known that a MD
interface can support a SPPmode, which is a coupled mode of a collective oscillation
of free electrons in the metal and an electromagnetic wave that propagates along the
interface and decays exponentially away from the interface. The SPP mode can be
excited by light incident through the prism. In the angle-scan ATR spectroscopy, a
laser beam with a fixed wavelength is used as the incident light and the intensity
of reflected light exiting from the prism is measured as a function of the angle of
incidence under the total reflection condition. The curve A in Fig. 10.3 shows anATR
spectrum calculated for a MD structure consisting of a 45 nm-thick Ag layer and a
fluoropolymer Cytop layer attached to a SF11 glass prism. To obtain the spectrum
a freely available Winspall software package was used together with values of the
dielectric constants reported in our previous paper [24]. p-polarized incident light
with a wavelength of λ = 632.8 nm (He-Ne laser) was assumed. As can been seen
in the figure, the excitation of the SPP mode at the MD interface is manifested by
a relatively broad dip in the ATR spectrum. Figure10.4a shows an electric field
distribution generated in the MD structure under the SPP excitation at θin = 53.865◦.
In this figure, the square of the electric field amplitude normalized to that of the
incident light (field enhancement factor) is plotted as a function of the position z
in the structure; the z axis is normal to the interfaces and the prism/Ag interface is
located at z = 0. We see that a strong electric field is generated at the MD interface
and the field decays exponentially away from the interface inside the Cytop layer.
The electric field distribution seen in Fig. 10.4a is typical of SPP excitation.

In Fig. 10.3, an ATR spectrum calculated for a DDD structure shown in Fig. 10.2b
is also presented as curve B. To obtain the spectrum, a stack of a Cytop layer (400 nm
thick) and a poly(methyl methacrylate) (PMMA) layer (1100 nm thick) surrounded
by air was assumed. In this DDD strucuture, the real part of the dielectric constant
(refractive index) of the PMMA layer is larger than those of Cytop layer and air. It is
well known that this kind of DDD structure can support PWG modes that propagate
in the middle dielectric layer (waveguide layer) accompanied by evanescent fields
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Fig. 10.3 ATR spectra of the
MD structure (curve A) and
the DDD structure (curve B)

A

B

Fig. 10.4 Electric field
distributions corresponding
to excitations of the SPP
mode in the MD structure (a)
and the TM0 PWG mode in
the DDD structure (b)

(a) MD

(b) DDD
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outside the waveguide layer. The excitation of the PWG modes results in sharp
reflection dips in the ATR spectrum. The sharp reflection dips denoted as TM0,
TM1 and TM2 in Fig. 10.3 correspond to the excitation of 0th-, 1st- and 2nd-order
transverse magnetic (TM) PWG modes, respectively. The electric field distribution
associated with the excitation of the TM0 PWG mode at θin = 55.584◦ is presented
in Fig. 10.4b. We see a distribution with highly enhanced electric fields localized in
the PMMA waveguide layer, which is typical of PWG mode excitation.

10.2.2 Fano Resonance in MDDD Structure

Now we turn to the discussion of a MDDD structure schematically shown in
Fig. 10.5a. As can be understood from Fig. 10.5b, this structure can be regarded
as a combination of the MD and DDD structures described above. The MD structure
can support the SPP mode and the DDD structure can support the PWG modes, and
in the MDDD structure, they can interact each other through the overlap of their
evanescent electromagnetic fields in the spacer D layer, i.e., the D layer between the
metal layer and the waveguide layer. Therefore, it may be possible to generate the
Fano resonance based on the interference between a broad SPP resonance and a sharp
PWG resonance, provided that the structural parameters of the MDDD structure are
appropriately chosen. Indeed, the Fano line shape can be generated as demonstrated
by a calculated spectrum shown in Fig. 10.6. To obtain this spectrum the thicknesses
of the Cytop spacer layer and the PMMA waveguide layer were set at t = 400 nm
and d = 1100 nm, respectively. We see clearly an asymmetric line shape around θin
= 55.5◦; the inset shows the line shape in an expanded scale. A comparison between
this spectrum and those shown in Fig. 10.3 reveals that the Fano line shape is a

Fig. 10.5 MDDD hybrid
structure that generates a
Fano resonance (a), and MD
and DDD units before
hybridization (b). From [24]

t

d
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Fig. 10.6 ATR spectrum of
the MDDD structure
exhibiting the Fano
resonance

consequence of interaction between the broad SPP mode and the sharp TM0 PWG
mode.

To confirm the mechanism of Fano line shape generation, electric field distri-
butions induced in the MDDD structure for three different angles of incidence are
presented in Fig. 10.7a–c. The filled circles shown in Fig. 10.6 indicate the angles
chosen for the calculations; they correspond to the SPP excitation angle (54.054◦),
the Fano resonance angle (55.611◦) and an angle (55.545◦) slightly lower than the
Fano resonance angle, respectively. In Fig. 10.7a–c, we see the hybridization of the
SPP andPWGmodes; their relative contributions vary depending on the angle of inci-
dence. In fact, in Fig. 10.7a corresponding to the SPP resonance angle, we see a strong
contribution of the SPP excitation at the Ag/Cytop interface, which is manifested by
a strong electric field amplitude at the interface accompanied by an evanescent tail
in the Cytop spacer layer. At this angle, the excitation of the PWGmode is weak and
gives only a small bump in the PMMAwaveguide. Figure10.7b corresponding to the
intermediate angle of 55.545◦ shows that both the SPP and PWG mode excitations
contribute almost equally to the distribution; the field enhancement factor at this angle
is very small, because the angle is far from the SPP and PWG mode resonances. In
Fig. 10.7c corresponding to the Fano resonance angle, we see that the field distribu-
tion is dominated by the PWGmode excitation that induces highly enhanced electric
fields around the center of the waveguide. From the behaviors seen in Fig. 10.7a–c, it
is clear that the sharp Fano resonance is caused by the excitation of the PWG mode
that interacts with the SPP mode. As has been shown in our theoretical paper [23],
when the angle of incidence is scanned around the resonance angle of the sharp PWG
mode, the phase of the electromagnetic field associated with the PWGmode changes
by a factor of π and its sign is reversed (See Fig.5a in [23]), while that of the SPP
mode does not change appreciably, because the angle is located in the tail region of
the broad SPP resonance. The constructive and destructive interferences of the two
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Fig. 10.7 Field distributions
for the MDDD structure
calculated at three different
angles of incidence, 54.054◦
(SPP resonance) (a), 55.545◦
(far from resonances) (b) and
55.611◦ (Fano resonance)
(c), respectively

Cytop PMMA AirSF11 Ag

(a) 54.054 deg 

(c) 55.611 deg 

(b) 55.545 deg

modes around the PWG mode resonance thus results in the sharp asymmetric Fano
line shape.

The simplicity of the present MDDD structure allows us to easily control the
Fano line shape by varying the structural parameters, in particular the thicknesses
of the Cytop spacer layer t and the PMMA waveguide layer d. In Fig. 10.8a–c, we
show three different line shapes generated by three different sets of the thicknesses
indicated in the figures. The spectrum shown in Fig. 10.8c is the same as that shown
in Fig. 10.6. Note that the position of the resonance can be controlled by d, which
determines the resonance position of the PWG mode; as d increases, the resonance
angle of PWG mode increases. The strength of the coupling between the SPP mode
and the PWGmode is governed by t ; t has to be appropriately chosen to obtain a well
shaped resonance. For d = 491 nm, as seen in Fig. 10.8a, the PWG mode resonance
is located at the angle lower than that of the SPP resonance and consequently, the
Fano line shape is realized at the low-angle side of the broad SPP resonance. For d
= 1100 nm, Fig. 10.8c demonstrates that the PWG mode resonance is shifted to the
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Fig. 10.8 Dependence of
Fano line shape on the
thicknesses of Cytop spacer
layer t and PMMA
waveguide layer d. a, b and c
were obtained by assuming
values of t and d indicated in
the figures

(a) 

(c) 

(b) 

t = 760 nm
d = 491 nm 

t = 400 nm
d = 1100 nm 

t = 550 nm
d = 620 nm 

angle higher than that of the SPP resonance, resulting in the Fano resonance at the
high-angle side of the SPP resonance. For d = 620 nm, Fig. 10.8b shows the line shape
quite different from others. In this case, the PWGmode resonance is located at almost
the same position as the SPP mode resonance, and the line shape seen is typical of so
called electromagnetically induced transparency (EIT). Normally, the line shape of
EIT is characterized by a sharp transmission dip appearing inside a broad absorption
band. In the present ATR spectra, the decrease in the reflectivity R is caused by the
absorption of light A in the sample, because the angle of incidence is in the region
of the total reflection, and there is no light transmitted from the sample. Therefore,
using a relation A = 1 − R, we can convert the spectrum shown in Fig. 10.8b into
that of absorption exhibiting a sharp dip (transparency) in the absorption band.
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10.2.3 Experimental Observation of Fano Resonance
in MDDD Structure

The results of simulations presented in Sects. 10.2.1 and 10.2.2 suggest the possibility
of realizing the Fano resonance in simple metal-dielectric multilayer structures. The
structures suggested are so simple that they can be prepared without nanofabrication
techniques.Wehave indeed succeeded in observing the Fano resonance in theMDDD
structure shown in Fig. 10.5 [24]. To prepare the structure, first the Ag layer was
deposited on a SF10 glass substrate by vacuum evaporation, and then the Cytop and
PMMA layerswere successively deposited by spin coating on top of theAg layer. The
multilayer sample was pasted onto the bottom surface of a 60◦-prism made of SF11
glass with the aid of index matching oil. The prism with the sample was mounted on
a computer-controlled rotating stage. For the measurements of θ -scan ATR spectra,
p-polarized light from a He-Ne laser with a wavelength of 632.8nm was incident
on the prism through a chopper. The intensity of the reflected light was measured
as a function of the angle of incidence, θin, using a Si photo-diode connected to a
lock-in-amplifier. The reflectance spectra were obtained by normalizing the intensity
data recorded with the sample to that recorded for a bare part of the prism.

Typical experimental θ -scan ATR spectrum is presented in Fig. 10.9a. The exper-
imental spectrum is quite similar to the theoretical spectrum shown in Fig. 10.6 and
exhibit clearly the Fano resonance around 55.25◦. In Fig. 10.9b, the experimental
Fano line shape (dots) is shown in an expanded scale together with a result of fitting
to the Fano line shape function [2, 24]. We see that the observed line shape can
be very well reproduced by the Fano function. We also attempted to reproduce the
observed spectrum by the EM calculation. The solid line in Fig. 10.9a is the result
of EM calculation obtained by a set of parameters: s = 45 nm and εAg = −15.5075
+ i3.1010 for the Ag layer, t = 400 nm and εCytop = 1.8117 + i2.6900 × 10−3 for
the Cytop layer, and d = 920 nm and εPMMA = 2.2141 + i2.9760 × 10−4 for the
PMMA layer. The overall fit of the calculated spectrum to the experimental points
is very good. In our paper [24], we have also reported the dependence of the ATR
spectrum on the thicknesses of the spacer Cytop layer and the PMMA waveguide
layer and demonstrated the feasibility of controlling the Fano line shape by varying
the thicknesses.

Another example of experimental observation of the Fano resonance [29] is given
in Fig. 10.10. The ATR spectrum presented in this figure was obtained for a MDDD
structure consisting of layers of inorganic materials, namely anAl layer, a SiO2 layer,
an Al2O3 layer and air. The Al layer was prepared by vacuum deposition, and the
SiO2 and Al2O3 layers were prepared by a rf sputtering method. The experimental
spectrum (dots) can be well reproduced by the theoretical spectrum (solid curve)
obtained by a set of parameters: s = 20.95 nm and εAl = −37.28 + i16.33 for the
Al layer, t = 363 nm and εSiO2 = 2.124 + i2.915 × 10−4 for the SiO2 layer, and
d = 563 nm and εAl2O3 = 2.788 + i3.673 × 10−4 for the Al2O3 layer. The figure
demonstrates that the observation of the Fano resonance is successful not only for the
organic dielectric layers mentioned above, but also for inorganic dielectric layers.
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(a) (b)Experiment
EM calc.

Fano
 fit

Fig. 10.9 a Experimental θ-scan ATR spectrum (dots) obtained for an Ag/Cytop/PMMA/Air
(MDDD) system and theoretical fit curve obtained by EM calculation. b Experimental spectrum
(dots) and result of fitting to Fano function (solid curve) in the vicinity of the resonance. Adapted
from [24]

Fig. 10.10 Experimental
θ-scan ATR spectrum
obtained for an
Al/SiO2/Al2O3/Air
(MDDD) system and
theoretical fit curve obtained
by EM calculation. Adapted
from [29]

An advantage of using the Al layer is its broadness of the SPP resonance; when
the SPP resonance is broad, it is not necessary to control precisely the thickness of
the waveguide to tune the PWG mode resonance into the SPP resonance to assure
their overlap and interaction. Another advantage of the Al layer is its applicability
to the UV plasmonics. The Al layer is known to have low losses in the UV region
and consequently, keeps good plasmonic properties, which is not the case for Ag
and Au layers. Results of systematic experiments on Fano line shape engineering are
reported in our paper [29], where a Q factor as high as ∼1,500 is demonstrated.

In Fig. 10.10, we see that the ATR dip corresponding to the SPP excitation at
the Al/SiO2 interface is highly asymmetric exhibiting a long tail extending to large
angles. The sharp Fano resonance is superposed on this long tail. According to our
analyses presented in [29], the asymmetric SPP dip can be well reproduced by a gen-
eralized Fano function derived by Gallinet and Martin [34, 35]. This implies that the
SPP resonance can be regarded as the Fano resonance. Furthermore, the sharp Fano
resonance superposed on the asymmetric SPP dip was found to be well reproduced
by a product of two generalized Fano functions. Therefore, it is appropriate to iden-



252 S. Hayashi et al.

tify the resonance presented in Fig. 10.10 as the double Fano resonance. Although
the asymmetric line shapes of the SPP dips have long been known, it was common to
analyze them using Lorentzian line shapes [33]. Very recently, we have analyzed in
detail the Fresnel reflection coefficient at a metal-dielectric interface and that for the
3-layer ATR geometry [36]. We demonstrated that the coefficients contain a nonres-
onant continuum and a SPP-resonant response that lead to the Fano resonance, when
they interfere. The asymmetric SPP resonances can thus be reinterpreted as the Fano
resonances.

10.3 Light-Tunable Fano Resonance

10.3.1 Experimental Results

In Sects. 10.2.2 and 10.2.3, we demonstrated that the Fano resonance can be realized
easily in the MDDD structures. Since the structures are simple, it is also easy to add
functionalities to the structures for developing various novel optical devices. Nor-
mally, once the structural parameters of nanostructures are fixed, the characteristics
of the Fano line shape such as the position, width and height are fixed. However,
recent studies in nanostructures demonstrated themodification of the Fano line shape
caused by external perturbations to the structures, such as mechanical forces [17]
and the electric fields [18, 19, 21]. In this section, we introduce a novel method for
tuning the Fano resonance by light irradiation. Our strategy for realizing the light-
tunable Fano resonance is as follows. Since the Fano resonance in our multilayer
structures arises from the coupling between the SPP and PWG modes, a change in
the propagation constant of the PWGmode is thought to directly induce a shift of the
Fano resonance. When a photosensitive material is used as the waveguide layer and
its refractive index could be changed by light irradiation, the change in the refractive
index in the waveguide may change the propagation constant of the PWG mode,
thus generating a photosensitive shift of the Fano resonance. To make the waveguide
layer photosensitive, we prepared PMMA layers doped with disperse red 1 (DR1)
molecules.

The DR1 molecule is one of the azobenzene derivatives exhibiting trans-cis pho-
toisomerization (see Fig. 10.11a), and its trans form is known to be stable [26, 37–
41]. Both trans- and cis-DR1 molecules have absorption bands in the blue region
of the spectrum, and they transform into each other by reversible photoisomeriza-
tion as schematically shown in Fig. 10.11a. Cis-DR1 molecules revert to trans-DR1
molecules by thermal relaxation as well. Linear and nonlinear optical properties of
the DR1-doped PMMA films are governed by the orientation of the transmolecules,
because they have large transition dipole moments along the long molecular axis.
When the photoisomerization of DR1 molecules takes place under the pump irradia-
tion, we can expect to have changes in the refractive index of the DR1-doped PMMA
waveguide layer, resulting in the modulation of the Fano resonance.
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Fig. 10.11 a Trans- and cis-forms of DR 1molecule and their mutual transformations. bMultilayer
stack of Ag/Cytop/DR1-doped PMMA/Air (MDDD) prepared on SF10 substrate. c Kretschmann
configuration and polarizations of the probe and pump light. From [27]

The multilayer sample used in our studies is schematically shown in Fig. 10.11b.
Instead of using the pure PMMA waveguide layer as in our previous work [24], we
use the PMMA waveguide layer doped with photofunctional DR1 molecules. The
sample consists of a SF10 glass substrate, a Ag layer, a fluoropolymer Cytop layer
and a DR1-doped PMMA layer. The estimated thicknesses of the Ag, Cytop and
DR1-doped PMMA layers are 45.5, 524 and 720 nm, respectively. To measure the
angle-scan ATR spectra in a Kretschmann configuration, the multilayer sample was
pasted onto the bottom surface of a 60◦-prism made of SF11 glass (Fig. 10.11c).

The optical setup used to measure the ATR spectra under pump light irradiation
(pump-probe ATR experiments) is schematically shown in Fig. 10.12. The prism
with the sample was mounted on a computer-controlled rotating stage. p-polarized
light beam from a He-Ne laser with a wavelength of 632.8nm was used as the
probe beam. The diameter of the probe beam is ∼2 mm. The ATR spectra were
measured as a function of the angle of incidence. A pump beam with a wavelength
of 488.0nm from a semiconductor diode laser was directed onto the sample surface.
To assure the overlap between the pump beam and the probe beam, the pump beam
as large as∼7 mm in diameter was used. The pump beam was incident normal to the
surface of the DR1-doped PMMA layer (normal pumping) or with an angle of 60◦
(oblique pumping). The polarization of the pump beam was set to either the vertical
or horizontal direction (V-pump or H-pump). Hereafter, we call the normal V-pump,
normal H-pump, oblique V-pump and oblique H-pump conditions as NV-, NH-, OV-
and OH-pump conditions, respectively.
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Fig. 10.12 Optical set up used for pump-probe ATR mesurements. Optical elements used are:
chopper (C), mirror (M), attenuator (At), polarizer (P), rotation stage (RS), prism (Pr), band-pass
filter (BF), lens (L), photodiode (PD), aperture (Ap), and beam expander (BE). Adapted from [28]

Fig. 10.13 Shift of Fano
resonance induced by pump
light irradiation. The inset
shows a spectrum measured
without pump irraditaion.
From [28]

Figure10.13 compares an ATR spectrum around the Fano resonance obtained
under the OH-pump condition with a power density of 45.1mW/cm2 with a spectrum
obtained without pump irradiation (dark spectrum). The inset of the figure shows the
dark spectrum in a wide angle range. The thicknesses and the dielectric constants of
the layers of the present sample determined from a theoretical fit of the dark spectrum
are s = 45.5 nm and εAg = −16.5837 + i2.3417 for the Ag layer, t = 524 nm and
εCytop = 1.8252 + i8.1100× 10−3 for the Cytop layer, and d = 720 nm and εPMMA =
2.2320 + i2.9880 × 10−4 for the PMMA layer, respectively [27]. The dark spectrum
shown in the inset is very similar to that presented in Fig. 10.9, which was obtained
with a pure PMMA waveguide layer. A remarkable feature seen in Fig. 10.13 is the
shift of the Fano resonance to a lower angle under pump irradiation; the SPP dip
stays at the same angle under pump irradiation. This figure clearly demonstrates that
light tuning of the Fano resonance is successful.
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Fig. 10.14 Results of
systematic measurements of
the Fano resonance
performed by varying the
pump beam intensity under
OH-pump condition (a) and
under OV-pump condition.
From [28]

(a)

(b)

Results of systematic measurements performed by varying the intensity of the
pump beam are presented in Fig. 10.14a, b for OH- and OV-pump conditions, respec-
tively. In these figures, we see that the amount of the shift of the Fano resonance
increases as the pump power density increases; the shift is larger for the OH-pump
than for theOV-pump. The solid curves shown in Fig. 10.14a, b are results of fitting to
the Fano function. In Fig. 10.15, the resonance angles obtained from the Fano fit are
plotted as functions of the pump power density for the OH- and OV-pump conditions
as well as for the NV- and NH-pump conditions. We see that under the normal pump-
ing, the observed shifts are almost the same for V- and H-polarizations, while under
the oblique pumping, the observed shifts for the H-polarization are much larger than
those observed for the V-polarization. These results imply that the observed light-
tuning effect is polarization sensitive presumably due to the polarization sensitive
nature of the DR1 molecules embedded in the PMMA matrix.

10.3.2 Analysis of Experimental Results and Mechanism
of Light Tuning

The shifts of the Fano resonance under the pump light irradiation demonstrated in the
above are thought to arise from the changes in the refractive index of the DR1-doped
PMMA waveguide layer. Here, we estimate the amount of changes in the refractive
index from a comparison between the observed ATR spectra and those calculated
by the EM theory. For detailed discussions, we introduce a Cartesian coordinate
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Fig. 10.15 Shifts of Fano
resonance angle as functions
of the pump power density
obtained under NH-, NV-,
OH- and OV-pump
conditions. From [28]

attached to the sample-prism system as shown in Fig. 10.11c. In this coordinate
system, the plane of incidence for the pump and prob beams lies in the x − z plane.
The polarization of the probe beam was set to the p-polarization; corresponding
electric fields have thus x and z components, Ex and Ez , respectively. Under the
normal pump condition, when the probe beam scans the narrow region of the Fano
resonance, the pump beam is almost normal to the sample surface. Therefore, the
electric field of the pump light can be assumed to have only the y component (Ey)
for V-pump, and only the x component (Ex ) for H-pump. In case of the oblique
pumping, the pump beam is incident obliquely to the sample surface and the electric
field of the pump light has Ey for V-pump and both the Ex and Ez components for
H-pump. Since the changes in the refractive index are though to be anisotropic, we
introduce anisotropic refractive indices of the layer nx , ny and nz for the DR1-doped
PMMA layer. Note that the present ATR spectra are determined only by nx and nz ,
because the probe light is p-polarized.

Optical phenomena related with the trans-cis photoisomerization of DR1
molecules embedded in PMMA matrices have been investigated extensively over
two decades [38–45]. It was demonstrated that photoinduced changes in the refrac-
tive index of the DR1-doped PMMAfilm can be well described by a simple model of
angular hole burning (AHB) [38, 41, 42], which predicts the depletion of the trans
molecules in the direction of the polarization of pump light. According to the AHB
model, the photoisomerization induces anisotropic changes in the refractive indices
described by �n‖ and �n⊥, where �n‖ and �n⊥ represent the changes in the direc-
tions parallel and perpendicular to the polarization of the pump light, respectively.
The AHB model predicts that low irradiation intensities produce a change of refrac-
tive index �n‖ = 3�n⊥, while for high irradiation intensities, saturation prevails
and the ratio �n‖/�n⊥ tends towards 1.

We performed EM calculations to examine the influence of the change in the
refractive index of the DR1-doped PMMA waveguide on the ATR Fano line shape.
The fitting parameters for the dark spectrum were used as initial parameters. In



10 Light-Tunable Fano Resonance in Metal-Dielectric … 257

(b)(a)

Fig. 10.16 a Fano line shapes theoretically obtained to reproduce the experimental shift. Filled
circles represent the resonance angles determined from the Fano fits. b Contour plot of the Fano
line shape obtained by varying continuously the refractive index of the DR1-doped PMMA layer.
The solid line gives the dependence of the resonance angle on the change in the refractive index.
The result presented by the solid line allows us to convert the observed shift of the resonance angle
into the change in the refractive index. From [27]

case of NV-pump, the pump Ey fields may induce the changes in nx and nz given by
�nx = �nz = �n⊥.We simplywrite as�n = �nx = �nz = �n⊥. ATR spectra in
the region of the Fano resonance obtained for�n = 0 and−1.0×10−3 are presented in
Fig. 10.16a as solid lines.We see that the spectrum calculated with�n =−1.0×10−3

exhibits a low-angle shift similar to that observed experimentally. For NH-pump, the
pump Ex fields may induce the changes given by �nx = �n‖ and �nz = �n⊥,
respectively. In the limit of high pump intensity, we recover the NV-pump case,
since�n‖ = �n⊥ holds asmentioned above. In the limit of low pump intensity, since
�n‖ = 3�n⊥ holds,we have�nx = �n‖ = 3�n⊥ = 3�n and�nz = �n⊥ = �n.
The broken curve in Fig. 10.16a is the Fano line shape obtained with this assumption
for �n = −1.0×10−3 . We see that the shift of the Fano line shape relative to that
of the high pump intensity limit or NV-pump case is very small and well below
the angular precision of the present measurements. This is in good agreement with
the experimental results presented in Fig. 10.15, where no appreciable difference
between the NV-pump and NH-pump results exceeding the present angular precision
is observed. These facts allow us to simplify our theoretical analysis; in what follows,
we present calculated results only for the case of �nx = �nz = �n.

Figure10.16b shows a contour plot of the Fano line shape obtained by contin-
uously varying �n from 0 to −1.0× 10−3. The calculated Fano line shapes were
fitted to the Fano formula to determine the Fano resonance angles. The solid line in
Fig. 10.16b represents the shift of the Fano resonance angle as a function of | �n |.We
can define an angular sensitivity of the Fano line shape to the variation of the refrac-
tive index as Sθ = lim�n→0(

�θ
�n ), where�θ is the shift of the resonance angle caused

by the refractive index change �n. From the slope of the solid line in Fig. 10.16b
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we obtain a value Sθ = −52.27◦ RIU−1. Since the above arguments are valid also
for the OV- and OH-pump, we can use the value of Sθ to convert the observed shift
| �θ | plotted in Fig. 10.15 to the change in the refractive index | �n |. The right
vertical axis of Fig. 10.15 was scaled with | �n | converted form | �θ |. The figure
demonstrates that the optical pumping of the present sample with a pump power
density of up to ∼50 mW/cm2 induces the change in the refractive index of up to
∼0.7 × 10−3. The amount of change in the refractive index is in good agreement
with experimental results reported so far for similar DR1-doped PMMA films [38,
40–42]. The good agreement further confirms that the present shift is caused by the
photoisomerization of DR1 molecules.

Figure10.15 demonstrates that the shift of the Fano resonance strongly depends
on the pumping angle and polarization (polarization sensitive), and the dependence of
the shift on the pumping power density is nonlinear. To further analyze these behav-
iors we have to take into account the changes in the refractive index of theDR1-doped
PMMAwaveguide layer at the pumpwavelength (488.0 nm). In previous experimen-
tal studies [37, 41, 42], the decrease in the absorbance of DR1-doped PMMAfilms at
the pump wavelength under pump irradiation has been demonstrated. The decrease
in the absorbance implies the decrease in the imaginary part of the refractive index.
When the imaginary part changes under pump irradiation, the distribution of the
pump light intensity inside the waveguide layer also changes. The EM calculation
of the light intensity inside the waveguide layer thus becomes very much complex.
Since rigorous EM calculations at the pump wavelength are highly involved and not
tractable, we introduced a simple phenomenological treatment described in detail in
our recent paper [28]. Our phenomenological treatment is very much successful to
reproduce the observed shifts of the Fano resonance under various pumping condi-
tions presented in Fig. 10.15 (see Fig. 5 in [28]). According to our analyses, the large
shifts observed under the OH-pump condition can be attributed to the large overlap
of the pump and probe electric fields (Ez component for both).

10.4 Concluding Remarks

In this Chapter, starting from the simulation results and proceeding to the experi-
mental results, we demonstrated the feasibility of realizing the Fano resonance in
the metal-dielectric multilayer structures. Furthermore, we presented the successful
observation of light tuning of the Fano resonance and gave the physical interpretation
of the observed shift of the resonance. The multilayer structures are easy to prepare
and very much suited for realistic applications to photonic devices such as optical
sensors, switches and platforms for enhancing Raman, fluorescence and nonlinear
signals. In biosensing, for instance, surface plasmon resonance (SPR) sensors have
been widely used [46]. It is common to functionalize metallic surfaces to capture
desired biomolecules and monitor changes in the SPP ATR dips caused by the cap-
ture of the biomolecules. Our metal-dielectric multilayer structures can be used in
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exactly the samemanner as the SPR sensors, when the outer surface of the waveguide
layer is functionalized.

According to our previous numerical analyses [22, 23, 25], when the change in
intensity of the reflected light is monitored, we can expect to have a large figure
of merit (FOM) of sensitivity by intensity for a sharp Fano resonance; sharper the
resonance, larger the FOM. Although the ultimate enhancement in the sensitivity is
determined by the material parameters, in particular the imaginary part of dielectric
constant of the waveguide [29], the FOM of sensitivity for an optimized structure
is predicted to be enhanced by several orders of magnitude compared to that of
the conventional SPR sensor. Numerical results reported in [23, 25] also suggest
giant enhancements of electric fields at the waveguide surface under the Fano res-
onance condition. The enhanced electric fields can be used to enhance Raman and
fluorescence signals from molecules adsorbed on the surface. In the metal-enhanced
fluorescence spectroscopy, the fluorescence ofmolecules located very close themetal
surface (within ∼10 nm) is quenched due to the energy transfer from the molecules
to the metal and a spacer layer is indispensable to place target molecules away from
the metal surface. In contrast, using the multilayer Fano structures, we can avoid
the fluorescence quenching, because the molecules placed on the waveguide surface
are far from the metal surface. Experimental evidences for the high FOM of sensor
sensitivity and the high enhancement of optical signals have not yet been reported.
Further extensive experimental and theoretical studies on the metal-dielectric Fano
structures toward their real applications are highly required.

Acknowledgements This work was supported in part by JSPS KAKENHI Grant Number
16K04979.

References

1. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)
2. B. Luk’yanchuk, N.I. Zheludev, S.A.Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong,

Nat. Mater. 9, 707 (2010)
3. N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Chem. Rev. 111, 3913 (2011)
4. A.B. Khanikaev, C. Wu, G. Shvets, Nanophotonics 2, 247 (2013)
5. M. Rahmani, B. Luk’yanchuk, M. Hong, Laser Photonics Rev. 7, 329 (2013)
6. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Nat. Photonics 11, 543 (2017)
7. A. Christ, Y. Ekinci, H.H. Solak, N.A. Gippius, S.G. Tikhodeev, O.J.F. Martin, Phys. Rev. B

76, 201405(R) (2007)
8. J.B. Lassister, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Nano

Lett. 10, 3184 (2010)
9. J.B. Lassister, H. Sobhani,M.W.M.W.S. Knight, P. Nordlander, N.J. Halas. Nano Lett. 12, 1058

(2011)
10. S.N. Sheikholeslami, A. Garcia-Extarri, J.A. Dionne, Nano Lett. 11, 3927 (2011)
11. W.S. Chang, J.B. Lassister, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N.J. Halas, S.

Link, Nano Lett. 12, 4977 (2012)
12. Z.J. Yang, Q.Q. Wang, H.Q. Lin, Appl. Phys. Lett. 103, 111115 (2013)
13. Y. Sonnerfraud, N. Verellen, H. Sobhani, G.A.E. Vandenbosch, V.V. Moshchalkov, P.V. Dorpe,

P. Nordlander, S.A. Maier, ACS Nano 4, 1664 (2010)



260 S. Hayashi et al.

14. Y.H. Fu, J.B. Zhang, Y.F. Yu, B. Luk’yanchuk, ACS Nano 6, 5130 (2012)
15. J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, Y. Wu, Plasmonics 9, 1439

(2014)
16. J. Qi, C. Z., J. Chen, Y. Li, W. Qiang, J. Xu, Q. Sun. Opt. Express 22, 14688 (2014)
17. Y. Cui, J. Zhou, V.A. Tamma, W. Park, ACS Nano 6, 2385 (2012)
18. S.H. Mousavi, I. Kholmanov, K. Alici, D. Purtseladze, N. Arju, K. Tatar, D.Y. Fozdar, J.W.

Suk, Y. Hao, A.B. Khanikaev, R. Ruoff, G. Shvets, Nano Lett. 13, 1111 (2013)
19. N. Dabidian, I. Kholmanov, A. Khanikaev, K. Tatar, S. Trendafilov, S.H. Mousavi, C. Magnu-

son, R.S. Ruoff, G. Shvets, ACS Photonics 2, 216 (2015)
20. F. Zhang, X. Hu, C. Wu, H. Yang, Q. Gong, Appl. Phys. Lett. 105, 181114 (2014)
21. W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, J. Li, Appl. Phys. Lett. 107, 171109 (2015)
22. S. Hayashi, D.V. Nesterenko, Z. Sekkat, Appl. Phys. Express 8, 022201 (2015)
23. S. Hayashi, D.V. Nesterenko, Z. Sekkat, J. Phys. D Appl. Phys. 48, 325303 (2015)
24. S. Hayashi, D.V. Nesterenko, A. Rahmouni, Z. Sekkat, Appl. Phys. Lett. 108, 051101 (2016)
25. D.V. Nesterenko, S. Hayashi, Z. Sekkat, J. Opt. 18, 065004 (2016)
26. Z. Sekkat, S. Hayashi, D.V. Nesterenko, A. Rahmouni, S. Refki, H. Ishitobi, Y. Inouye, S.

Kawata, Opt. Express 24, 20080 (2016)
27. S. Hayashi, D.V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, Sci. Rep. 6,

33144 (2016)
28. S. Hayashi, D.V. Nesterenko, A. Rahmouni, Z. Sekkat, Phys. Rev. B 95, 165402 (2017)
29. S. Hayashi, U. Fujiwara, B. Kang, M. Fujii, D.V. Nesterenko, Z. Sekkat, J. Appl. Phys. 122,

163103 (2017)
30. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, 1999)
31. C.E. Reed, J. Giergiel, J.C. Hemminger, S. Ushioda, Phys. Rev. B 36, 4990 (1987)
32. C.C. Katsidis, D.I. Siapkas, Appl. Opt. 41, 3978 (2002)
33. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and onGratings, Springer Tracts

in Modern Physics, vol. 111 (Springer, 1988)
34. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83, 235427 (2011)
35. B. Gallinet, O.J.F. Martin, ACS Nano 5, 8999 (2011)
36. D.V. Nesterenko, S. Hayashi, Z. Sekkat, Phys. Rev. B 97, 235437 (2018)
37. Z. Sekkat, W. Knoll, Photoreactive Organic Thin Films (Academic, New York, 2002)
38. Z. Sekkat, M. Dumont, Appl. Phys. B 53, 121 (1991)
39. M.Dumont, D.Morichère, Z. Sekkat, Y. Levy, in SPIEVol. 1559PhotopolymerDevice Physics,

Chemistry, andApplications II (SPIE-The International Society forOptical Engineering, 1991),
p. 127

40. Z. Sekkat, D. Morichère, M. Dumont, R. Loucif-Saïbi, J.A. Delaire, J. Appl. Phys. 71, 1543
(1992)

41. Z. Sekkat, M. Dumont, Synth. Metals 54, 373 (1993)
42. Z. Sekkat, M. Dumont, Appl. Phys. B 54, 486 (1992)
43. R. Loucif-Saïbi, K. Nakatani, J.A. Delaire, M. Dumon, Z. Sekkat, Chem. Mater. 5, 229 (1993)
44. G. Kleideiter, Z. Sekkat, M. Kreiter, M. Dieter Lechner, W. Knoll. J. Mol. Struct. 521, 167

(2000)
45. M. Maeda, H. Ishitobi, Z. Sekkat, S. Kawata, Appl. Phys. Lett. 85, 351 (2004)
46. J. Homola, Chem. Rev. 108, 462 (2008)



Chapter 11
Study of Fano Resonance in the
Core-Level Absorption Spectrum
in Terms of Complex Spectral Analysis

Satoshi Tanaka, Taku Fukuta and Tomio Petrosky

Abstract Westudy theoretically the core absorption spectrumof an impurity embed-
ded in a tight-binding chain in terms of complex spectral analysis. The absorption
spectral profile associatedwith the resonance states in principle exhibits an asymmet-
ric Fano-type structure, even without apparent multiple interference transition paths.
The asymmetric Fano absorption profile is attributed to the complex-valued oscilla-
tor strength of the transition to the resonance state belonging to the extended Hilbert
space. The boundary condition on the continuum causes a large energy dependence
of the self-energy, so that it enhances the nonlinearity of the eigenvalue problem of
the effective Hamiltonian, yielding several non-analytic resonance states. The opti-
cal transitions to these resonance states constitute the overall absorption spectrum
structure.

11.1 Introduction

Optical absorption spectroscopy is a fundamental tool to experimentally observe an
elementary excitation of a material, where the absorption peak energy and spectral
width, respectively, correspond to the excitation energy and the damping constant.
Lorentz oscillator model has been well known as a classical model to interpret the
absorption spectrum as a sum of induced independent oscillators with real-valued
oscillator strengths for the excitations [1]. When a discrete excited state is energet-
ically isolated from the others, the absorption peak corresponding to the excitation
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shows a distinct Lorentzian peak, but when several excited states are interacting with
each other, it sometimes becomes difficult to interpret the spectrum with the simple
Lorentz oscillator model.

A typical example of a deviation from the Lorentz oscillator model is the Fano
effect, where the absorption spectrum shows a characteristic asymmetric spectral
profile first observed in the photoionization of a Helium atom [2–4]. Fano gave
an interpretation to the absorption spectrum in terms of the quantum interference
between the transition paths of the direct photoionization and the ionization via a
resonance state [3, 4] and derived a general formula, known as Fano-profile for
the absorption spectrum. Since then, the effect has been paid much attention as a
manifestation of the quantum interference and has been found in various systems,
such as in atomic physics, nuclear physics, condensed matter physics, circuits, and
mesoscopic systems, and so on [5–8].

As the degrees of freedom of a matter increases, it becomes difficult to reveal
the elementary excitations inherent to the matter from the analysis of the absorption
spectrum. Especially, when discrete states are resonant with a continuum, causing the
decaying process that is a prerequisite for the Fano effect, we cannot find an eigen-
mode corresponding to the decaying state within the ordinary quantum mechanics
formulated in the Hilbert space. Therefore, there seems no way to make a direct
correspondence of the spectral structure to the intrinsic elementary excitation of the
system.

Meanwhile, a new field of the quantum mechanics is arising to expand the realm
of the quantum mechanics to interpret an irreversible decay process based on the
quantum theory. Such extensions of quantum mechanics have used a phenomeno-
logical non-Hermitian effective Hamiltonian, revealing that if we weaken the stan-
dard requirement of Hermiticity, the effective Hamiltonian may take the complex
eigenvalues [9–15].

Instead of phenomenological methods, a non-Hermitian effective Hamiltonian
has been derived from the microscopic total (Hermitian) Hamiltonian with use of
the Brillouin-Wigner-Feshbach projection operator method (BWFmethod) [14–19],
where the detailed information about the microscopic interaction with the environ-
ment is renormalized into the self-energy. Prigogine and one of the authors (T. P.) et
al. have clarified that the eigenvalues of the effectiveHamiltonian coincidewith those
of the total Hamiltonian when we correctly take into account the energy dependence
of the self-energy in the effective Hamiltonian. Then the total Hermitian Hamiltonian
can have complex eigenvalues for the resonance states in the extended Hilbert space,
where the Hilbert norm of the eigenvector vanishes [20–28]. It is important to note
that the complex eigenvalue problem of the effective Hamiltonian is nonlinear in the
sense that the effective Hamiltonian depends on its eigenvalue.

In this chapter, we present an interpretation of the optical absorption spectrum
in terms of the complex spectral analysis. We study the core-level absorption of an
impurity in a one-dimensional semiconductor superlattice. We show that we make a
correspondence of the absorption spectrum structures to the transitions to the discrete
resonance states with the complex eigenvalues.We reveal that the absorption spectral
structure due to the resonance state takes in principle an asymmetric Fano profile,
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reflecting the complex oscillator strength of the transition to the resonance state
belonging to the extended Hilbert space. Since this is the eigenstate representation
of the Hamiltonian, there is no ambiguity in the interpretation of the absorption
spectrum, avoiding the arbitrary interpretation of the quantum interference in terms
of a Hilbert space basis.

Also, we found out that introducing an infinite potential barrier at the end of the
chain causes a strong energy dependence of the self-energy, which strengthens the
nonlinearity of the complex eigenvalue problem of the effective Hamiltonian. As
a result, non-analytic resonance states appear in addition to a perturbative analytic
resonance state. We found that the transition to the non-analytic resonance state
exhibits a strong asymmetric Fano-type absorption structure.

The structure of this chapter is as follows. In Sect. 11.2, we study the core-level
absorption spectrum of an impurity atom in the infinite one-dimensional semicon-
ductor with a single intra-atomic transition taken into account. The model and the
complex spectral representation method are presented in Sect. 11.2.1. We analyze
the absorption spectrum in Sect. 11.2.2 with some calculated results. We study in
Sect. 11.3 the core-level optical absorption spectrum of an impurity in a semi-infinite
one-dimensional semiconductor. In Sect. 11.3.1 the model and the complex spectral
analysis are presented. In Sect. 11.3.2 the absorption spectrum is studied, where the
nonlinearity of the complex eigenvalue problem of the effective Hamiltonian plays
an important role in the absorption spectrum. We summarize in Sect. 11.4.

11.2 Absorption Spectrum in the Infinite Chain

In this section, we illustrate in terms of a simple physical system that the spectral
profile of the absorption transition to a resonance state shows a Fano-type asymmetric
profile representing the characteristics of the wavefunction belonging to the extended
Hilbert space. We shall show that even with only a single absorption transition path
without any interference we can obtain a Fano-type asymmetric profile.

11.2.1 Model and Complex Eigenvalue Problem

We consider the intra-atomic absorption transition in a two-level atom that is locally
coupled with a one-dimensional semiconductor superlattice by a tunneling interac-
tion as shown in Fig. 11.1a [24]. We describe the system by a one-dimensional single
impurity Fano-Anderson model with chain length Na, where a is a lattice constant
taken as the unit of length in this paper, andwith the nearest neighbor transfer integral
of −B/2, and N is the total number of sites in the chain. The energies of the ground
state |c〉 and the excited state |d〉 of the impurity, coupled to the central site n = 0, are
denoted by Ec and Ed , respectively. Then the Hamiltonian of the electronic system
reads
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Fig. 11.1 The model of a
two level-impurity atom
embedded in
one-dimensional
semiconductor superlattice:
The impurity is located at the
central site of an infinite
chain (a), and it is located at
the n0-th site of a
semi-infinite chain (b)

(b)
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µT dc
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gV

µT dc

−B/ 2

Ĥ = Ec|c〉〈c| + Ed |d〉〈d| − B

2

N/2−1∑

n=−N/2

(|n + 1〉〈n| + H.c.) + gV
(|0〉〈d| + H.c.

)

= Ec|c〉〈c| + Ĥe , (11.1)

where V is the tunneling interaction between the excited state of the impurity |d〉
and the |0〉th site state of the chain with the dimensionless coupling constant g.

By using the wave number representation of

|k〉 ≡ 1√
N

N/2−1∑

n=−N/2

exp[ikn]|n〉 , (11.2)

Ĥe in (11.1) reduces to

Ĥe = Ed |d〉〈d| +
∑

k

Ek |k〉〈k| + gV√
N

∑

k

(|k〉〈d| + H.c.
)

, (11.3)

where the energy dispersion of the continuum is given by

Ek = −B cos k . (11.4)

In the limit N → ∞, k becomes a continuous variable for −π ≤ k ≤ π. Hereafter,
we take the half bandwidth as an energy unit, i.e. B = 1. The density of states of the
continuum is given by
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ρ(E) = 1

π

1√
1 − E2

, (11.5)

with a divergent Van Hove singularity at the band edges E = ±1 [26]. As will be
shown later, this singularity influences the absorption profile.

We consider the complex eigenvalue problem of Ĥe in the extended Hilbert space
by using the BWF method [16]. The right- and left-eigenvalue problems read

Ĥe|φξ〉 = zξ|φξ〉 , 〈φ̃ξ|Ĥe = zξ〈φ̃ξ| , (11.6)

where the subscripts ξ denote the eigenstates of the bound states, the discrete reso-
nance states, or the continuous state.

The projection operator P̂ onto the excited state |d〉 of the impurity and its com-
plement Q̂ are defined by

P̂ (d) ≡ |d〉〈d| , Q̂(d) ≡ 1 − P̂ (d) =
∑

k

|k〉〈k|. (11.7)

By acting with P̂ (d) and Q̂(d) onto the right-eigenvalue problem, we have

Ed〈d|φξ〉 + gV√
N

∑

k

〈k|φξ〉 = zξ〈d|φξ〉 , (11.8a)

gV√
N

〈d|φξ〉 + Ek〈k|φξ〉 = zξ〈k|φξ〉 . (11.8b)

Substituting (11.8b) into (11.8a) yields the complex eigenvalue problem of the effec-
tive Hamiltonian Ĥeff(z) as

Ĥeff(zξ)〈d|φξ〉 = zξ〈d|φξ〉 , (11.9)

where the scalar effective Hamiltonian is defined by

Ĥeff(z) = Ed + g2V 2

N

∑

k

1

z − Ek
. (11.10)

It should be noted that the effective Hamiltonian itself depends on the eigenvalue. In
this sense, the eigenvalue problem becomes nonlinear [20, 28].

The eigenvalues are obtained by non-perturbatively solving the dispersion equa-
tion z = Ĥeff(z) in the limit N → ∞:

zξ = Ed + g2�+(zξ) , (11.11)
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where the self-energy �+(z) is explicitly represented by [24, 26]

�+(z) =
π∫

−π

dk
V 2

(z − Ek)+
= V 2

√
z2 − 1

. (11.12)

The + symbol in the integrand denotes the analytic continuation from the upper
half plane through the branch cut. Substituting (11.12) into (11.11), the dispersion
equation reduces to a fourth-order polynomial equation for zξ as

(zξ − Ed)
2(z2ξ − 1) = g4V 4 . (11.13)

In Fig. 11.2a, b, respectively, we show the real and imaginary values of the four
solutions as a function of Ed , the two of which are localized bound states with real
eigenvalues appearing above and below the continuum and the other two are the
resonance and anti-resonance states with complex conjugate eigenvalues. For later
use, we denote the eigenvalue of the resonance state as

zd(Ed) = εd(Ed) − iγd(Ed) . (11.14)

Fig. 11.2 The real (a) and
the imaginary parts (b) of the
solutions of the dispersion
equation of (11.13) as a
function of Ed for g = 0.2.
The complex eigenvalue of
the resonance state is drawn
by the solid line, while the
two bound states in the first
Riemann sheet are denoted
by the dashed lines. The
arrows indicate the
exceptional points where the
resonance and anti resonance
state pairs are coalesced to
be the so-called virtual
bound states in the second
Riemann sheet drawn by the
dotted lines [32]

(a)

(b)
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The arrows in the figures indicate the exceptional points at |Ed | = Eγ where the
resonance and antiresonance states coalesce together, which is known as an excep-
tional point [13, 14, 29, 30]. The exceptional point Eγ is given by the non-analytic
expansion in terms of g [24, 29]:

Eγ = 1 + 3g4/3

2
− g8/3

8
+ O(g12/3) . (11.15)

For |Ed | > Eγ , the resonance and anti-resonance states become the so-called virtual
bound states (or anti-bound) on the real axis in the second Riemann sheet drawn by
the dotted lines in Fig. 11.2a [31, 32].

The right-resonance state is obtained as [20]

|φd〉 = 〈d|φd〉
(

|d〉 + gV√
N

∑

k

1

(z − Ek)
+
z=zd

|k〉
)

, (11.16)

where the + sign in the denominator in the second term represents the analytic
continuation of z → zd from the upper half plane in the limit N → ∞. The left-
resonance state is similarly obtained as

〈φ̃d | = 〈φ̃d |d〉
(

〈d| + gV√
N

∑

k

1

(z − Ek)
+
z=zd

〈k|
)

. (11.17)

It should be emphasized that since the analytic continuations are taken to the same
direction in |φd〉 and 〈φ̃d | the Hermite conjugate of |φd〉 does not coincide with the
left-resonance state 〈φ̃d |:

〈φ̃d | 	= 〈φd | . (11.18)

The normalization constant Nd ≡ 〈d|φd〉〈φ̃d |d〉 is determined from the condition
〈φ̃d |φd〉 = 1 to give

Nd = 〈d|φd〉〈φ̃d |d〉 =
(
1 − g2

d

dz
�+(z)

∣∣∣
z=zd

)−1

. (11.19)

We differentiate (11.11) with respect to Ed to find

(
1 − g2

d

dzd
�+(zd)

)
d

dEd
zd(Ed) = 1 , (11.20)

where zd(Ed) is a solution of (11.11) for the resonance state [27].With use of (11.19)
and (11.20), we find the relation of
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d

dEd
zd(Ed) = Nd . (11.21)

Note that the normalization constant Nd is in general a complex number, contrary
to the ordinary case in which 〈d|ψ〉〈ψ|d〉 = |〈d|ψ〉|2 is necessarily real and positive
for a Hilbert space vector |ψ〉.

The continuous right-eigenstate |φk〉 and left-eigenstate 〈φ̃k | are similarly obtained
[20]. Using the contour deformation method [20, 33], the bi-completeness relation
can be proved as

2∑

i=1

|φi 〉〈φi | + |φd〉〈φ̃d | +
∑

k

|φk〉〈φ̃k | = 1 , (11.22)

where |φi 〉 (i = 1, 2) indicate the two bound states belonging to the Hilbert space,
|φd〉 (〈φ̃|) is the resonance state belonging to the extended Hilbert space, and |φk〉
(〈φ̃k |) are the continuous states.

11.2.2 Absorption Spectrum

Now we consider the absorption spectrum of the intra-atomic transition of the impu-
rity atom. Using the dipole transition approximation under the rotating wave approx-
imation, the photon-atom interaction is given by

T̂ ≡ μ
(
Tdc|d〉〈c| + H.c.

)
, (11.23)

where μTdc is coupling strength and μ is a dimensionless coupling constant.
For μ 
 1, the absorption spectrum is given by [5, 24]

F(ω) ≡ − 1

π
lim

ε→+0
Im〈c|T̂ 1

� + Ec − Ĥ + iε
T̂ |c〉 + O(μ4) , (11.24)

where � is the incident photon frequency. Hereafter, we consider the spectrum up to
O(μ2) and define a shifted photon frequency as ω ≡ � + Ec.

Substituting (11.23) in (11.24), we have

F(ω) = −μ2|Tdc|2
π

lim
ε→+0

Im Gdd(ω + iε) , (11.25)

where the Green’s function is defined by

Gdd(z) ≡ 〈d| 1

z − Ĥe

|d〉 . (11.26)
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Using the bi-completeness (11.22), the Green’s function (11.26) is decomposed to
the discrete state component and the continuum component, which gives the absorp-
tion spectrum (11.25) as

F(ω) = −μ2|Tdc|2
π

lim
ε→+0

Im
{ 2∑

i=1

|〈d|φi 〉|2
ω − Ei + iε

+ 〈d|φd 〉〈φ̃d |d〉
ω − zd + iε

+
∑

k

〈d|φk〉〈φ̃k |d〉
ω − Ek + iε

}
,

(11.27)

where the integrated intensity is normalized as

1

μ2|Tdc|2
∞∫

−∞
dωF(ω) = 1 . (11.28)

The first term of (11.27) is attributed to the two bound states which gives a delta-
function peak with the intensities of |〈d|φi 〉|2 at ω = Ei (i = 1, 2). In this paper
we are concerned with the absorption spectrum for the resonance states and the
continuum represented by the second line of (11.27):

f (ω) ≡ − 1

π
lim

ε→+0
Im

{ 〈d|φd〉〈φ̃d |d〉
ω − zd + iε

+
∑

k

〈d|φk〉〈φ̃k |d〉
ω − Ek + iε

}
(11.29a)

≡ fr (ω) + fc(ω) , (11.29b)

where fr (ω) and fc(ω) are the resonance state contribution and the continuous state
contribution, respectively. We can regard the numerators in (11.29a) as the complex-
valued oscillator strengths to the resonance state and the continuous state. Note
that the complex-valued oscillator strength 〈d|φd〉〈φ̃d |d〉 has given in (11.19) as the
normalization constant.

The integrated intensity of f (ω) is given by

I f ≡
∞∫

−∞
dω f (ω) = 1 −

2∑

i=1

|〈d|φi 〉|2 . (11.30)

and the integrated area of fr (ω) is given by

∞∫

−∞
dω fr (ω) = Re〈d|φd〉〈φ̃d |d〉 = ReNd , (11.31)

where we have used (11.19).
We show in Fig. 11.3a the ratio of the resonance state contribution to the integrated

area, ReNd/I f , as a function of Ed for g = 0.2. It is found that the resonance state
contribution is dominant for the region except for the continuum threshold.
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Fig. 11.3 The ratio of the
resonance state contribution
to the integrated area,
ReNd/I f (a) and the
asymmetry of the absorption
profile a(Ed , g) (b) as a
function of Ed for g = 0.2

(a)

(b)

As mentioned in (11.21), since the normalization constantNd is a complex num-
ber, we decompose fr (ω) as

fr (ω) = − 1

π

{
γd ReNd

(ω − εd)2 + γ2
d

+ (ω − εd) ImNd

(ω − εd)2 + γ2
d

}
(11.32a)

≡ f Sr (ω) + f Ar (ω) , (11.32b)

where ReNd causes a symmetric Lorentzian profile, while ImNd causes the Fano-
type asymmetric spectral profile. The asymmetry is evaluated by the ratio of

a(Ed , g) ≡ ImNd

ReNd
=

d
dEd

Imzd(Ed)

d
dEd

Rezd(Ed)
= − d

dEd
γd(Ed)

d
dEd

εd(Ed)
. (11.33)

where we have used (11.14) and (11.21).
The behavior of a(Ed , g) as a function of Ed for g = 0.2 is shown in Fig. 11.3b.

Since γd(Ed) takes extremal at Ed = 0 and Ed � ±1 as seen in Fig. 11.2b, a(Ed , g)
vanishes at these points. The a(Ed , g) takes extremal at |Ed | � 0.89 and diverges at
the exceptional point, Ed = Eγ given in (11.15).

This characteristic feature of the wavefunction of the resonance state is well
reflected in the absorption spectrum. We show in Fig. 11.4 the absorption spectrum
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Fig. 11.4 The absorption
spectrum f (ω) for
Ed = −0.6 and g = 0.2.
a The total spectrum f (ω),
the resonance state
contribution fr (ω), and the
continuous state contribution
fc(ω) are drawn by the thick
solid, the thin solid, and the
dashed lines, respectively. b
The decomposition of fr (ω)

(thin solid line) to f Sr (ω)

(dashed line) and f Ar (ω)

(dotted line)

(a)

(b)

f (ω) when the impurity state energy Ed is well into the continuum for Ed = −0.6
and g = 0.2. In Fig. 11.4a, we have shown the resonance state contribution fr (ω),
the continuous state contribution fc(ω) by the thin solid and the dashed lines, respec-
tively, in addition to the total spectrum f (ω) by the thick solid line. It is found that
the total spectrum f (ω) is mostly determined by fr (ω). In Fig. 11.4b, we further
decompose fr (ω) (thin solid line) into f Sr (ω) (dashed line) and f Ar (ω) (dotted line).
The resonance state contribution fr (ω) is composed of f Sr (ω), and the contribution
of f Ar (ω) is very small. Therefore the absorption spectral profile is almost symmetric
Lorentzain with its peak and the width representing the energy and the damping of
the resonance state, respectively.

As Ed comes close to the band edge, f Ar (ω) becomes prominent. In Fig. 11.5, we
show the absorption spectrum for Ed = −0.89 where a(Ed , g) takes the maximal
value. As seen in Fig. 11.5b, f Ar (ω) becomes significant which deviates the reso-
nance state contribution from a symmetric Lorentzian. Even so, the continuous state
contribution fc(ω) significantly contributes to the total absorption spectrum f (ω)

on its lower energy side, which obscures the effect of the asymmetry, as shown in
Fig. 11.5a.

We also show in Fig. 11.6 the absorption spectrum for Ed = −1.10, where the
resonance state is the non-analytic solution of the dispersion equation. In this case,
since a(Ed; g) takes a large negative value, the resonance contribution largely dis-
torts the absorption spectrum from Lorentzian as shown in Fig. 11.6b. However, the
continuous state contribution becomes large at the same time, so that the resonance
state contribution is not dominant contribution to the spectrum, as seen in Fig. 11.6a.
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Fig. 11.5 The absorption
spectrum f (ω) for
Ed = −0.89 and g = 0.2.
a The total spectrum f (ω),
the resonance state
contribution fr (ω), and the
continuous state contribution
fc(ω) are drawn by the thick
solid, the thin solid, and the
dashed lines, respectively. b
The decomposition of fr (ω)

(thin solid line) to f Sr (ω)

(dashed line) and f Ar (ω)

(dotted line)

(a)

(b)

Fig. 11.6 The absorption
spectrum f (ω) for
Ed = −1.10 and g = 0.2.
a The total spectrum f (ω),
the resonance state
contribution fr (ω), and the
continuous state contribution
fc(ω) are drawn by the thick
solid, the thin solid, and the
dashed lines, respectively. b
The decomposition of fr (ω)

(thin solid line) to f Sr (ω)

(dashed line) and f Ar (ω)

(dotted line)

(a)

(b)
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11.3 Absorption Spectrum in the Semi-infinite Chain

In the previous section, we have shown that a Fano-type asymmetry in the absorption
spectrum represents a characteristic feature of the resonance state belonging to the
extended Hilbert space. Even though this asymmetry is enhanced when the bare
impurity state energy is close to the band threshold, this effect is overwhelmed by
the continuous state contributions.

In this section, we show that a boundary condition on the chain leads to a large
energy dependence of the self-energy within the continuum. Therefore the complex
eigenvalue problem of the effective Hamiltonian becomes highly nonlinear so that
more non-analytic resonance states appear as the distance between the impurity and
the potential wall increases. As a result, the absorption spectrum of the transitions
to the resonance state, especially to the non-analytic resonance states, show a large
Fano-type asymmetry even in the case where the bare impurity state energy is well
inside the continuum. We shall show in this section that the transitions to these
discrete resonance states determine the overall spectral feature.

11.3.1 Model and Complex Eigenvalue Problem

We consider a semi-infinite one-dimensional semiconductor superlattice described
by a tight-binding model with an infinite potential wall at the end of the chain, as
shown in Fig. 11.1b. We place the same two-level impurity atom as considered in the
previous section located at the n0th site distance from the boundary. TheHamiltonian
reads

Ĥ = Ec|c〉〈c| + Ed |d〉〈d| − B

2

N∑

n=1

(|n + 1〉〈n| + H.c.) + g
(
V |n0〉〈d| + H.c.

)
,

= Ec|c〉〈c| + Ĥe , (11.34)

where Ĥe represents the Hamiltonian for the high energy states consisting of |d〉 and
the continuum, as in (11.1). The eigenmodes of the continuous state in terms of the
wavenumber representation is given by

|k〉 ≡
√

2

N

N∑

n=−1

sin(kn)|n〉 , (11.35)

which leads the Hamiltonian Ĥe to

Ĥe = Ed |d〉〈d| +
∑

k

Ek |k〉〈k| + g
2√
N

∑

k

(
Vk |k〉〈d| + H.c.

)
, (11.36)
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with the same energy dispersion as (11.4). An important difference from the
infinite chain system of (11.3) is that the interaction potential depends on the
wavenumber as

Vk = V sin(n0k) . (11.37)

Then the self-energy is given by

�+(z) =
π∫

−π

dk
V 2 sin2(n0k)

z − Ek
(11.38a)

= V 2

√
z2 − 1

{
1 −

(
−z +

√
z2 − 1

)2n0
}

. (11.38b)

Because of the energy dependence, the complex eigenvalue problem of the effective
Hamiltonian (11.9) becomes highly nonlinear.

The dispersion equation for the complex eigenvalue problem of the effective
Hamiltonian (11.9) reads

z = Ed + g2
V 2

√
z2 − 1

{
1 −

(
−z +

√
z2 − 1

)2n0
}

. (11.39)

This dispersion equation turns out to be the 2n0th order polynomial equation with
the solutions of the (n0 − 1) resonance-and-anti-resonance-states pairs and the two
bound states. It should be noted that imposing the boundary on the chain gives
rise to the several discrete resonance (antiresonance) states even with the single
impurity state placed in the chain. The numbers of the resonance (antiresonance)
states increases as n0 increases.

In terms of these discrete eigenstates in addition to the continuous eigenstates of
Ĥe, the bi-completeness is given by

∑

i∈RI

|φi 〉〈φi | +
n0−1∑

α=1

|φα〉〈φ̃α| +
∑

k

|φk〉〈φ̃k | = 1 , (11.40)

where the first, the second, and the third terms represent the bound states with the real
energies in the first Riemann sheet, the resonance states with the complex energies
in the second Riemann sheet, and the continuous states with the real energies on the
real axis, respectively. The difference from (11.22) is in the second term, where the
summation for the (n0 − 1) resonance states are taken.

We show the real and the imaginary parts of the eigenvalues as a function of
Ed for g = 0.2 and n0 = 4 in Fig. 11.7a, b, respectively, where the thin line also
shows the unperturbed impurity energy Rez = Ed . There are three resonance states
numbered by (i) to (iii) in Fig. 11.7, where we see the real parts of the resonance states
repelling each other, while the imaginary parts are crossing each other as Ed changes.
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Fig. 11.7 The eigenvalues
as a function of Ed for
g = 0.2 and n0 = 4 as a
function of Ed : The real part
(a) and the imaginary part
(b). The solid curves
represent the resonance and
anti-resonance state pairs:
the three pair of the states are
denoted by (i), (ii), and (iii).
The dashed curves represent
the bound state in the first
Riemann sheet, while the
dotted curves the bound state
in the second Riemann sheet
known as the virtual bound
state. The thin line represent
the bare impurity state
energy Ed

(a)

(b)

At Ed = ±2/3, 0, the imaginary part of one of these resonance states vanishes to
be a bound state with no decay. This is known as the bound state in continuum
(BIC) [34].

Note that there exist the two resonance states with the large decay rates −Imz 
g2 in addition to the ordinary resonance states, as a result of the nonlinearity of the
eigenvalue problem of the effective Hamiltonian. They are numbered by (i) and (iii)
for Ed < −2/3 and (ii) and (iii) for −2/3 ≤ Ed < 0, as shown in Fig. 11.7. Those
resonance states cannot be obtained by the perturbation method so that they are
non-analytic for g.

11.3.2 Absorption Spectrum

With use of the bi-completeness of (11.40), the absorption spectrum is given by
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f (ω) = F(ω)

μ2|Tdc|2 = − 1

π
lim

ε→+0
Im

{∑

i∈RI

|〈d|φi 〉|2
ω − Ei + iε

+
n0−1∑

α=1

〈d|φα〉〈φ̃α|d〉
ω − zα + iε

+
∑

k

〈d|φk〉〈φ̃k |d〉
ω − Ek + iε

}
. (11.41)

It will be shown that the absorption spectrum in the range of the continuum,
f (ω | − 1 < ω < 1), is mainly determined by the resonance state contribution

fr (ω) ≡ − 1

π
lim

ε→+0
Im

n0−1∑

α=1

〈d|φα〉〈φ̃α|d〉
ω − zα + iε

≡
n0−1∑

α=1

fr,α(ω) . (11.42)

Each term of fr,α(ω) is further decomposed to the symmetric part f Sr,α(ω) and asym-
metric part f Ar,α(ω):

fr,α(ω) = − 1

π

{
γα ReNα

(ω − εα)2 + γ2
α

+ (ω − εα) ImNα

(ω − εα)2 + γ2
α

}

≡ f Sr,α(ω) + f Ar,α(ω) . (11.43)

Fig. 11.8 Absorption
spectrum f (ω) for various
values of Ed
(= −0.6 ∼ −0.1) for
g = 0.2, V = 1.0 and
Tdc = 1.0. The calculated
f (ω) for each Ed are thick
lines, the contribution of the
resonance states fr (ω) are
continuous lines and the
background integral fc(ω)

are dotted lines
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We show inFig. 11.8 the absorption spectra f (ω) for various values of Ed (−0.6 <

Ed < 0), where the spectral contributions of fr (ω) and fc(ω) are also shown. The
absorption profile is changed with Ed , reflecting the exchange of the characters of
the resonance states (i) and (ii) in Fig. 11.7. Note that the spectrum is primarily
determined by the resonance contribution fr (ω) as mentioned above.

In Fig. 11.9a, we show the three resonance state components of fr,α(ω) (α =
(i), (ii), (iii)) at Ed = −0.3. We see that the sum of fr,(i) and fr,(ii) (thin solid line)
almost determines the total spectrum f (ω) (thick solid line), where the main con-
tribution is due to fr,(i) (dashed line). On the other hand, fr,(ii) (dotted line) gives a
minor contribution and fr,(iii) (chain line) is negligibly small. In Fig. 11.9b, we have
decomposed the resonance state component of fr,(i) to the symmetric part f Sr,(i) and
the antisymmetric part f Ar,(i) shown with the dashed and dotted lines in the figures,
respectively. Compared to the infinite chain, the antisymmetric part prominently
causes the Fano-type absorption profile even when Ed is well inside the continuum.
As shown in Fig. 11.9c, this antisymmetric part for the resonance state component of

Fig. 11.9 The
decomposition of the
absorption spectrum for
Ed = −0.3. a Total
spectrum is thick line and the
resonance contribution fr (ω)

is continuous line. The
dashed line is an usual
resonance state component
fr,(i) and The dotted and
dot-dashed line are
non-perturbative resonance
components fr,(ii) and fr,(iii).
b, c The panels of (i) and (ii)
show the symmetric and
antisymmetric components
for the resonance state (i)
and (ii) in Fig. 11.7. The
contribution of the resonance
states fr (ω) is a thin solid
line and a dashed line and a
dotted line are the symmetry
term f Sr (ω) and
antisymmetry term f Ar (ω),
respectively

(a)

(b)

(c)



278 S. Tanaka et al.

fr,(ii) is more exaggerated, because the resonance state (ii) is the non-analytic state
obtained by the non-perturbative method.

Furthermore, the asymmetric part f Ar,(ii) takes the opposite sign to f Ar,(i). This
reflects the different signs of the derivatives of imaginary part of the eigenvalues of
(i) and (ii) at Ed : ∂E Imzα(E)|E=Ed . Note that the symmetric part of f Sr,(ii) is also
opposite to f Sr,(i). This reflects the different sign of the derivative of imaginary part of
the eigenvalues of (i) and (ii) at Ed : ∂ERezα(E)|E=Ed . Thus, the absorption profile
reflects the feature of the resonance states not only for the ordinary ones but also the
non-analytic states.

These asymmetric components become much more pronounced for the crossing
region of the resonance states of (i) and (ii) near Ed � −0.4 as shown in Fig. 11.7.
We have shown in Fig. 11.10a the three resonance state components of fr,α(ω) (α =
(i), (ii), (iii)) at Ed = −0.4. The decomposition to the symmetric part f Sr,(i,ii) and
the antisymmetric part f Ar,(i,ii) of the resonance state component of fr,(i) and fr,(ii)
are shown in Fig. 11.10b, c, respectively. As seen from Fig. 11.7b, ∂E Imzα(E)|E=Ed

Fig. 11.10 The
decomposition of the
absorption spectrum for
Ed = −0.4. a Total
spectrum is thick line and the
resonance contribution fr (ω)

is continuous line. The
dashed line is an usual
resonance state component
fr,(ii) and The dotted and
dot-dashed line are
non-perturbative resonance
components fr,(i) and fr,(iii).
b, c The panels of (i) and (ii)
show the symmetric and
antisymmetric components
for the resonance state (i)
and (ii) in Fig. 11.7. The
contribution of the resonance
states fr (ω) is a thin solid
line and a dashed line and a
dotted line are the symmetry
term f Sr (ω) and
antisymmetry term f Ar (ω),
respectively

(a)

(b)

(c)
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becomes large with opposite signs for both the resonance states of (i) and (ii) at Ed =
−0.4. Therefore, the two resonance state components almost equally contribute to
the absorption spectrum, and the antisymmetric part overwhelms the symmetric
part for both resonance states. As a sum of these spectral components, the total
absorption profile becomes broadened and largely deviates from a simple Lorentzian
profile. From this absorption profile, we can see that the resonance states are no more
ordinary perturbative resonance states but the non-analytic resonance states.

As Ed further decreases, the characteristics of the resonance states of (i) and (ii)
is exchanged as shown in Fig. 11.7. We show in Fig. 11.11 the absorption spectrum
at Ed = −0.5. The contributions of the resonance states of (i) and (ii) to the absorp-
tion spectrum is exchanged and the asymmetry of the absorption spectrum is about
opposite to those in Fig. 11.9 with respect to ω = −0.4.

Fig. 11.11 The
decomposition of the
absorption spectrum for
Ed = −0.5. a Total
spectrum is thick line and the
resonance contribution fr (ω)

is continuous line. The
dashed line is an usual
resonance state component
fr,(ii) and The dotted and
dot-dashed line are
non-perturbative resonance
components fr,(i) and fr,(iii).
b, c The panels of (i) and (ii)
show the symmetric and
antisymmetric components
for the resonance state (i)
and (ii) in Fig. 11.7. The
contribution of the resonance
states fr (ω) is a thin solid
line and a dashed line and a
dotted line are the symmetry
term f Sr (ω) and
antisymmetry term f Ar (ω),
respectively

(a)

(b)

(c)
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11.4 Summary

We have studied the core-level absorption of an impurity in a one-dimensional semi-
conductor superlatticewith the use of the complex spectral analysis.Wehave revealed
that the absorption spectral structure due to the resonance state takes in principle an
asymmetric Fano profile. This reflects the fact that the complex-valued oscillator
strength of the transition to the resonance state belonging to the extended Hilbert
space is a complex number. Since this is the eigenstate representation of the Hamil-
tonian, there is no ambiguity in the interpretation of the absorption spectrum, avoiding
the arbitrary interpretation of the quantum interference in terms of a Hilbert space
basis.

The introduction of an infinite potential barrier at the end of the chain causes a
strong energy dependence of the self-energy. This strengthens the nonlinearity of the
complex eigenvalue problem of the effectiveHamiltonian. As a result, in addition to a
perturbative analytic resonance state, there appear non-analytic resonance states. The
transition to the non-analytic resonance state exhibits a strong asymmetric Fano-type
absorption structure.

We would like to emphasize that the individual transitions have interpreted the
absorption spectrum to the discrete resonance states which are the intrinsic eigenstate
of the system. The idea is similar to the Bohr’s model of the quantum jump between
the discrete states of the matter for the photon emission. Our interpretation is the
extension of the quantum jump between the resonance states, where the interaction
with the decay processes is renormalized into the resonance states not only the
complex eigenvalues but also the wave function of the extended Hilbert space. It
is interesting to apply our method to interpret other optical spectroscopies, such as
resonance fluorescence, four-wave mixing, and so on.
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Chapter 12
Fano-resonances in High Index Dielectric
Nanowires for Directional Scattering

Peter R. Wiecha, Aurélien Cuche, Houssem Kallel, Gérard Colas des Francs,
Aurélie Lecestre, Guilhem Larrieu, Vincent Larrey, Frank Fournel,
Thierry Baron, Arnaud Arbouet and Vincent Paillard

Abstract High refractive index dielectric nanostructures provide original optical
properties thanks to the occurrence of size- and shape-dependent optical resonance
modes. Thesemodes commonly present a spectral overlap of broad, low-ordermodes
(e.g. dipolar modes) and much narrower, higher-order modes. The latter are usually
characterized by a rapidly varying frequency-dependent phase, which—in superpo-
sition with the lower order mode of approximately constant phase—leads to typi-
cal spectral features known as Fano resonances. Interestingly, such Fano resonances
occur in dielectric nanostructures of the simplest shapes. In spheroidal nanoparticles,
interference between broad magnetic dipole and narrower electric dipole modes can
be observed. In high aspect-ratio structures like nanowires, either the electric or the
magnetic dipolar mode (depending on the illumination conditions) interferes with
higher order multipole contributions of the same nature (electric or magnetic). Using
the analyticalMie theory,we analyze the occurrenceofFano resonances in high-index
dielectric nanowires and discuss their consequences like unidirectional scattering.
By means of numerical simulations, we furthermore study the impact on those Fano
resonances of the shape of the nanowire cross-sections as well as the coupling of two
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parallel nanowires. The presented results show that all-dielectric nanostructures, even
of simple shapes, provide a reliable low-loss alternative to plasmonic nanoantennas.

12.1 Introduction

Research on effects of light-matter interaction occurring at subwavelength dimen-
sions has been drawing increasing attention during the last three decades. When we
talk about subwavelength dimensions, at visible and near-infrared frequencies, we
find ourselves at the nanometer scale, a length-scale particularly interesting with
regards to applications in information processing and optical computing, single
molecule sensing or biomedicine, amongst many other domains. Most applications
rely on the possibility to strongly confine far-field radiation to deeply subwavelength
small volumes at resonant modes of specifically designed nanoparticles. Resonances
are either due to surface plasmons in the case of metals (field of plasmonics) or to
constructive optical interference in the case of dielectrics. Usually, all phenomena
can be described by classical electrodynamics, i.e. by the set of Maxwell’s equations
[68].

In the following, we will briefly describe the fields of plasmonic and high index
dielectric nanostructures, with a particular attention on their specificity and main
differences.

Then, in the other sections of this chapter, we will give an overview on Fano
Resonances in dielectric nanostructures, with an emphasis on directional scattering
as a result of Fano-like interference phenomena. In particular, we will present the so-
called Kerker’s conditions under which unidirectional scattering occurs in dielectric
spherical particles and extend the idea to cylinders. To substantiate the findings
on dielectric nanowires, we will compare experimental results to Mie theory and
numerical simulations.

Finally, we analyze the directional scattering behavior of nanowires with non-
symmetric cross-sections, as well as the case of a system of two coupled nanowires.

12.1.1 Plasmonics

One of the main driving forces in nano-optics is the field of plasmonics [65, 74].
Electromagnetic waves impinging on metals launch collective oscillations of the
free electrons in the conduction band of the metal. The dielectric constant of metals
is negative, leading to an imaginary wave vector. Fields are therefore evanescent
and confined within a small region at the surface, called the skin-depth. In conse-
quence, the collective oscillations of the electrons propagate along the surface and
are therefore called surface plasmon polaritons (SPP). In small metallic particles,
the propagation of SPPs is hindered due to the spatial confinement and localized
modes appear, so-called localized surface plasmon resonances (LSP).
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These confined plasmon oscillations allow to squeeze light into tiny volumes of
subwavelength size, far below the diffraction limit and yield extremely high local
field enhancements [94]. In the visible spectral range, this results in sizes of several
tenths to a few hundreds of nanometers for resonant metallic nanostructures. Such
plasmonic particles are often referred to as optical (nano-)antennas [74].

In the context on this chapter, we would like to mention a few selected examples
for applications of plasmonic nanostructures. Beyond the possibility to obtain strong
localized field intensities, plasmonic nanoantennas can be designed to provide direc-
tional scattering. This can be achieved for instance by tailoring plasmonic geometries
which provide a simultaneous electric and magnetic response [116]. With complex
structures like bimetallic antennas, wavelength selective directional color routing
can be obtained from individual nanoantennas [98]. Also the directional emission of
quantum emitters can be controlled using plasmonic antennas [12, 26, 46]. For an
extensive introduction on plasmonics, see e.g. [65].

12.1.2 High Refractive Index Dielectric Nano-particles

The focus of this chapter lies on a different kind of nano-antennas than the plasmonic
ones. Recently, dielectric nanostructures of high refractive index started drawing a
lot of attention as promising alternatives to metallic particles, since they offer in a
similar way tailorable optical resonances [53].

Even in very simple systems such as nanospheres [54], or cylindrical [20, 49] or
rectangular nanowires (NWs) [31], optical resonance modes can be tuned over (and
beyond) the whole visible spectral range. Flexible tailoring of the resonant behavior
can be achieved using dielectric nanostructures of more complex shapes [108].

A particular advantage of dielectric particles over metallic ones are their very
low losses [4, 17, 27]. This property is directly related to the generally low imag-
inary part of the dielectric function for wavelengths above the direct bandgap. It is
demonstrated in the upper spectra of Fig. 12.1a, b, where a gold and a silicon dimer
are compared in terms of scattering efficiency and dissipation. Although the electric
field-enhancement (as well as the confinement) is usually at least an order of mag-
nitude lower than for plasmonic antennas (see also Fig. 12.1a, b, lower spectra), the
reduced dissipative losses are a tremendous advantage and can be a decisive factor
in applications such as field enhanced spectroscopy [86, 106].

Another unique feature of dielectric nanoparticles is the possibility to obtain strong
magnetic resonances from geometries as simple as a sphere [32, 39, 40, 104]. In
contrast, plasmonics require complex geometries to obtain important magnetic reso-
nances [54] (see Fig. 12.1c, d). These magnetic-type resonances allow also to obtain
a strong enhancement of the magnetic near-field, which is usually significantly more
intense than the magnetic field intensity obtainable using metal nanostructures [4,
9, 70] (see Fig. 12.1a, b, bottom spectra). The magnetic resonances of dielectric
nanostructures can be exploited to enhance the decay rate of magnetic dipole tran-
sitions [10, 88, 93, 111]. While the optical magnetic near-field and the magnetic
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(a) (b)

(c) (d)

Fig. 12.1 Extinction and scattering efficiency spectra (top) as well as nearfield enhancement
(bottom: E-field: red, B-field: blue) in the gap of a a dimer of two silicon spheres with radius
R = 80nm and b a gold dimer of nano-spheres with R = 40nm. Gap is R/4 in both cases. Sizes
were chosen to obtain resonances around λ = 600 nm. Incident plane wave polarized along dimer
axis.Dimers are placed in vacuum.A sketch of themodel and numericalmesh used in the simulations
for the gold and silicon dimers is shown above the plots. c, d illustration of the mechanism for
obtaining strong magnetic fields in (c) plasmonics using a circular current density in a metal nano-
ring and (d) in dielectrics, occurring naturally via the curl of the electric displacement current in
geometries as simple as spheres (c, d reprinted by permission fromMacmillan Publishers Ltd from
[54], copyright 2012)

contribution to the local density of photonic states (LDOS) in the vicinity of nanos-
tructures can be probed using appropriate SNOM tips (gold-ring coated tips for sens-
ing the B-field [16, 28]; tips prepared with rare-earth-ion doped nano-crystals, e.g.
using Eu3+, for the magnetic LDOS [2, 23]), it is experimentally far more demand-
ing to access the intrinsic field enhancement. While no measurement was reported
in the visible regime, strong magnetic field enhancement in dielectric cylinders has
recently been experimentally demonstrated at THZ frequencies [51].

12.1.3 General Applications of Dielectric Nano-structures

High-index dielectric nanostructures are increasingly used in many nano-optical
applications, often—but not exclusively—as alternatives to their lossy plasmonic
equivalent.
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In perfect analogy to plasmonics, it is possible to design color filters [112] and
(color) holograms [58, 118] or to use dielectric nano-structures for “color-printing”
at the diffraction limit [37, 83].

Field-enhanced spectroscopy can evenmore benefit by replacing plasmonic-based
substrates with dielectric nanoantenna-based substrates for two main reasons. The
first reason is the prevention of the reabsorption of the generated fluorescence or
Raman signal that occurs in the metal nanostructures [17, 18, 43, 86, 106]. The
second reason is that heat generation can be almost completely suppressed using
dielectric nanoantennas, while plasmonic structures suffer from strong local heating
[4, 5]. This point is important to realize very sensitive biosensors [13], as a slight
increase of temperature can be fatal for fragile biomolecules or simply decrease the
luminescence intensity.

Further applications of photonic nano-particles based on dielectric materials can
be found in photovoltaics: The geometrical structure of the photovoltaic junction can
be shaped such that its absorption covers optimally the solar spectrum. It has been
shown that already simple geometries like nano-blocks or nanowires can significantly
improve the absorptive coverage of the solar spectrum, compared to two-dimensional
layers used in commercial photovoltaic cells [21, 50]. A different approach is to
design dielectric (low-loss) nano-antennas able to trap and redirect the incoming
solar light towards the classical (planar) photovoltaic junction [15, 82].

Finally, the strongfield enhancements occurring at the resonantmodes of dielectric
nanostructures can be used to promote nonlinear optical effects. For instance, it has
been shown that surface secondharmonic generation (SHG) canbe strongly enhanced
in dielectric nanoparticles [18, 60, 107, 109]. Also the third harmonic generation
(THG) can be significantly enhanced [69, 95] and its emission can be tailored [96,
105] in silicon nano-particles, by making use of their magnetic resonances. Even
ultrafast all-optical switching of the optical transmission has been demonstrated
using silicon nano-discs [97].

12.2 Fano Resonances and Kerker’s Conditions

Fano resonances occur due to the interference between two scattering amplitudes,
when a resonant state energetically lies in a background of continuous states. If
the scattering amplitudes of the resonance and the background are of comparable
magnitude, the cross section of the Fano resonance follows a very characteristic,
asymmetric lineshape. Although Ugo Fano originally considered the interference
between a single state with a continuum [36], very similar resonance profiles occur
if a narrow resonant state interferes with a significantly broader state. Such inter-
ference between two resonant states of similar amplitude but different linewidths
are nowadays often colloquially called Fano resonances. The Fano lineshape can be
written as
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σ(Er ) ∝ 1 + q2 + 2qEr − 1

1 + E2
r

(12.1)

with the reduced energy

Er = E − E0

Γ/2
, (12.2)

where E0 is the position of the resonance and Γ it’s spectral width. The amplitude
of the background state(s) is considered constant over the spectral range of the Fano
profile. q is called the Fano parameter, which corresponds to the ratio between the
resonance amplitude and the non-resonant background. Note that in the limit of a
very strong resonance on aweak background, (12.1) converges towards a Lorentzian.
On the other hand, for q ≈ 1 a strong interference between the resonance and the
background exists, which results in the typical line shapes. The cases q = 0.5, q = 1,
and q = 2 are shown in Fig. 12.2a.

For a detailed coupled mode theory of Fano resonances in optical resonators, see
also [35].

12.2.1 Fano in Nano-optics

Optical Fano resonances in photonic nanostructures allow to obtain anomalous, usu-
ally very sharp mode signatures in the scattering or extinction spectra. The most
prominent structure geometry which pronounces Fano-like mode profiles is the class
of oligomers: Ordered arrangements of several nano-particles. Tailorable Fano reso-
nances have been observed for example in dielectric oligomers. The resonances occur
as a result of an interference between the magnetic resonance of each individual con-
stitute and a collective magnetic response of the entire system and can be tailored
by the size and distance between the individual particles [47]. Also in plasmonic
oligomers Fano resonances occur, for instance due to interference between electric
and magnetic modes [8]. Using an asymmetric arrangement of plasmonic particles,
it is even possible to create an optical “Fano-switch” [24]: Via the polarization of the
incident light, the Fano resonance can be toggled on and off, as shown in Fig. 12.2b.

But Fano-like scattering profiles are not limited to complex geometrical arrange-
ments like the above mentioned oligomers. In fact, Fano resonances occur in very
simple systems such as individual, dielectric nanowires of rectangular cross-section
with relatively high aspect-ratio. Narrow Fano lineshapes appear in the scattering
spectra of such nanowires, at which the scattering rapidly drops, while absorption
strongly rises. This can be explained by a spectrally sharp guided mode along the
NW width, which interferes with a spectrally broad leaky mode resonance [34]. A
similar kind of Fano resonance due to the interference between guided modes (along
the NW axis) and Mie resonances has recently been described in short dielectric
nanowires [1]. For a detailed review on Fano resonances in photonics, we would like
to point to [59].
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(a)

(c)

(b)

Fig. 12.2 a Fano profiles for Fano parameters q = 0.5, q = 1 and q = 2. b Plasmonic “Fano
switch”, which allows to toggle the polarization dependent transmittance of a metallic structure
embedded in a liquid crystal via a switchable Fano resonance, reprinted with permission from [24].
Copyright 2012American Chemical Society. cDirectional resolved scattering spectra from a silicon
nano-sphere of radius R = 75 nm, reprinted by permission from Macmillan Publishers Ltd from
[38], copyright 2013

12.2.2 Kerker’s Conditions at Optical Frequencies

A special type of Fano resonance was studied by Kerker et al. in hypothetical
magneto-dielectric nanospheres, for which they found conditions at which exclu-
sive forward (FW) or backward (BW) scattering occurs [52]. Kerker et al. described
two possible configurations, called the Kerker’s conditions. The first Kerker’s con-
dition requires equal electric permittivity and magnetic permeability (εr = μr ), at
which zero-backward scattering occurs. The secondKerker’s condition predicts zero-
forward scattering if the first order magnetic Mie coefficient and first order electric
Mie coefficient are of equal value but of opposite sign (a1 = −b1).
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In contrast to particularly designed metamaterials [79], no known material in
nature has a direct response to rapidly oscillating magnetic fields. Hence, μr is
unitary in dielectric nano-particles. However, equally strong electric and magnetic
resonances can de-facto fulfill the first Kerker’s condition, if they overlap energeti-
cally [44, 75]. The second condition on the other hand contradicts the optical theorem
and is therefore unphysical. Nevertheless, almost zero-forward scattering can still be
achieved, however scattering efficiencies are in that case usually considerably lower
compared to the first Kerker’s condition (zero-backward scattering) [7, 75, 110].

Note that, although the Kerker’s conditions were originally derived for spherical
particles, it has been shown later that they have their origin in a cylindrical symmetry
and can hence be generalized to particles of cylindrical symmetry, excited along their
long axis [117].

12.2.3 Directional Scattering From Nanoparticles

Directional Scattering from Nanospheres and Small Particles

The possibility to de facto fulfill the Kerker’s conditions at visible wavelengths for
unidirectional forward and backward scattering has been first discussed around 2010
for spherical high refractive index dielectric nanoparticles (silicon or germanium)
[39, 44, 75]. For instance, spectra showing the directional scattering of light from
an individual silicon nanosphere are presented in Fig. 12.2c. It turned out that the
directionality of light scattering occurs in many kinds of dielectric nanoparticles,
like individual nanocubes or nanocube dimers [19]. It has been shown as well, that
the luminescence of emitting dipoles placed near the surface of spherical dielectric
nanoparticles can be focused in a preferred direction via simultaneous excitation of
electric and magnetic modes in the spheres [91]. The same effect has been predicted
for quantum emitters embedded inside dielectric nanodiscs [87].

The experimental demonstration ofKerker-type scattering in the visible rangewas
achieved about two years after the theoretical prediction. In early 2013, two research
groups around Novotny and Luk’yanchuk published almost at the same time their
results on exclusive forward or backward scattering from dielectric nanoparticles
[38, 80]. Since then, similar results have been achieved for different geometries
of dielectric nanoparticles, like nanodiscs [102], nanospheroids [64] or nanosphere
dimers for switchable directional scattering [6, 100, 114].

The main insight of all these works is that dielectric spheres permit a spectral
overlap of electric and magnetic dipolar resonances, thus allowing to effectively
satisfy Kerker’s conditions and obtain a distinct directional scattering.

Directional Scattering from Nanowires

In a nanosphere excited with a linearly polarized plane wave, transverse electric (TE)
and transverse magnetic (TM) polarizations are not separable, hence the accord-
ing modes are always simultaneously excited. In the case of normally illuminated
nanowires by the plane wave on the other hand, it is possible to excite either TE or
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TM modes by choosing an illumination with a polarization either perpendicular, or
parallel, to the NW axis. In that case, it becomes impossible to obtain spectrally over-
lapping electric and magnetic resonances, so that Kerker’s conditions (for instance
a1 = −b1) cannot be satisfied.

Several propositions have been made to overcome this limitation and generate
Kerker-type directional scattering from nanowires (NWs) as well. For instance, by
using hybrid plasmonic/dielectric materials in core-shell NWs, an electric/magnetic
response can be tailored, leading to directional scattering [62] (a concept which, by
the way, has been successfully applied also to “non-wire” nano-particles [42]). In
this context it has been demonstrated that properly designed plasmonic/dielectric
core-shell NWs can be even rendered invisible thanks to destructive interference
between electric and magnetic modes [63]. However, the implementation of plas-
monic components would increase losses due to absorption in the metal, as well
as the complexity of the object fabrication. In that regard, all-dielectric solutions
seem advantageous. In analogy to metal/dielectric hybrid NWs, Kerker-type direc-
tional scattering can occur in NWs with a radially anisotropic refractive index [61].
Likewise, the invisibility effect can be achieved inmultilayer all-dielectric NWs [71].

Directional Scattering from Complex Dielectric Nanostructures

Obviously, complex geometries can be used to tailor the spectral positions of electric
andmagnetic resonances.Without going in much detail, Let us refer to two examples
as illustration.

First, it has been shown that V-shaped dielectric resonators can be designed for
bidirectional color routing (in perpendicular directions with respect to the incidence).
This directionality has been found to be a result of interference between electric
dipolar, magnetic dipolar as well as an electric quadrupolar mode. Furthermore,
the left/right color routing effect is observed in addition to the occurrence of an
unidirectional forward/backward scattering [56].

As a second example for tailored scattering behavior, we would like to mention
a study on semi-hollow nano-discs, i.e. nanorings in which the central hole goes not
through the entire height. Such geometry allows to create a bianisotropic directional
scattering, which is dependent on the illumination direction. In other words, light is
scattered purely in forward direction, or not—depending on its incidence direction.
These nanostructures could be used to design reflective metasurfaces, which is only
possible thanks to the anisotropy of the individual metasurface unit-cells, inducing a
2π phase shift in the reflected amplitude. Off resonance, the dielectric metasurface
is transparent, which would be impossible using metallic mirrors, due to their high
ohmic losses [3].

12.2.4 Applications of Nanoscale Directional Scattering

The last part of this section is dedicated to an overview on some useful applications
of directional scattering by nanoscale particles.
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We previously discussed the example of a dielectric metasurface as a lossless
mirror, which can be also designed to offer an incidence-dependent reflectivity [3].
Other all-dielectric metasurfaces have been proposed, offering a generalized Brew-
ster effect for arbitrary angles and wavelengths [77]. Such metasurfaces are particu-
larly promising for applications in photovoltaics: Light-trapping could significantly
reduce reflective losses and increase the efficiency of state-of-the-art solar cells [57,
66, 73, 82, 101].

The possibility to render a nanowire completely invisible [63, 71] has been pro-
posed as a tool to design invisible electric circuits [33].

Directional scattering of the radiation from quantum emitters by dielectric nano-
particles has been theoretically predicted [89, 91, 115] and recently also exper-
imentally demonstrated [25, 81]. Together with the Purcell effect—the decay rate
enhancement for emitters in the proximity of nano-structures [84]—the directionality
in the emission renders dielectric particles and nanowires very promising for many
applications in field enhanced spectroscopy. However, the position of the emitter
with respect to the particle is crucial for the scattering directionality. This sensi-
tivity to the emitter location holds generally, for quantum emitters outside [90] as
well as for such embedded inside dielectric nano-particles [87]. On the other hand,
this supposed drawback can be actually an advantage and might be used in far-field
measurements to gain information about the emitter location on a subwavelength
scale. Using Kerker-type scattering effects, the emission from a nanostructure itself,
such as photoluminescence [14, 76, 85] or nonlinear effects like second harmonic
generation [22, 113], can be focused into a preferred direction, which is useful in
the detection of weak signals from individual nanostructures.

12.3 Mie Theory

In this section, we will explain Kerker-type directional scattering in the context of
Mie theory for nanospheres and adapt the same idea in a slightly modified form to
infinitely long cylinders (i.e. nanowires). The results are mainly excerpted from an
earlier publication. Therefore, for more details see also [110].

Mie theory provides an analytical description of the response of spherical or
cylindrical particles (with an infinitely long axis in the latter case) to an incident
optical field. The far-field response to an external illumination is written as a mul-
tipole series whose coefficients—the “Mie scattering coefficients” ai and bi—can
be regarded as weights for corresponding electric (ai ) and magnetic (bi ) multipole
moments. The expressions “electric” and “magnetic” also refer to the fact that the
magnetic, respectively electric field components, are zero in the scattering plane.

As a short remark we would like to mention that it has been demonstrated, that
the Mie coefficients for a cylinder can be written equivalently as a series of Fano
profiles, which is explained by the interference between the continuum of modes
represented by the incident field and a (sharper) resonant mode (a Mie resonance of
the cylinder) [92]. Even though this is not directly linked to the demonstration below,
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it is an interesting interpretation of Mie resonances, adding a different viewpoint on
them in general.

12.3.1 Directional Scattering from Spheres and Cylinders

Nanospheres

In the description of the light scattering in spherical particles (which is the “classical”
Mie theory), all fields are expanded in vector spherical harmonics, leading to a kind of
multipole development. Scattering to the far-field can be written using the scattering
amplitude matrix (S-matrix), which connects the incident field Ei with the scattered
field Es [11] [

Es,‖
Es,⊥

]
= e−ik(R−z)

ikR

[
S2 0
0 S1

] [
Ei,‖
Ei,⊥

]
. (12.3)

k = 2π/λ is the wavenumber, e−ikR/(ikR) the scattered (outgoing) wave with R the
distance to the sphere center and eikz is the incident plane wave. For simplicity, we
will now assume that the sphere is sufficiently small, such that only the first order of
the development has a significant magnitude. In this case the two nonzero S-matrix
elements write [11, 48]

S1 = 3

2

(
a1 + b1 cos(ϕ)

)
,

S2 = 3

2

(
a1 cos(ϕ) + b1

)
.

(12.4)

In (12.4), ϕ is the scattering angle with respect to the incident wave vector, and
ϕ = 0 corresponds to the forward direction. This directly leads to the well-known
conditions for exclusive BW or FW scattering:

Si
∣∣∣
ϕ=0

∝
(
a1 + b1

)
= 0 for pure BW scattering (2. Kerker),

Si
∣∣∣
ϕ=π

∝ ±
(
a1 − b1

)
= 0 for pure FW scattering (1. Kerker).

(12.5)

Nanowires

Infinitely long cylinders can also be treated usingMie theory by developing the fields
in vector cylindrical harmonics. Under normal incidence, the Mie S-matrix writes
in this case [11]

[
Es,TM

Es,TE

]
= ei3π/4

√
2

πkR
eikR

[
T1 0
0 T2

] [
Ei,TM

Ei,TE .

]
(12.6)
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k = 2π/λ is the wavenumber and R the distance to the cylinder axis. As for
nanospheres, we assume nanowires of sufficiently small diameter, such that only
the lowest two orders significantly contribute to scattering, leading to

T1 = b1 + 2b2 cos(ϕ)

T2 = a1 + 2a2 cos(ϕ).
(12.7)

Again, ϕ is the scattering angle with respect to the incident wave vector with ϕ = 0
the forward direction.

Under normal incidence, the transverse magnetic (TM) polarized components of
the scattered field are proportional to the S-matrix component T1 (respectively, the
transverse electric (TE) components are proportional to T2). According to (12.7),
scattering from a TE polarized normally incident plane wave (E ⊥ NW axis) is only
due to the “electric” multipole contributions ai . On the other hand, a TM polarized
illumination (E ‖ NW axis) induces scattering exclusively via the “magnetic” Mie
terms bi .

In perfect analogy to (12.5) we find

T1
∣∣∣
ϕ=0

= b1 + 2b2 = 0 for pure BW scattering, and

T1
∣∣∣
ϕ=π

= b1 − 2b2 = 0 for pure FW scattering.
(12.8)

The same conditions hold for TE polarization with T2 and the “electric” coefficients
ai . Themain difference to the case of a sphere is that we do not have an interference of
dipolar electric and dipolar magnetic modes anymore, but an interference between
dipolar and quadrupolar modes of the same, “electric” or “magnetic”, character,
depending on the incident polarization. In the upper panels of Fig. 12.3, the Mie
coefficients a1 and b1 for a silicon sphere (Fig. 12.3a) are compared to the coefficients
a1 and a2 of a silicon nanowire as function of the wavelength. Indeed, the coefficients
show very similar spectral dependencies, which holds equally for their amplitude and
phase. Comparing the FW/BW scattering spectra of both geometries (bottom plots
in Fig. 12.3), the similarity in Mie coefficients is reproduced. Please note also the
Fano-like profiles in the scattering resonances, shown in Fig. 12.3: The interference
of a spectrally narrow mode (electric mode for the sphere, “a2”-mode in the case of
the nanowire) with a spectrally large “background-mode” (sphere: magnetic mode,
nanowire: “a1”-mode) leads to the directional response and a Fano-like line shape.

We conclude that interference of multiple spectrally overlapping orders of either
electric or magnetic modes in dielectric nanowires can lead to similar FW/BW scat-
tering phenomena as interfering electric andmagnetic dipole resonances in dielectric
nano-spheres.Different behaviors, hencedifferent directions of light scattering, could
be addressed by incident light polarization.
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Fig. 12.3 a Electric andmagnetic polarizability for a silicon sphere (ε = 12) of radius R = 230 nm
(top) and directional scattering intensity (ϕ = 0◦, 180◦ correspond to FW, BW direction). Adapted
with permission from [75]. Copyright OSA, 2011. Note that the quantities in the top plot of (a)
are proportional to the first order (spherical) Mie coefficients: αe ∝ ia1 and αm ∝ ib1 [39]. b First
and second order electric (TE) Mie coefficients a1 and a2 for a silicon nanowire with R = 230 nm.
Bottom: Scattered intensity in FW (ϕ = 0◦) and BW (ϕ = 180◦) direction. Colors are chosen for
direct comparison with (a). The vertical black lines indicate a maximum in BW/FW (left line) and
FW/BW (right line) scattering ratio, hence positions where the second, respectively first Kerker’s
condition are (approximately) satisfied

12.3.2 Nanowires: Resonant Enhancement of the Electric
and Magnetic Field

It is possible to expand the electromagnetic fields inside the cylinder in the same way
as the scattered near- or far-field. For details, please refer to the textbook of Bohren
and Huffmann [11]. In Fig. 12.4 we show the average field intensity enhancement
inside a silicon NW (SiNW) of radius R = 50 nm for illumination with (a) TE and
(b) TM polarized plane waves, respectively. The silicon dispersion is taken from the
book of Palik [30]. At resonance, we observe for both the TE and for TM cases
not only high electric field intensities (blue lines), but also a strong enhancement
of the magnetic field (orange lines). The magnetic field increases even far stronger
compared to the electric field intensity, an observation which is in agreement with
recent experimental results from dielectric cylinders in the GHz regime [51]. We
conclude that a simultaneous excitation of strong electric and magnetic fields occurs
in dielectric, non-magnetic (i.e. μr = 1) NWs, even under pure TE or TM polarized
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Fig. 12.4 Spectra of the average electric (blue lines) and magnetic (orange lines) field intensity
enhancement inside a silicon nanowire of radius R = 50 nm. Incident plane wave polarized a TE
and b TM. For comparison, the FW/BW ratio of far-field scattering is also shown (dashed green
lines, logscale). Right: internal field intensity distributions at λ = 550 nm (around the TE01/TM11
mode). Top: electric, bottom: magnetic field enhancement. Incidence from the top. The fields are
calculated using Mie theory and normalized to the illumination field intensity

illumination and normal incidence. Hence, in analogy to the findings of Kerker et
al., the observed directionality (dashed green lines in Fig. 12.4) can be interpreted as
a result of the interference between “effective” electric and magnetic modes. In par-
ticular, at the non-degenerate, fundamental TM01 mode (λ ≈ 1400 nm), where only
the internal electric field shows a resonant enhancement while the magnetic field
intensity follows a flat line beyond λ � 700 nm (see Fig. 12.4b), no directional scat-
tering is obtained. This is also the case for any small diameter nanowire supporting
the fundamental resonant mode only. For illustration the electric and magnetic field
intensity patterns inside the NW are shown on the right of Fig. 12.4 at λ = 550 nm.

12.3.3 Nanowires: Multipolar Contributions to Directional
Scattering

Previously, we used only the two first coefficients of the field expansion. We want
to assess if this approximation remains valid for larger NWs, and how many orders
of multipole contributions are necessary to describe with a sufficient agreement the
directional scattering phenomena. Let us illustrate this empirically by taking a SiNW
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Fig. 12.5 Mie development of the FW/BW scattering from a SiNW with radius R = 100 nm for
the first 3 Mie coefficients (TE: an , TM: bn). a TE, b TM polarized incident plane wave. Nmax
corresponds to the number of Mie terms: n = 0, n ∈ {0, 1}, n ∈ {0, 1, 2} (from top to bottom).
TE/TM data is normalized separately. FW/BW ratios (green dashed lines) are plotted on a logscale

of radius R = 100 nm for example. Since directional scattering is a result of the inter-
ference between multiple simultaneously excited modes, the FW/BW resolved scat-
tered intensity cannot be plotted individually for the different contributing scattering
coefficients an and bn (for TE and TM polarized, normal incidence, respectively).
In Fig. 12.5, the FW and BW scattered intensity from a normally illuminated SiNW
(R = 100 nm) is calculated successively for an increasing number of contributing
terms. Figure 12.5a shows the scattering under TE polarized illumination, Fig. 12.5b
the TM case. We have shown elsewhere [110] that for a NW of R = 50 nm radius,
terms higher than the first two orders are negligible. Yet, even for a larger NW as
shown in Fig. 12.5, the response is mostly determined by the first two orders of the
Mie series, while only few additional features arise if third order modes are consid-
ered as well. In conclusion, despite some missing spectral features, using only the
first two Mie orders gives already a very good approximation even in the case of
large dielectric NWs.

12.4 Directional Scattering from Silicon Nanowires

In this section, we present experiments performed on silicon nanowires showing the
directional scattering phenomenon as function of size and shape. We compare the
experimental data to Mie theory and numerical simulations, confirming the accuracy
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of the predictions.Having confirmed the validity of our approach,we analyze theoret-
ically a more sophisticated system of two normally illuminated parallel nanowires,
lying on a plane. We find that such a system can be used to switch the scattering
direction between forward and backward, simply by changing the distance between
the two wires.

12.4.1 Cylindrical Nanowires

We start with the simplest possible geometry: A cylindrical SiNW in vacuum. The
SiNWs are VLS grown [29] and dispersed on a transparent silica substrate with
lithographic markers, so the exactly same NW can be examined on different experi-
mental setups. We perform standard dark field microscopy either in reflection (BW
scattering) or in transmission geometry (FW scattering). The measurement setup is
schematically shown in Fig. 12.6a, b for FW and BW scattering, respectively. Details
on the technique are described elsewhere [110]. The incident light is polarized either
perpendicular (TE) or along the NW axis (TM), as illustrated in Fig. 12.6c. We use
the scattering from small cylindrical nanowires (R ≈ 25 nm) for normalization of the
FW and BW spectra: In sufficiently small NWs only the fundamental dipolar TM01

mode is excited, which results in an omni-directional scattering (corresponding to a
dipolar source along the NW axis, as explained in the previous section). We hence
assume that the FW and BW scattered intensities are of equal strength and normalize
all spectra using this reference. We compare our experimental results to Mie theory
and 2D simulations by the Green dyadic method (“GDM”, assuming structures of
infinite length along Y [67, 78]). The GDM simulations reproduce Mie with almost
perfect agreement (see also [110]).

Results of the scattering experiments on a SiNW of radius R ≈ 50 nm are shown
in Fig. 12.6d for TE (top) and TM (bottom) illumination. In the case of TE polarized
illumination FW scattering occurs for large wavelengths (λ � 550 nm), while BW
scattering takes over at shorterwavelengths (λ � 550 nm). In theTMcase on the other
hand, FW scattering dominates over the whole accessible spectral range, however
with a pronounced peak around 550 nm, where a maximum of scattered FW inten-
sity coincides with a minimum in BW scattering. Near-field plots and corresponding
far-field scattering patterns are shown in Fig. 12.6e (top and bottom, respectively)
for selected wavelengths, indicated by dashed black lines in Fig. 12.6d. Note that
around 480 nm, we obtain the possibility to invert the main scattering direction by
simply flipping the polarization from TM to TE (see also Fig. 12.6e, bottom left).
Via the NW diameter, this spectral zone can be tuned to other frequencies. At longer
wavelengths (λ � 700 nm), only the nondegenerate TM01 mode exists, leading to
very weak overall scattering under TE incidence and to the aforementioned, omni-
directional radiation pattern in the TM geometry. Interestingly, while it is possible
to induce directional BW scattering in the TE configuration, under TM illumination
BW scattering is generally very weak and mainly FW scattering occurs—with the
exception of a uniform scattering when only the TM01 mode is excited.
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Fig. 12.6 Sketch of the experimental setup for a forward scattering and b backward scattering
measurements. c Incident polarization configurations. The electric field is orientated either perpen-
dicular (TE) or parallel (TM) to the NW axis. d Experimental (solid lines) and simulated (dashed
lines) FW/BW scattering spectra (red/blue) for a cylindrical silicon NW of diameter R ≈ 50 nm.
Top and bottom plot show the case of TE and TM polarized incident plane waves, respectively.
e Mie-calculated nearfield (top row: TE, center row: TM incidence) and farfield patterns (bottom
row; TE/TM: red/blue) for a R = 50 nm SiNW diameter at selected wavelengths, indicated by
dashed vertical lines and arrows in (d). Plane wave incident from the top. Scale bar is 50 nm

In summary, we note that although we do observe BW scattering (mainly under
TE polarization) it mostly remains weak compared to the FW scattered light. In
the case of TM polarized illumination, the FW/BW scattering ratio is even almost
exclusively �1.
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12.4.2 Rectangular Nanowires

In a second stepwe analyzewhat happens if the cylindrical symmetry of the nanowire
cross section is broken. We therefore fabricate SiNWs of rectangular section by
electron beam lithography (EBL) and subsequent dry-etching [41, 45] on a silicon-
on-quartz (SOQ) substrate [72]. A great advantage of our top-down approach on
SOQ is the possibility to create silicon nanostructures of arbitrary shape by EBL
on a transparent substrate from single crystalline silicon. Using this material rather
than deposited polycrystalline or amorphous silicon guarantees that the best optical
properties of single crystal silicon are kept. Defined by the thickness of the silicon
layer on the SOQ substrate (H = 90 nm), the height of the rectangular nanowires is
constant. The rectangular section is varied by changing the SiNWs width. The length
L = 7 µm is chosen large compared to the focal spot of the illuminating optics in
order to obtain a purely Mie-like response [103]. All NWs have excellent surface
properties, low roughness and steep flanks, verified by scanning electronmicroscopy.

The results of our systematic FW/BW scattering measurements are shown in
Fig. 12.7c (for TM polarization). Selected spectra for SiNWs of width W = 120 nm
and W = 180 nm are shown in Fig. 12.7a, b, respectively, where TE polarized illu-
mination is shown in the top, the TM case in the bottom plot. The comparison of
experiments with GDM simulations shows a very good agreement. Having a look at
the FW/BWratios (Fig. 12.7c, TMpolarization)we observe thatmostly forward scat-
tering occurs. This is similar to our observations on cylindrical SiNWs. Figure 12.7d,
e finally show selected simulated near-field plots and far-field scattering patterns for
TM polarized illumination. In particular, the first two panels in Fig. 12.7d, e show,
for a NW of nearly symmetric section, the excitation of the first strongly directional
mode (corresponding to TE01/TM11) and the region of omnidirectional scattering in
the red spectrum (corresponding to TE01/TM11), which are almost identically found
as in cylindrical NWs.

Under TM excitation, we observe branches of a kind of Fano resonance, which do
not occur in cylindrical NWs: In narrow spectral zones, the FW/BW ratio is almost
unity (see Fig. 12.7b around λ = 580 nm and Fig. 12.7c, white diagonal branches).
In a confined spectral window the otherwise strong forward scattering is suddenly
suppressed, while BW scattering increases. Resonances with such field profiles are
observed neither under TE polarization, nor in symmetric SiNWs (see also [110]).
These sharp features are a result of horizontal guided modes along the SiNW width
(X -direction, in the NW cross-sectional plane) and their interference with the leaky
“background” mode of, in comparison, large spectral width. The wire side facets act
as the Fabry-Perot cavity mirrors and the nanowire slab has an effective index of
neff = 3.45 (nSi ≈ 4.0) for the supported guided mode in the case of TM polarized
illumination at λ = 580 nm. With this effective index, a standing wave pattern with
three lobes matches perfectly a nanowire width of 180 nm, in nice agreement to
the wavelength and width at which the resonance occurs. The calculated near-field
pattern (very right panel of Fig. 12.7d) finally confirms the presence of a guidedmode.
We verified the guided mode assumption also for the other branches in Fig. 12.7c,
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Fig. 12.7 a, b Scattering spectra of rectangular shaped SiNWs of a fixed length and height
L = 7 µm and H = 90 nm, with widths of (a) W = 120 nm and (b) W − 180 nm. Plane wave
illumination, polarized perpendicular (TE, top) or along the NW axis (TM, bottom). Red lines
indicate forward, blue lines backward scattering. Dashed and solid lines represent simulated and
experimental data, respectively. c Simulated (top) and measured (bottom) FW/BW scattering ratio
for TM polarization using a logarithmic color scale. dNearfield intensity distribution in and around
the SiNWs at selected wavelengths (indicated by vertical lines in (a, b) and by arrows) under TM
polarized illumination (incident from the top). Dashedwhite lines illustrate theNWshape. e Farfield
scattering pattern for the corresponding cases shown in (d). TM: blue, TE: red lines

at each of which the NW width corresponds to an odd integer multiple of half the
wavelength divided by the effective index.A standing-wave pattern of increased order
can be found at these positions in the near-field plots. We note that former studies
on scattering from rectangular dielectric NWs used Fabry-Perot modes, reflected
between the side-walls of the wire, for the analytical description of the scattering
[34, 55].
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Fig. 12.8 a Sketch of the geometry: Two parallel silicon NWs in the XY , of equal diameter
D1 = D2 = 100 nm (→ R = 50 nm) and separated by a “gap” G, are normally illuminated (along
êz) by a plane wave, polarized either along the mutual long axis direction (“TM”) or perpendicular
to it (“TE”). b Simulated forward to backward scattering ratio as function of the distanceG between
the two NWs for two TE and TM at fixed wavelengths: λTE = 520 nm and λTM = 610 nm. c–h
show the simulated FW/BW resolved scattering spectra of the coupled NWs as function of the
gap G. c–e show forward scattering, backward scattering and their ratio for TE polarization, (f–h)
similar but for TM polarization. Vertical dashed lines in (e) and (h) indicate the spectral positions
of the profiles shown in (b). The FW/BW ratios in (b), (e) and (h) are shown on a logarithmic scale
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12.4.3 Coupled Nanowires

Finally we analyze a system composed of two identical, parallel silicon nanowires
illuminated normally with respect to the plane defined by their axes, as schematically
shown in Fig. 12.8a. The radius of the wires is R = 50 nm, (c.f. also Fig. 12.6), the
incident plane wave is polarized either perpendicular (TE) or parallel to the wire axis
(TM). Using the GDM, the scattered intensity is calculated in forward and backward
direction. The results are shown in Fig. 12.8 as function of the incident wavelength
and polarization as well as the distance between the NWs, also labeled “gap” G.

Figure 12.8c–e show (c) forward, (d) backward scattering and (e) the FW/BW
ratio in the case of TE polarization. Figure 12.8f–h show the same for the TM case.
We find a strong modulation of the scattering, which is in agreement with former
observations in the total scattering signal [70]. Interestingly, not only the scatter-
ing intensity itself shows a modulation of high contrast; likewise, the FW/BW ratio
shows a significant dependence on the distance between the twoSiNWs. Figure 12.8b
shows the FW/BW scattering ratio for TE (blue dashed line) and TM polarization
(orange dashed line) at two fixed wavelengths of particularly strong contrast in the
scattering signal. Obviously, at selected wavelengths, it is possible to toggle between
mainly forward, isotropic, and mainly backward scattering simply by varying the
gap size between the two nanowires. Furthermore, an interesting feature of coupled
nanowires is to increase the scattering efficiency either in forward or backward direc-
tion, compared to the case of a single nanowire where it is rather low at Kerker’s
conditions [99]. This is due to the fact that Kerker’s conditions are usually fulfilled
out of a resonance. This observation opens perspectives for several applications in
sensing or field-enhanced spectroscopy by realizingmore efficient directional dielec-
tric nanoantennas. We could for instance imagine two parallel dielectric nanowires
embedded in a flexible transparent matrix for sub-wavelength optical distance mea-
surements at visible frequencies.

12.5 Conclusion and Outlook

We compared plasmonics with the emerging field of high-index dielectric nanostruc-
tures and gave an overview about the recent research in nano-optics on directional
scattering at the single particle level. We introduced the Kerker’s conditions, their
representation for nonmagnetic materials at visible frequencies, and put them in the
context of Fano resonances in general. Furthermore, we compared the conditions
for unidirectional scattering in Mie theory for spherical particles and cylindrical
nanowires. We experimentally demonstrated directional scattering first in the “Mie
case” of cylindrical silicon nanowires, where we found the possibility to switch
between forward and backward scattering by a simple rotation of the incident polar-
ization. Subsequently, we studied the effects of an asymmetric nanowire shape. For
rectangular NWs of increasing height/width aspect-ratio, we observed the apparition
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of Fano-like modes due to the occurrence of spectrally sharp guided modes along
the NW width. Finally, we theoretically studied a system of two coupled SiNWs
and found that such an arrangement allows to toggle between FW and BW scat-
tering, simply by adjusting the distance between the coupled wires. Optical Fano
resonances in nanostructures open perspectives for light management and guiding at
the nanometer scale, for sub diffraction-limited optical sensing or for applications in
field-enhanced spectroscopies.
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Chapter 13
Fano Resonances in Flat Band Networks

Ajith Ramachandran, Carlo Danieli and Sergej Flach

Abstract Linear wave equations on Hamiltonian lattices with translational invari-
ance are characterized by an eigenvalue band structure in reciprocal space. Flat band
lattices have at least one of the bands completely dispersionless. Such bands are
coined flat bands. Flat bands occur in fine-tuned networks, and can be protected by
(e.g. chiral) symmetries. Recently a number of such systems were realized in struc-
tured optical systems, exciton-polariton condensates, and ultracold atomic gases.
Flat band networks support compact localized modes. Local defects couple these
compact modes to dispersive states and generate Fano resonances in the wave prop-
agation. Disorder (i.e. a finite density of defects) leads to a dense set of Fano defects,
and to novel scaling laws in the localization length of disordered dispersive states.
Nonlinearities can preserve the compactness of flat bandmodes, alongwith renormal-
izing (tuning) their frequencies. These strictly compact nonlinear excitations induce
tunable Fano resonances in the wave propagation of a nonlinear flat band lattice.

13.1 Introduction

In this chapter we will discuss Fano resonances induced by defects, disorder and
nonlinearities in flat band networks. More specifically, we will present phenomena
of resonant scattering occurring in lattices that, in the crystalline case, exhibit the
existence of one (or more) dispersionless (or flat) band.

One of the main reasons to study the class of flat band networks is the existence of
compact localized states (CLS), flatband eigenstates of the systemwhich extend over
a strictly finite number of lattice sites. Differently fromAnderson localization, where
localized states may exist due to uncorrelated disorder, CLS appear in ordered sys-
tems, and their existence is protected by local symmetries which induce destructive
interference in the lattice that suppress the propagation out of the compact domain
of their nonzero amplitudes.

A. Ramachandran (B) · C. Danieli · S. Flach
Center for Theoretical Physics of Complex Systems,
Institute for Basic Science, Daejeon, South Korea
e-mail: ajithstcp@pcs.ibs.re.kr

© Springer Nature Switzerland AG 2018
E. Kamenetskii et al. (eds.), Fano Resonances in Optics and Microwaves, Springer
Series in Optical Sciences 219, https://doi.org/10.1007/978-3-319-99731-5_13

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99731-5_13&domain=pdf


312 A. Ramachandran et al.

Introduced around the late 1980s, this class of models recently shifted into the
focus of interest of a broad community due to mathematical advancements as well as
experimental realizations. Indeed, compact localized states are optimal candidates for
transmission in networks of photonic waveguides that minimize the diffraction due
to the destructive interference. Furthermore, flat band networks and the observation
of compact localized states have been experimentally realized with exciton-polariton
and Bose-Einstein condensate.

In several cases, the complete set of compact localized states can be fully detangled
from the dispersive bands through suitable unitary transformations. This mathemat-
ical procedure allowed to extensively study several physical effects. In the following
chapter, we will discuss Fano resonances induced by impurities, onsite perturbations
and nonlinear terms in flat band networks. We will discuss our findings using one
of the simplest and most re-known flat band networks—the cross-stitch lattice—as
a test bed to present our results.

This chapter is structured in the following way. In the introduction we will review
basic concepts of Fano resonances and of flat-band lattices.Wewill then discuss how
single impurities can induce Fano resonance in the system. This is further discussed
in the following section, where we discuss absence of transport in the flat band lattice
due to the presence of uncorrelated disorder and quasiperiodic potentials. At last,
we present Fano resonances induced in a perfectly periodic flat band structure in the
presence of additional nonlinear terms.

13.1.1 Fano Resonances

In the quantum mechanical study of auto-ionising atoms, Ugo Fano introduced a
new type of resonance mechanism to explain the asymmetric profile of spectral lines
[1, 2]. The microscopic origin of the asymmetric line profile is due to constructive
and destructive interference of the light continuum of states with a localized state
hosted by the atom, giving rise to additional paths for an incoming wave to scatter
[3]. The resulting constructive or destructive interference gives rise to either perfect
transmission or complete reflection. Fano derived this line shape as [2]

T (s) = (s + q)2

s2 + 1
, (13.1)

where s = (E − ER)/(�/2) and ER is the resonance energy, � the line width and q
the asymmetry parameter. Recently, Fano resonances were observed in a variety of
cases such as electronic transport in quantum dots [4–7], wires and tunnel junctions
[8], Mie and Bragg scattering in photonic crystals [9, 10], and bilayer graphene
nano-structures [11].

The Fano-Andersonmodel is one of the simplestmodels that describes the physics
and main features of Fano resonances [3]. This model consists of a tight-binding
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Fig. 13.1 Schematic view of the Fano-Anderson model (left). Transmission coefficient for the
Fano-Anderson model (right). Here: C = 1, VF = 0.5 and EF = 0

chain with nearest-neighbor hopping, and a side-coupled discrete defect state. The
Fano-Anderson Hamiltonian is given by

H = C
∑

n

(ψnψ
∗
n−1 + c · c) + EF |φ|2 + VF (φ∗ψ0 + c · c.) . (13.2)

In the absence of the coupling VF = 0 it supports propagation of plane waves with
dispersion relation ωk = 2C cos k, while the isolated defect state has energy EF . For
nonzero coupling VF �= 0 equations of motion read (Fig. 13.1)

iψ̇n = C
(
ψn+1 + ψn−1

) + δn,0VFφ ,

i φ̇ = EFφ + VFψ0 .
(13.3)

A travelingwavehas now the choice of two scattering channels: it can either bypass
the defect state, or populate the state and return back to the chain. The existence of
these two paths gives rise to destructive interference, and a Fano resonance. To the
left and right of the defect, we write the propagating modes in the usual scattering
formulation

ψn =
{

τekn + σe−ikn , n < 0

ρeikn , n ≥ 0
; (13.4)

where τ ,σ and ρ are the incoming, reflected, and transmitted amplitudes respectively.
The transmission coefficient T (ω) = |ρ/τ |2 can be obtained using the transfermatrix
method [12]:

T (ωk) = α2
k

1 + α2
k

, (13.5)

where

αk = ck
EF − ωk

V 2
F

, ck = 2C sin k . (13.6)

For the resonant frequency ωk = EF , the scattering along the two channels generates
destructive interference leading to a complete suppression of the wave transmission.
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The resonance width is proportional to the squared coupling strength V 2
F . The asym-

metry parameter of the Fano resonance for the Fano-Andersonmodel vanishes q = 0
[3], thus the transmission profile is symmetric.

13.1.2 Flat Band Networks

Flat band networks are translationally invariant tight binding lattices (also coined
continuous time quantum walks) of various dimension and hopping range which
support at least one dispersion-less band in the energy spectrum [13]. In this chapter,
wewill focus on the case of a one-dimensional latticemodeled with nearest-neighbor
hopping between unit cells:

iψ̇n = εnψn + H0ψn + H1ψn+1 + H †
1 ψn−1 . (13.7)

Here ψn = (ψ1
n, . . . ,ψ

ν
n )

T ∈ C
ν is a wave function vector with ν complex scalar

components residing in the nth unit cell, and H0, H1 ∈ Mν(R) are ν × ν square
matrices representing intra-cell and nearest neighbor inter-cell hoppings, respec-
tively. The optional onsite perturbation εn of (13.7) is given by a diagonal square
matrix εn = diag

(
εan, ε

b
n, . . . , ε

ν
n

)
, where εin are so-called on-site energies originating

from some external potential (field). Using the ansatz ψn = Ane−i Et , the eigenvalue
problem reduces to

E An = εnAn + H0An + H1An+1 + H †
1 An−1 . (13.8)

For vanishing onsite energies εn = 0 the equations are invariant under discrete lattice
translations, and the Bloch theorem leads to the ansatz An = eiknϕk and a Bloch
Hamiltonian H(k):

Eϕk = H(k)ϕk ≡ (
H0 + eikH1 + e−ikH †

1

)
ϕk . (13.9)

Solving the eigenvalue problem for H(k) we arrive at the band structure with ν
k-periodic bands E1,2,...,ν(k) and the corresponding set of polarization eigenvectors.

For flat band lattices at least one of the energies Em(k) = const resulting inmacro-
scopic degeneracy. Relevant perturbations can lift the degeneracy and qualitatively
change the nature of the eigenstates [14–20]. Due to the degeneracy, Bloch states of
the flat band can be superimposed still yielding a valid eigenstate. It turns out, that
in many cases superpositions exist which yield not only localized, but even compact
localized states (CLS). The origin of these compact localized states is destructive
interference that prevents diffraction and effectively decouples them from rest of the
lattice. The set of CLS can be orthogonal and linearly independent, and nonorthogo-
nal but still linearly independent. In those cases the CLS set spans the entire Hilbert
subspace of the flat band, and there exists some unitary transformation which con-
nects the CLS set with the corresponding Bloch eigenstate set. In dimension d ≥ 2,
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and in the presence of band touchings of the flat band and a dispersive band, it is also
possible that the CLS set is linearly dependent and incomplete. However, gapping
the flat band away from the dispersive spectrum, or in general in one dimension,
linear dependence can be avoided. In one dimension, the CLS can be expressed in
the following form:

ψn0(t) =
{ U−1∑

l=0

[ ν∑

j=1

al, j Al, je j

]
δn,n0+l

}
e−i�t . (13.10)

where � = EFB . Here e j are the basis vectors in Rν , and the integers ai, j ∈ {0,±1}
pin down the locations of the nonzero CLS amplitudes Ai, j . The integer number U
counts the number of unit cells occupied by one CLS [13]. This number is also called
the class of the CLS. If the classU flat band network is smoothly modified such that
the CLS turn linearly dependent, the consequence is that the classU is reduced. The
class U = 1 always possesses an orthogonal and linearly independent CLS set. In
Fig. 13.2 we show some examples of flat band networks.

Flat band networks are discrete geometrical structures that find applications in dis-
tortion free image transmission through photonic lattices [21, 22], artificial quantum
dot arrays [23], ultracold atoms [24], microwaves in dielectric resonator networks
[25, 26], light-matter exciton-polariton condensates [27], among others. Further-
more, compact localized states were experimentally observed in photonic lattices
[21], structured microcavities for exciton-polariton condensates [27], and electronic
circuits [28].

Attempts to construct flat band generators were based on graph theory [29], local
cell construction [30], Origami rules in decorated lattices [31], and repetitions ofmini
arrays [32]. All these generators are focussing on subclasses of flat band networks
with some additional symmetry or property. The classification via CLS properties
including the class U is in principle complete [13]. The most general flat band
generator forU = 1 was obtained in [13]. The extension toU = 2 proved already to
be more involved, but was completed by Walaiymu et al. [33] for one-dimensional
networks with two bands (one dispersive, one flat) and nearest neighbour hoppings.
A chiral flat band network generator for bipartite networks with majority sub-lattices
was obtained in [34], which yields chiral symmetry protected flat bands in any space
dimension, and no further restrictions—even the loss of translational invariance is not
destroying themacroscopic degeneracy in the energy spectrum and the correspondent
CLS. Properly tuned magnetic fields can yield all bands flat [35]. Further results
concern non-Hermitian flat band networks [36], Bloch oscillations [37], topological
flatWannier-Stark bands [38], and the existence of nontrivial superfluidweights [39],
among others.

Let us consider the most simple and generic flat band case of U = 1, and of one
dispersive and one flat band. This cross-stitch lattice has two spectral bands and is
obtained with the following matrices in (13.7) (see Fig. 13.2a):
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Fig. 13.2 One-dimensional flat band topologies. a cross-stitch, κ = 1, U = 1; b diamond, κ = 1,
U = 1; c one-dimensional pyrochlore, U = 1; d one-dimensional Lieb U = 2; e stub. U = 2;
f saw-tooth, U = 2. Figure taken from [13]

H0 =
(
0 κ
κ 0

)
, H1 =

(
1 1
1 1

)
. (13.11)

The wave equations read

iψ̇1
n = εanψ

1
n − ψ1

n−1 − ψ1
n+1 − ψ2

n−1 − ψ2
n+1 − κψ2

n ,

iψ̇2
n = εbnψ

2
n − ψ2

n−1 − ψ2
n+1 − ψ1

n−1 − ψ1
n+1 − κψ1

n .
(13.12)

For the dispersive band EDB(k) = −κ − 4 cos(k), and for the flat band EFB = κ.
The hopping strength κ tunes the flat band energy and the relative position of the
two bands, which can overlap for |κ| ≤ 2, or can be gapped otherwise. The compact
localized states (13.10) are given by

ψn,n0 = A

(
1

−1

)
δn,n0e

−i EFB t . (13.13)
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The detangling procedure is a unitary transformation which is applied to the vector
space of each unit cell:

(
pn
fn

)
= Dψn, D = 1√

2

(
1 1
1 −1

)
, ε±

n = (εan ± εbn)/2. (13.14)

This yields
(E + κ) pn = ε+

n pn + ε−
n fn − 2 (pn−1 + pn+1) ,

(E − κ) fn = ε+
n fn + ε−

n pn .
(13.15)

In the ordered case εin = 0 the flat band states fn are decoupled from the dispersive
ones pn . Onsite perturbations introduce non-zero couplings ε±

n �= 0 in (13.15) which
hybridize the two families of states.

13.2 Single Local Defects

In the presence of a flat band, an impurity locally hybridizes one or few renormalized
CLS of the flat band with the dispersive bands, turning them into a Fano state which
can lead to a Fano resonance.

Consider an onsite energy variation at unit cell n0 which can be expressed as
εa,b
n = εa,b

n δn,n0. It follows

Epn = ε+
n δn,n0 pn + ε−

n δn,n0 fn − 2(pn−1 + pn+1) , (13.16)

E fn = ε+
n δn,n0 fn + ε−

n δn,n0 pn . (13.17)

The resulting generalized Fano-Anderson model is shown in Fig. 13.3. Precisely one
of the CLS is renormalized, and coupled to the dispersive chain which in addition is
perturbed by a simple defect at the site which is coupled to the CLS.

Excluding fn0 the dispersive wave equation is reduced to

Fig. 13.3 The cross-stitch lattice (left) and the detangled form (right). Here, the red dot on the
cross-stitch lattice represents a local on-site defect. In the detangled chain, a localized state fn is
coupled to the linear chain due to the presence of defect
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Fig. 13.4 Transmission
coefficient for different
on-site defect potentials
[εan = 1 (red), 2 (blue)] for
the cross-stitch lattice in the
presence of a local on-site
defect. The inset shows the
variation of the width δ of
the resonance versus the
defect potential ε = εan0

Epn =
[
ε+
n + (ε−

n )2

E − ε+
n

]
δn,n0 pn − 2(pn−1 + pn+1) . (13.18)

We then obtain the transmission coefficient as

T (E) = 16 − E2

16 − E2 + [2ε+
n (E−ε+

n )+(ε−
n )2]2

(E−ε+
n )2

. (13.19)

A Fano resonance appears at E = ε+
n . Some scattering outcomes are plotted in

Fig. 13.4. A weak local defect of strength ε will thus lead to a Fano resonance in
the dispersive channel. The resonance location is detuned from the original flat band
energy by ε. The width of the resonance is quadratic in ε. Therefore, the detuning
of the resonance off the original flat band energy is well resolved for weak defect
strength, and can be used as a detection tool of weak imperfections in a flat band
lattice. Our results will hold for any flat band lattice which hosts CLS. The very
fact of the existence of a CLS, together with the short rangeness of the tight binding
network, ensures that any local defect will renormalize a CLS, and back-couple it
locally into one or several dispersive channels, in the manner of a Fano resonance,
see e.g. [40].

13.3 Disorder

Wave propagation in non-periodic media was studied in the seminal work by Ander-
son in 1958, where absence of diffusion due to uncorrelated disorder has been pre-
dicted e.g. in a one-dimensional tight-binding chain [41]. Experimentally, Anderson
localization has been observed e.g. with light waves [42], and Bose-Einsten conden-
sates [43, 44]. Localized states are characterized by an energy-dependent localization
length ξ which controls the asymptotic exponential decay of a wavefunction.
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Disorder can be interpreted as a finite density of defects inserted into a system.
Each individual defect will act as a Fano resonance in the case of a flat band network.
A finite density of such defects then implies a macroscopic set of Fano resonances—
all with slightly detuned (due to disorder) resonance energies. The disorder strength
controls both the hybridization of Fano defects with the dispersive lattice, and the
relative detuning of the Fano resonances. The most interesting limit is then the case
of weak disorder, where the individual resonance width becomes narrow, while the
different resonances get less detuned and act as a giant macroscopic resonance.

Let us consider a one-dimensional flat band network (13.7) in the presence of a
disorder potential in the onsite energymatrix εn where for each leg of the network i =
1, . . . , ν the onsite energies are uncorrelated randomnumbers equidistributed over an
interval εin ∈ [−W/2,W/2]. The effect of weak uncorrelated disorder potential has
been studied in several examples of class U = 1 and U = 2 flat band networks [13,
17, 18]. In these examples, the scaling law ξ(W ) ∼ W−γ of the localization length
ξ as function of the disorder strength as W 
−→ 0 shown surprising exponents γ in
correspondence of the flat band energy EFB , in contrast to the exponent γ = 2 typical
of a dispersive band. In the case of the cross-stitch lattice (13.12), the exponent γ of
the scaling law of the localization length ξ ∼ W−γ has been estimated for different
values of flat band energy EFB , reporting γ = 1 in case of band crossing, γ = 1/2
for the flat band located at the edge of the dispersive band, and a saturation to
constant value ξ ∼ c for the flat band gapped away from the dispersive one [13].
Similar exponents have been observed for the diamond chain [17] and pyrochlore
[18], as well as class U = 2 models such as Stub and one-dimensional Lieb lattice
[18]. In higher dimensional lattices, the Fano resonance picture still persists. The
computational characterization of eigenstates is performed using the participation
number P (which counts the number of sites strongly excited in an eigen mode).

In the case of the cross-stitch chain with weak disorder we arrive at a whole array
of slightly detuned Fano resonances:

(E + κ) pn =
[
ε+
n + (ε−

n )2

(E − t) − ε+
n

]
pn − 2 (pn−1 + pn+1) . (13.20)

The probability distribution function of z = 1/ε+
n is given by

W = 2

z2

∫
P(y)P

(
2

z
− y

)
dy

where P(x) is the distribution function of ε+
n . The heavy tails W(z) ∼ 1/z2 result

in an effective disorder potential for the dispersive modes which has diverging vari-
ance. This is due to the the slightly detuned CLS Fano resonances acting as a giant
strong scattering potential. This type of disorder potential has been considered in,
for example, the exactly solvable Lloyd model [45], where Thouless [46] and Ishii
[47] showed that γ = 1 within the bulk of the dispersive band and γ = 1/2 at the
edge, in contrast with the typical γ = 1 and γ = 2/3 of the Anderson model.
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Fig. 13.5 Left plot: Localization length ξ versus Ē = E − EFB . Right plot: ξ−1 versus ln Ē for
Ē > 0, same color coding as in left plot. The dashed line corresponds to (13.22). Here, W = 4 and
t = 0 (black solid) and κ = 1 (red solid). Figure taken from [19]

Any general disorder potential can be represented as a sum of a symmetric and
antisymmetric parts:

Symmetric: ε−
n = 0 ⇔ εan = εbn ,

Antisymmetric: ε+
n = 0 ⇔ εan = −εbn .

(13.21)

The symmetric case ε−
n = 0 renormalizes the energy of the flat band states, but does

not hybridize the CLS with the dispersive states. The antisymmetric case ε+
n = 0

instead does not renormalize the CLS energy, but does hybridize them with the
dispersive states. This latter case is of interest, since it turns the whole set of CLS
into one perfect Fano resonance. For small Ē = E − EFB , the localization length
can be obtained as (see [19])

ξ−1 = −2 + ln
W 2

8|Ē | , Ē = ±ε−
0 ε−

1

2
 W 2

4
. (13.22)

Irrespective of the strength of the correlated disorder, the localization length van-
ishes due to resonant scattering as the energy tends towards flat band energy. The
numerically calculated localization length in Fig. 13.5 shows excellent agreement
between the numerical data and (13.22). Note that at E = κ, the equations allow
only for a trivial solution pn = fn = 0. All the compact states are hybridized and
shifted their energies away, but a significant fraction stays close to flat band energy
resulting in divergence of density of states at the flat band energy (not shown here—
see [19]).

Going from local correlations to global correlations, we can consider the impact
of quasiperiodic potentials realized with onsite energies. In particular for the Aubry-
André perturbation

εin = λ cos [2π (αn + θi )] , i = 1, . . . , ν . (13.23)
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Each leg is characterized by the potential strength λ, and each sequence is offset by
all others by the phase shift parameters θi . The quasiperiodicity is introduced by the
incommensurate parameter in the argument of the cosine functions, which without
loss of generality can be set equal α ∈ R \ Q in all legs. The set of CLS will then
generate a chain of correlated Fano resonances.

Let us consider the cross-stitch network (13.12) defined with the Aubry-André
potential (13.23). Without loss of generality, we set the phase shift of the a-leg to
zero θa = 0. We will focus on the onsite energy correlations (13.21), which can
be achieved by fine tuning of the phase shift θb on the leg b. The most interesting
antisymmetric case ε+

n = 0 is obtained for θb = 1/2, which reduces (13.20) to the
following eigenvalue problem

(E + κ) pn = (ε−
n )2

E − κ
pn − 2(pn−1 + pn+1) . (13.24)

where

(ε−
n )2 = λ2 cos2(2παn) = λ2

2
[1 + cos(4παn)] . (13.25)

(13.24) then reads as a one-dimensional Aubry-André chain with energy-dependent
coefficients

Fig. 13.6 Spectrum of the cross-stitch lattice. Left plot: symmetric case. The dispersive spectrum
shows metal-insulator transition at λc = 4 (black line). The Fano state spectrum σ f is omitted
(boundaries indicated by black dashed lines). Right plot: antisymmetric case. The mobility edge
curve corresponds to (13.27). Here: blue = extended states; red: localized states; κ = 0. Left figure
taken from [19]. Right figure taken from [20]
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Ẽ pn = λ̃ cos(4παn) − (pn−1 + pn+1),

where Ẽ := E + κ

2
− λ2

4(E − κ)
, λ̃ = λ2

4(E − κ)

(13.26)

According to [48] the transition between the metallic and insulating regimes occurs
when λ̃ = 2, which results in an analytic expression for the mobility edge, λc(Ec) :

∣∣∣∣
λ2
c

4(Ec − κ)

∣∣∣∣ = 2 ⇒ λc(Ec) = 2
√
2|Ec − κ| . (13.27)

At the flat band energy EFB = κ, the mobility edge shows a square root singularity.
The coupling of the dispersive states to the giant Fano resonance, generated by the set
of CLS with quasiperiodic modulation of its hybridization strength, carves a tongue
of localized states into the metallic regime of the dispersive states, see Fig. 13.6.

In [20], mobility edge transitions between insulating andmetallic phase have been
obtained for a number of other flat band settings as well.

13.4 Nonlinearities

It has been rigorously proved that nonlinear lattice wave equations allow for the
existence of coherent time-periodic solutions localized in real space called discrete
breathers. Due to their time periodicity, discrete breathers act as time-periodic scat-
tering potentials for propagating small amplitude waves. The confined time period-
icity of the scattering potential leads to the existence of several scattering channels,
opening the door for destructive interference and Fano resonances [49–52].

It turns out, that a subclass of flat band lattices with additional nonlinearities
admit compact discrete breathers, namely solutions of the nonlinear network equa-
tions which are periodic in time and compact in space. These compact breathers
are obtained e.g. as the continuation of linear compact localized states. The contin-
uation is accompanied by a renormalization of the CLS frequency, preserving its
compactness.

Consider a one-dimensional flat band network in the presence ofKerr nonlinearity.
The model equations read

iψ̇n = H0ψn + H1ψn+1 + H †
1 ψn−1 + γF(ψn) ,

F(ψn) = (|ψ1
n|2ψ1

n, . . . , |ψν
n |2ψν

n )
T =

[ ν∑

i=1

|ψi
n|2ei ⊗ ei

]
ψn .

(13.28)

Let us consider the compact localized states (13.10) of the linear regime γ = 0. Can
this solution persist for nonzero γ �= 0 ? Since the nonlinearity acts locally, zero
amplitude sites outside the CLS are not affected. For the nonzero amplitude sites of
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the CLS (i.e. for i = 1, . . . ,U and j = 1, . . . , ν) we obtain

�Ai, j = EFB Ai, j + γA3
i, j . (13.29)

The nonlinear term yields a shift in the frequency� = EFB + γA2
i, j . This expression

is equivalent to

∀ai, j �= 0 ⇒ A2
i, j = � − EFB

γ
. (13.30)

The linear CLS can be continued as a periodic solution of the nonlinear regime with
frequency � = EFB + γA2 and compact support if and only if for all the non-zero
sites ai, j �= 0 of the linear CLS |Ai, j |2 ≡ A2, where A is some nonzero real number.
Linear CLS that satisfy this condition on their amplitude A2

i, j ≡ A2 are coined homo-
geneous CLS. Compact discrete breathers Cn0 are continued homogeneous CLS of
the linear regime with frequency � = EFB + γA2 and al, j ∈ {0,±1}:

Cn0(t) = A

{ U−1∑

l=0

vlδn,n0+l

}
e−i�t , vl =

ν∑

j=1

al, je j . (13.31)

The above results are independent of the number of bands ν as well as the classU of
the linear CLS. In the case of the cross-stitch lattice (13.12), the families of compact
discrete breathers are given by

Cn0(t) = A

(
1

−1

)
δn,n0e

−i�t . (13.32)

The quantity that parametrizes the families of breathers can be either the renormalized
frequency � of the breather amplitude A.

In order to study the scattering of the propagation of an extendedwave,we consider
a small perturbation χn(t) of a compact discrete breather Cn0 :

ψn(t) = Cn0(t) + χn(t). (13.33)

We linearize (13.28) with respect to χn and use g ≡ γA2:

iχ̇n = H0χn + H1χn+1 + H †
1 χn−1 + g

U−1∑

l=0

�l
(
2χn + χ∗

ne
−i2�t

)
δn,n0+l ,

(13.34)
where the operators

�l =
ν∑

j=1

a2l, je j ⊗ e j (13.35)
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are the projector operators of a vector on the space of a compact localized state located
between the n0-th and the (n0 +U − 1)-th unit cells. The time-dependent linearized
equations (13.34) can be mapped to a time-independent eigenvalue problem

χn = xne−i Et + y∗
ne

−i(2�−E)t (13.36)

where xn, yn are complex vectors of the two scattering channels,� = EFB + g is the
frequency of the compact discrete breather, and E is the frequency of the propagating
wave in the open channel:

Exn = H0xn + H1xn+1 + H †
1 xn−1 + g

U−1∑

l=0

�l
(
2xn + yn

)
δn,n0+l ,

(2� − E) yn = H0 yn + H1 yn+1 + H †
1 yn−1 + g

U−1∑

l=0

�l
(
2 yn + xn

)
δn,n0+l .

(13.37)

The resulting equations describe two independent scattering channels with energy
detuning 2�, and interacting through the non-zero amplitude sites of the compact
discrete breather Cn0 . Here, xn corresponds to the open channel, while yn to the
closed channel. The open channel, away from the alterations induced by the compact
breathers located between the n0-th and the n0 + (U − 1)-th unit cells, support the
spectrum of the linear flat band network. Note that the spectra of each of the two
channels are composed of several bands (flat and dispersive).

The linearized system (13.34) in the case of the cross-stitch lattice reads

i ζ̇n = −ζn−1 − ζn+1 − ηn−1 − ηn+1 − κηn + g
(
2ζn0 + e−i2�tη∗

n0

)
δn,n0 ,

i η̇n = −ηn−1 − ηn+1 − ζn−1 − ζn+1 − κζn + g
(
2ηn0 + e−i2�tζ∗

n0

)
δn,n0 .

(13.38)

Here χn = (ζn, ηn). The expansion (13.36) turns

ζn = une
−i Et + v∗

ne
−i(2�−E)t ,

ηn = wne
−i Et + z∗

ne
−i(2�−E)t ,

(13.39)

and it maps (13.38) into a time-independent problem

Eun = −[
un−1 + un+1 + wn−1 + wn+1 + hwn

] + g(2un0 + vn0)δn,n0 ,

Ewn = −[
wn−1 + wn+1 + un−1 + un+1 + hun

] + g(2wn0 + zn0)δn,n0 ,

(2� − E)vn = −[
vn−1 + vn+1 + zn−1 + zn+1 + hzn

] + g(2vn0 + un0)δn,n0 ,

(2� − E)zn = −[
zn−1 + zn+1 + vn−1 + vn+1 + hvn

] + g(2zn0 + wn0)δn,n0 .

(13.40)

Both the open (first two equations) and the closed (second two equations) of the
problem can be further rotated using the coordinate transformation (13.14), detan-
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gling the flat band states f 1n and f 2n from the dispersive ones pn and qn respectively.
In particular, also the compact localized states f 1n0 and f 2n0 located in the n0-th unit
cell (where the transversal hopping terms are found) are decoupled from the corre-
spondent dispersive states pn0 and qn0 , since the alterations and the hopping terms
have all the same strength g �= 0. A combination of the transformation (13.36) and
the detangling procedure (13.14) reduces (13.38) to the following one-dimensional
equations of the open and the closed channels:

Epn = −2(pn−1 + pn+1) − κpn + g
[
2pn0 + qn0

]
δn,n0 ,

(2� − E)qn = −2(qn−1 + qn+1) − κqn + g
[
2qn0 + pn0

]
δn,n0 .

(13.41)

Let us at first consider the case g = 0. Indeed, the dispersive bands EO
1 and EC

1 of
the open and the closed channel respectively are

EO
1 = −κ + [−4, 4] ,

EC
1 = 3κ + [−4, 4] (13.42)

It follows that for κ ≤ 2 (crossing of the flat band EFB and the dispersive band E1

of the linear cross-stitch lattice), the dispersive bands overlap EO
1 ∩ EC

1 �= ∅. For
κ > 2 instead (gapped flat band EFB and dispersive band E1 of the linear cross-
stitch lattice), the dispersive bands of the open and closed channels are disjoint
EO
1 ∩ EC

1 = ∅.
Next, let us consider (13.41) when both channels are decoupled. The closed chan-

nel admits a localized solution

qn = Px |n−n0| , |x | < 1, P �= 0 ,

EL = 3κ + 2g − 2
√
4 + g2 .

(13.43)

The energy EL of this local mode belongs the interval E ≡ [3κ − 4, 3κ], where
EL → 3κ − 4 for g → 0 and EL → 3κ for g → ∞. Therefore, the bound states
(13.43) resonate with the dispersive band EO

1 = [−κ + 4,−κ + 4] of the open chan-
nel (i) for any g > 0 if |κ| < 1; (ii) only for g ≤ κ(2 − κ)/(κ − 1) if 1 < κ < 2; the
(iii) never if κ > 2.

To compute the transmission coefficient T we use the transfer matrix approach
discussed and used in [12, 51, 52]. Let us define a propagating wave along the pn
chain

pn =
{

τeik(n−n0) + σe−ik(n−n0) , n < n0
ρeik(n−n0) , n ≥ n0

, (13.44)

around the impurity located in the site n0 (we recall τ + σ = ρ). The transmission
coefficient T (k) = |ρ/τ |2 follows as
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Fig. 13.7 Transmission
coefficient T as a function of
the momentum k. Blue
g = 4, Orange g = 5, Green
g = 6

T (k) = 16 sin2 k

16 sin2 k +
[
2g + g2√

(2�−Ek+κ)2−16−2g

]2 . (13.45)

An additional condition required for the transmission coefficient T is that the
argument of the square root of the denominator has to be larger than zero for
any wave vector k. This requirement translates to the inequality g ≥ 4 − κ. Then,
a Fano resonance occurs when the denominator diverges, or equivalently when√

(2� − Ek + κ)2 − 16 − 2g = 0. This condition reads as

T (k) = 0 ⇔ Ek = EL ⇔ k = arccos

[
κ + EL

4

]
. (13.46)

To summarize, in the nonlinear cross-stitch lattice, a Fano resonance occurs if and
only if κ < 2, since otherwise the bound state of the closed channel (13.43) is out of
resonance with the dispersive band of the open channel. Furthermore, the condition
(13.46) is subject to the requirement g ≥ 4 − κ, which translates to 4 − κ ≤ g ≤
κ(2 − κ)/(κ − 1), if 1 < κ < 2. In Fig. 13.7 we show the transmission coefficient
T as function of the wave vector k in the case of κ = 0 for different values of
g ≥ 4. Indeed, zeros of the curves appear, indicating absence of transmission of a
propagating wave.

13.5 Conclusions

In this chapter, we have discussed phenomena of total reflection of propagatingwaves
in flat band networks, due to impurities, disorder and quasiperiodic potentials, and
to compact discrete breathers induced by the presence of nonlinearities. These phe-
nomena have been outlined generally for classes of flat band lattices, and they have
been analyzed in detail in the case of the cross-stitch lattice. The flat band lattices
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are interesting candidates to visualize Fano resonances because of the presence of
compact localized states which serve as Fano states in the presence of proper pertur-
bations. The defect-induced Fano resonance has been shown to result in complete
suppression of the propagation. Many defects in lattice can result in distinctive trans-
mission profile characteristics and a macroscopic number of defects takes the role
of a disorder which, either correlated or uncorrelated, has a profound effect on the
localization of dispersive states with anomalous scaling properties. Experimentally,
flat band network Fano resonances can be studied in photonic crystals, optical lattices
or even electronic circuits. Further, flat band networks and their Fano resonances can
be used to engineer different types of spectral singularities or mobility edges in lat-
tice systems and to control wave transport. In the presence of nonlinearities, novel
compact discrete breather solutions turn into tunable Fano resonance scatterers.
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Chapter 14
Multiple-Resonance Interference
in Metallic Nanohole Arrays

Munehiro Nishida and Yutaka Kadoya

Abstract In metallic nanohole arrays, the surface plasmon polaritons on the metal
surfaces and the waveguide modes in the nanoholes are combined to form multipole
surface plasmons. If these surface bound modes appear in a narrow frequency range,
interference betweenmultiple resonances and yields various resonant peak-dip struc-
tures in transmission, reflection and absorption spectra. In this chapter, we discuss
the theoretical details of the mechanism of the multiple-resonance interference in
metallic nanohole array systems using spatial and temporal coupled mode methods.

14.1 Introduction

At the interface between a metal and a dielectric, a kind of surface electromag-
netic (EM) mode, called surface plasmon polariton (SPP), is created by the coupling
between the plasma oscillation in the metal and the EM wave in the dielectric. The
SPP excitation confines EMfields near the interface, and causes strong enhancement,
which depends strongly on the environment near the metallic surface. Utilizing this
peculiarity of SPP, many researches have been conducted aiming to realize highly
sensitive biosensors and nanoscale optical devices, controlling the SPP characteris-
tics by metallic nanostructures [1].

Ametallic nanohole array is one of the simplest nanostructures; ametallic filmper-
forated by a periodic array of sub-wavelength holes. As was found by Ebbesen et al.
[2], the light transmission through this system can be resonantly enhanced by orders
of magnitude larger than the expectation of standard aperture theory [3, 4]. Until
now, it is revealed that this extraordinary optical transmission (EOT) phenomenon is
basically a result of resonances with surface EM modes localized around the metal
film [5]. Such surface EM modes also yield anomalous structure in the spectrum
of one-dimensional gratings, which is called Wood’s anomaly [6–8]. Thus, surface
EM modes composed of SPPs play major role in the optical response of the metallic
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nanostructures. However, it is important to recognize that the surface EM modes in
these systems are not pure SPPs at the flat metal-dielectric interface (SPF) but hybrid
modes composed of various elements as shown in this chapter.Much confusion about
the origin of EOT was caused by the lack of this recognition.

One of the most important ingredients of this system is the existence of slowly
decaying evanescent waveguide modes in a nanohole. Using these modes, the EM
field can penetrate rather deeply into the metal region and produce a kind of surface
EMmode that has similar property with SPP. This mode appears evenwhen themetal
behaves as a perfect electric conductor (PEC)where SPFdoes not exist [9], and is now
commonly called spoof surface plasmon. Moreover, the (spoof) surface plasmons at
both sides of the film are coupled through the evanescent fields in the nanoholes,
and form two separate “plasmon molecule” levels [10]. In a symmetric environment
of equal dielectric constants in the regions of incidence and transmission, there
are two types of surface bound modes with symmetric and anti-symmetric charge
distributions [11, 12]. The symmetric mode is considered to be a kind of bonding
(B) mode similar to the short-range SPP in a thin metallic film. On the other hand,
the anti-symmetric mode is an anti-bonding (AB) mode similar to the long-range
SPP [13, 14]. In recent paper [12], we have also shown that when the size of the
nanohole occupies a large portion of the unit cell, the SPPs at both sides of the
film are combined by the higher order waveguide modes of the holes to produce
multipole surface plasmons: coupled surface plasmon modes with multipole texture
on the electric field distributions.

Another important ingredient is the coupling with the external radiation modes.
The SPF is a true surface bound modes whose dispersion is located outside the light
cone.However, since themetallic nanohole array is a kind of diffraction grating, SPPs
are diffracted and form Bloch-wave modes inside the light cone. Therefore, the sur-
face EMmodes in this system are basically considered as leaky surface boundmodes
(LSBMs) which have the coupling with external radiation fields. The asymmetric
line shape observed in the transmission spectra is attributed to the Fano resonance
produced by the interference between a directly transmitted wave and a resonantly
transmitted wave with the excitation of a leaky bound mode [15–17]. It should be
noted that the coupling between the LSBM and the external radiation mode can be
changed drastically at the Rayleigh wavelength where the onset of a diffraction order
occurs. This may cause abrupt change in the spectrum and yield so-called Rayleigh
anomaly in one-dimensional gratings [7, 18].

In this way, there appear various LSBMs with different symmetry that should
become degenerate or overlapping. In other words, multiple resonances with differ-
ent darkness according to their multipole natures coexist within a narrow range of
frequencies. In this case, it is expected that the interference between the radiations
from multiple resonances yields sharp peak-dip structure in the optical spectra [19–
21]. The electromagnetically induced transparency (EIT) found in atomic physics
[22] is such a phenomena, in which destructive quantum interference between dif-
ferent excitation pathways to the excited state result in a narrow transparent window
within a broader absorption band. Extreme dispersion createdwithin the transparency
window leads to the dramatic reduction of the group velocity of the light [23], and
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enables to store a light pulse [24, 25]. It has been shown that EIT-like phenomena can
be realized in coupled optical resonator systems due to classical destructive inter-
ference. This phenomena is called coupled-resonator induced transparency (CRIT)
[26, 27].

Since the essential nature of EIT-like phenomena is the interference due to the
coupling between the two oscillators (two LSBMs), simple classical oscillator model
can explain the qualitative behavior [28]. However, in order to understand the actual
optical response caused by these coupled oscillators, it is necessary to take into
account that this system is an open wave system connected to the external radia-
tion fields. Especially, there are two types of coupling between the surface modes,
namely, the direct internal coupling through near field and the external coupling via
the interference of far field and their magnitude relationship affects the formation
of resonance states. In addition, the LSBMs have two types of loss, namely, internal
material loss and external radiative loss. There is the case when the EIT-like phe-
nomenon leads to the enhancement of absorption instead of reducing it, due to the
effect of internal loss [29]. Therefore, we must use theoretical treatment which can
deal with the coupling with external radiative field in order to describe the multiple
resonance interference in the metallic nanohole array systems.

In this chapter, we try to give the thorough explanation of the essential mechanism
of resonant optical response of the metallic nanohole array systems, based on the
two types of coupled-mode methods; the spatial coupled-mode (SCM)method based
on a modal expansion of the fields in different spatial regions [12, 30, 31], and the
temporal coupled mode (TCM) method based on the time-dependent formalism for
optical resonators connected to the external radiation via a few ports [27, 32, 33].

14.2 Surface Plasmon Polariton in a Metallic Nanohole
Array

The system we are concerned in this chapter is square lattice of nanoholes perforated
in a thin gold film with the thickness of h on a substrate whose refractive index (RI)
is n2, shown in Fig. 14.1a. The film is soaked in a medium whose RI is n1. The radius
of the hole is denoted by r , and the period of the array is L = 0.5µm. The incident
light is assumed to be p-wave, and the projection of the wave vector onto xy plane,−→
k , is directed along the x-axis, i.e.

−→
k = (kx , 0).

Basically, the LSBMs in this system are composed of SPP at the gold-dielectric
interfaces. Therefore, the dispersion relations of LSBMs should lie near those of
SPPs. The dispersion relation of SPF is expressed as [1]

∣
∣
∣
−→
k
∣
∣
∣ = ω

c

√
εiεm

εi + εm
, (14.1)
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(a) (b)

Fig. 14.1 a Schematic diagram of a square lattice of nanoholes perforated in a thin gold film.
b Empty-lattice band of SPP (solid lines). Dotted lines indicate the Rayleigh frequency at the
metal-substrate interface

whereω is the angular frequency, c is the speed of light in a vacuum.The permittivities
of the i th dielectric and themetal are indicated by εi = n2i and εm, respectively. In the
small radius limit of the nanohole, only the diffraction effect remains and so-called
empty-lattice band is formed as shown in Fig. 14.1b. This empty-lattice band gives
the reference for the band structure of the LSBMs, but the actual shape is deformed
considerably near the cutoff frequency of the fundamental waveguide mode of the
nanohole, as shown in the following sections.

14.3 Method

We use two types of coupled-mode method to calculate the spectra of this system.
One is based on a modal expansion of the fields in different spatial regions [12, 30,
31]. Here, we call it spatial coupled-mode (SCM) method. The other is based on the
time-dependent formalism for optical resonators connected to the external radiation
via a few ports [32]. Here, we call it temporal coupled-mode (TCM) method.

14.3.1 Spatial Coupled-Mode (SCM) Method

The SCM method derives a set of coupled equations for waveguide modes [12, 30,
31]. The EM fields in the free space surrounding the metal film are expressed by a
linear combination of plane-wave modes specified by the parallel wave vector

−→
k =−→

k0 + −→
K and the polarization σ = p or s with

−→
k0 and

−→
K being the incident parallel

wave vector and the reciprocal lattice vector of the nanohole array, respectively. The
EM fields in the nanohole array region are expanded by waveguide modes.
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We use Dirac’s notation to describe the electric field components parallel to the
xy-plane for the mode α, such that

−→
Eα(

−→r ) = (Eαx , Eαy

) = 〈−→r ∣∣α〉 , (14.2)

Here, the mode index α represents the full information of the modes of a nanohole,
such as the “HE11 horizontal mode” [4]. It may also represent the parallel wave
vector

−→
k and the polarization σ(= p or s) for plane-wavemodes. Since themagnetic

field components parallel to the xy-plane are determined by the position-dependent
admittance [12], we use the admittance operator Ŷ to express them, such that

−→
Hα(

−→r ) ≡ −ez × Hα(
−→r ) = (Hαy,−Hαx

) =
〈−→r
∣
∣
∣Ŷ
∣
∣
∣α
〉

. (14.3)

For the plane-wave mode in the i th media, this relation is reduced to

〈

r
∣
∣
∣Ŷ
∣
∣
∣
−→
k σ
〉

= Y−→
k σ

〈−→r
∣
∣
∣
−→
k σ
〉

, (14.4)

Y−→
k p = 1

Z0

kz
kω

, Y−→
k s = εi

Z0

kω

kz
, (14.5)

where Z0 and kω are the impedance and the wavenumber in the vacuum, εi = n2i is
the relative permittivity in the i th homogeneous medium, and kz is the z-component
of the wave vector.

We define the internal product of the two fields as

〈α |β 〉 ≡
∫∫

dxdy
−→
Eα

∗ · −→
Eβ, (14.6)

〈

α
∣
∣
∣Ŷ
∣
∣
∣β
〉

≡
∫∫

dxdy
−→
Eα

∗ · −→
Hβ =

∫∫

dxdy
[

E∗
α × Hβ

]

z , (14.7)

where ∗ denotes the complex conjugate. Here, the mode fields are normalized by
〈α |α 〉 = 1. Then, the orthogonality condition for the plane-wavemodes is expressed
as,

〈−→
k σ
∣
∣
∣Ŷ
∣
∣
∣
−→
k ′σ′
〉

= Y−→
k σ

δ−→
k

−→
k ′δσσ′ . (14.8)

However, due to the metal loss, the orthogonality condition for the waveguide modes
should be modified as

〈

α∗
∣
∣
∣Ŷ
∣
∣
∣β
〉

≡
∫ −→

Eα · −→
Hβdxdy = Yαδαβ, Yα ≡

〈

α∗
∣
∣
∣Ŷ
∣
∣
∣α
〉

, (14.9)

based on the Lorentz reciprocity theorem [34–36].
Using these definitions, the coupled-mode equations can be derived in a similar

manner as the original derivation [31]. Imposing the continuity condition of EM
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fields at the openings of the holes and the surface impedance boundary conditions
(SIBCs) [37] at the surfaces of the metal film, we can derive a coupled system of
equations for the coefficients of waveguide modes as follows:

⎧

⎨

⎩

∑

β

(

G−
αβ Aβ + G+

αβe
ikβzh Bβ

)

= Iα,
∑

β

(

G ′+
αβe

ikβzh Aβ + G ′−
αβBβ

)

= 0,
(14.10)

where Aα (Bα) is the coefficient for the mode α propagating in the+z (−z) direction
at the bottom (top) interface. Here, the matrix elements G±

αβ (G ′±
αβ) controls the

EM coupling between waveguide modes at the bottom (top) interface, Iα takes into
account the direct initial illumination over thewaveguidemodeα. They are expressed
as

G±
αβ = Yαβ ∓ Yαδαβ, (14.11)

Yαβ =
∑

−→
k σ

Y−→
k σ

f +−→
k σ

〈

α∗
∣
∣
∣
−→
k σ
〉 〈−→

k σ
∣
∣
∣β±
〉

, (14.12)

Iα = 2
Y−→
k0 σ0

f +−→
k0 σ0

〈

α∗
∣
∣
∣
−→
k0σ0

〉

, (14.13)

where
〈−→
k σ
∣
∣
∣α±
〉

=
〈−→
k σ
∣
∣
∣α
〉

± ZS

〈−→
k σ
∣
∣
∣Ŷ
∣
∣
∣α
〉

, (14.14)

f ±−→
k σ

= 1 ± ZSY−→
k σ

, (14.15)

and Zs is the surface impedance given by Zs = Z0√
εm

with εm being the relative per-

mittivity of the metal. The definition of G ′±
αβ is the same as that of G±

αβ except that
it is calculated using n1 instead of n2. Additionally, the transmission and reflection
coefficients are expressed as

t−→
k σ

= 1

f +−→
k σ

∑

α

{〈−→
k σ
∣
∣
∣α+
〉

Aαe
ikαzh +

〈−→
k σ
∣
∣
∣α−
〉

Bα

}

, (14.16)

r−→
k σ

= −
f −−→
k σ

f +−→
k σ

δ−→
k

−→
k0

δσσ0

+ 1

f +−→
k σ

∑

α

{〈−→
k σ
∣
∣
∣α−
〉

Aα +
〈−→
k σ
∣
∣
∣α+
〉

eikαzh Bα

}

. (14.17)

In the estimation of
〈−→
k σ
∣
∣
∣Ŷ
∣
∣
∣α
〉

, we use the following approximation,
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〈−→
k σ
∣
∣
∣Ŷ
∣
∣
∣α
〉


 Y−→
k0 σ,α

〈−→
k σ
∣
∣
∣α
〉

, Y−→
k0 σ,α

≡
〈−→
k0σ
∣
∣
∣Ŷ
∣
∣
∣α
〉

〈−→
k0σ
∣
∣
∣α
〉 , (14.18)

in order to keep the reciprocity between the cases of incidence from above and
incidence from below.

If we consider Yα as the characteristic admittance of a transmission line α,
and the electric field,

−→
E α (r) = (Aαeikαz z + Bαe−ikαz z

) 〈−→r |α〉, and magnetic field,
−→
H α (r) = (Aαeikαz z − Bαe−ikαz z

) 〈−→r
∣
∣
∣Ŷ
∣
∣
∣α
〉

, as the voltage and current waves trav-

eling in that line, we can describe the elements in the CM equation (14.10) by the
language of the circuit theory [38]. In this point of view, Iα denotes the input current
to the transmission line α, and Yαβ denotes the admittance of the connection circuit
connecting the transmission lines α and β. This connection circuit is composed of
the dielectric region and the interface with the metal region.

14.3.1.1 Leaky Surface Bound Mode (LSBM)

LSBMs are solutions of Maxwell’s equation that can oscillate in time and hold EM
energy within the object for a considerable period of time in the absence of incident
light. Formally, we would have to derive a non-vanishing output for zero input.
In the CM method, the quasi-bound modes correspond to the non-trivial solutions
of (14.10). In searching for the LSBMs, we must adopt out-going-wave boundary
condition, where one of the branches of the multi-valued function kz must be chosen
obeying the condition that Rekz > 0 for |Rekz| > |Imkz| or Imkz > 0 for |Rekz| <

|Imkz| [39].

14.3.2 Temporal Coupled-Mode (TCM) Method

We can consider the nanohole array as an optical resonator, and the diffracted waves
in the free space as channels connected to the resonator. The temporal coupled mode
method has been developed to deal with such a problem [32]. This method is based
on the time-dependent formalism for optical resonators connected to the external
radiation via a few ports. This method has been applied to the problem of optical
transmission through a photonic crystal to explain the asymmetric Fano line shape in
the spectra [33]. This theory has been extended to themultiple ports and losslessmul-
timode cavity systems [27]. In this section, we will show the version of two-channel
system, which can be applied to our system when only the zero-order diffraction

is radiative. In this case, the two channels correspond to
∣
∣
∣
−→
k0 p
〉

for upper and lower

dielectric regions. We assume that the system is reciprocal and has inversion symme-
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try in xy-plane. In this case, the reduced scattering matrix for zero-order diffracted
waves can be expressed as a symmetric matrix [40].

14.3.2.1 Scattering Matrix for a Two-Channel System

If the internal and radiative losses are small enough, the dynamic equations for the
amplitudes of the n modes of an optical resonator can be written in the following
form [27, 32, 33]:

da
dt

= −i (� − i�i − i�e) a + C t |s+〉 , (14.19)

|s−〉 = S0 |s+〉 + Ca, (14.20)

where a = (a1, a2, . . . , an) is the vector which represents the amplitudes of the res-
onant modes and � = diag (ω1,ω2, . . . ,ωn) and �i = diag (γi1, γi2, · · · , γin) are
n × n diagonal matrices which represent resonance frequencies and decay rates due
to the internal loss, respectively. The n × n matrix,

�e =

⎛

⎜
⎜
⎜
⎝

γ1 γ12 · · · γ1n
γ∗
12 γ2 · · · γ2n
...

...
. . .

...

γ∗
1n γ∗

2n · · · γn

⎞

⎟
⎟
⎟
⎠

, (14.21)

represents the decay rates due to the radiative loss (diagonal elements) and the exter-
nal coupling between the resonant modes induced by the radiation in the channels
(off-diagonal elements). The amplitude of EM fields in the input and output channels

are given by |s±〉 =
(

s1±
s2±

)

.The 2 × nmatrixC =
(

c11 c12 · · · c1n
c21 c22 · · · c2n

)

, represents the

couplings between the resonant modes and the channels. The 2 × 2 matrix

S0 = eiφ
(

rdeiφr itd
itd rde−iφr

)

, (14.22)

represents the scattering matrix that describes the non-resonant direct scattering
processes, which are assumed to obey energy conservation and reciprocity, i.e. S0 is
unitary and symmetric [32, 33]. Here, φ, φr , rd and td are real numbers and fulfill
r2d + t2d = 1.

Here, we assume that the internal loss is small enough that�e andC do not depend
on it. Then, following the discussion in the lossless case [27] and relying upon only
energy conservation and time-reversal symmetry, we can derive

C†C = 2�e, S0C
∗ = −C. (14.23)
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Then, the total scattering matrix S that obeys |s−〉 ≡ S |s+〉 is given by

S = [I + iC [H − ω I ]−1 C†
]

S0 = S0 − iC [H − ω I ]−1 Ct , (14.24)

H ≡ � − i�i − i�e, (14.25)

where I denotes the n × n unit matrix.

14.3.2.2 Fano Resonance in a Single Mode System

If there is only one resonant mode, the transmittance becomes,

T = t2d
(δ + Re [α])2 + (1 + Im [α])2

δ2 + 1
, (14.26)

δ = (ω − ω1) /(γ1 + γi1), (14.27)

α = c11c21e
−iφ/ {td (γ1 + γi1)} , (14.28)

and gives asymmetric transmission spectrum.
Especially, when the system has mirror symmetry in z-direction, (14.23) leads

[27]

c11c21 = γ1e
iφ (rd + ip1td) , (14.29)

where p1 = 1 for symmetric resonant mode and p1 = −1 for anti-symmetric reso-
nant mode. In this case, The reflection coefficient r and transmission coefficient t
are expressed as

r = rd + iγ1 (rd + i p1td)

ω̃1 − ω − iγ1
, t = itd + p1

iγ1 (rd + ip1td)

ω̃1 − ω − iγ1
. (14.30)

Then, the transmittance can be expressed as

T = t2d
(δ + p1ηq)2 + η2

δ2 + 1
, (14.31)

q = rd
td

, η = γ1

γi1 + γ1
, (14.32)

which reduces to the Fano formula in the system without internal loss (η = 1).

14.3.2.3 Two Mode System

Let’s consider two resonant mode case. Here, we assume mirror symmetry in z-
direction. Using (14.23), we can show that [27, 41, 42]
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�e =
(

γ1
√

γ1γ2δp1,p2√
γ1γ2δp1,p2 γ2

)

, C =
( √

γ1
√

γ2
p1

√
γ1 p2

√
γ2

)

, (14.33)

where pm represents the mirror symmetry in z-direction for the modem(= 1, 2), and
we take pm = 1 for symmetric mode, and pm = −1 for anti-symmetric mode. The
resonant behavior is quite different between the two cases: two resonant modes have
opposite symmetry (p1 �= p2) or same symmetry (p1 = p2) [27]. In the following,
we use the notation ω̃m = ωm − iγim .

Case (1) p1 = −p2 = 1:
In this case, there is no external coupling between the two resonant modes. The
reflection coefficient r and transmission coefficient t are expressed as

r = rd + iγ1 (rd + i td)

ω̃1 − ω − iγ1
+ iγ2 (rd − i td)

ω̃2 − ω − iγ2
, (14.34)

t = itd + iγ1 (rd + itd)

ω̃1 − ω − iγ1
− iγ2 (rd − itd)

ω̃2 − ω − iγ2
. (14.35)

These equations can be simplified by using the coefficients for a single mode
(14.30) as

r = r1 + iγ2 (r1 − t1)

ω̃2 − ω − iγ2
, t = t1 − iγ2 (r1 − t1)

ω̃2 − ω − iγ2
. (14.36)

From these expressions, we can deduce that if the radiative damping of bonding
mode is large, the transmission process via the bonding mode can play a role of non-
resonant direct process, and produce Fano resonance. Indeed, when γi1 
 γi2 
 0,
td 
 0, and ω 
 ω2, the reflectance and transmittance can be expressed in a form of
Fano formula:

R 
 |r1|2
(

δ − 1
q

)2

δ2 + 1
, T 
 |t1|2 (δ + q)2

δ2 + 1
, (14.37)

q = i
r1
t1


 ω1 − ω2

γ1
, δ = (ω − ω2) /γ2. (14.38)

In this case, the asymmetry parameter q is determined by the difference between the
resonance frequencies. If ω1 < ω2, q is negative and the frequency of peak is lower
than ω2 and that of dip is higher than ω2. At the frequency between ω1 and ω2, both of
the transmission phases acquired during the two resonant processes are considered to
be about π, because π phase jump should occur around the resonance frequency ω1

for the symmetric mode and the transmission phase of anti-symmetric mode should
have π from the start due to the sign change along z direction. Therefore, it is natural
that constructive interference occurs between ω1 and ω2.
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Case (2) p1 = p2 = p:
In this case, the external coupling shifts the poles of S, namely, the resonant frequen-
cies from the original values ω̃m to the values which obey

�12 (ω) ≡ det [H − ω I ] = (ω̃1 − ω − iγ1) (ω̃2 − ω − iγ2) + γ1γ2 = 0. (14.39)

The reflection and transmission coefficients are expressed as

r = rd + rd + iptd
�12 (ω)

{iγ1 (ω̃2 − ω) + iγ2 (ω̃1 − ω)} , (14.40)

t = itd + p
rd + iptd
�12 (ω)

{iγ1 (ω̃2 − ω) + iγ2 (ω̃1 − ω)} . (14.41)

If the external coupling γ1γ2 is neglected in �12, these equations reduce to those in
the case (1) except the sign of the asymmetry parameter.

14.4 Waveguide Modes in a Metallic Nanohole

Aswe show in the following sections, the propagation constant kz of the fundamental
waveguide mode of the nanohole, HE11 mode, is the key parameter to determine the
resonance of this system. Especially, at the cutoff frequency, kz becomes nearly zero
and the zero-order Fabry-Perot resonance occurs [30, 43].

Figure14.2a shows the frequency dependence of the attenuation constants, Im(kz),
for the two TE-like modes, i.e. fundamental HE11 mode and the second order HE21

mode. You can see the dipolar and quadrupolar natures of these modes from the
electric field distribution shown in 14.2b.

(a)

(b)

Fig. 14.2 a Attenuation constants of nanohole waveguide modes. Solid (dotted) lines indicate the
values calculated using real (lossless) gold permittivity.bElectric field distribution of thewaveguide
modes
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14.5 Fano Resonance and Short-Circuit Effect

Figure14.3a shows the zero-order transmission spectra together with the band struc-
ture of surface bound modes (solid lines) calculated using SCMmethod. You can see
that band structure of surface bound modes is created near the empty-lattice band of
SPP and the resonance peaks follow them.

The blue solid line in Fig. 14.3b represents the profile of transmission spectrum
at � point. The light-blue dotted line is obtained by the fitting using (14.26) where
the resonance frequency ω1 and the decay rate γ1 + γi1 are determined by the SCM
calculation. The obtained formula for this spectrum is T = (0.095)2 (δ−5)2

δ2+1 . Thus,
the original Fano formula gives the good fit.

Another striking feature in these transmission spectra is that the transmission is
basically quite low on the empty-lattice bands of SPP (dashed lines). This can be
clearly explained using SCM theory [5]. From (14.12), you can see that the effective
admittance of “connection circuit” Yαβ diverges when f +−→

k p
= 1 + ZSY−→

k p 
 0. This

condition is fulfilled if kx 
 √
εdkω

√
1 − εd/εm 
 kω

√
εdεm

εd+εm
, namely, on the disper-

sion of SPF. Therefore, waveguide mode channels are short-circuited and decoupled
from the incident channel on the empty-lattice bands of SPP.

(a)
(b)

Fig. 14.3 a Zero-order transmission spectra for a square lattice of nanohole with r = 0.1µm in
air (n1 = 1) on glass substrate (n2 = 1.5). Light-blue solid lines indicate the dispersion of resonant
modes, and light-blue dashed (dotted) lines indicate the empty-lattice bands of SPP (Rayleigh
frequency) at the metal-substrate interface. Pink dashed and dotted lines indicate those at metal-air
interface. b Transmission spectra for normal incidence. Blue solid line indicates the transmission
spectrum calculated using SCM method. Light blue dotted line represents the fitting using the
Fano formula. Black vertical lines indicate the resonance frequency, the frequency of SPF, and the
Rayleigh frequency
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14.6 SPP Molecule and Spoof Surface Plasmon

In addition to the diffraction of SPP, there is another effect induced by the nanohole
array. EM field can penetrate into the metal region using evanescent or propagating
waveguide modes of nanoholes. The SPPs at top and bottom surfaces are considered
to be coupled by the waveguidemodes and produce “SPPmolecule” [10]. Especially,
in a system with mirror symmetry in z-direction, namely, n1 = n2 case, there should
appear two types of surface boundmodes with symmetric and anti-symmetric charge
distributions [11, 12]. The symmetric mode is considered to be a kind of bonding
(B) mode similar to the short-range SPP in a thin metallic film; on the other hand the
anti-symmetric mode is an anti-bonding (AB) mode similar to the long-range SPP
[14].

Figure14.4a shows the zero-order transmission spectra for normal incidence to a
lattice of nanohole with the radius of r = 0.1µm inwater. Eliminating the imaginary
part of dielectric constant of gold, there appear two peaks as in the dashed line.
The broad resonance at lower frequency is a B mode, which has symmetric charge
distribution and the sharp resonance at higher frequency is an AB mode, which has
anti-symmetric charge distribution as shown in Fig. 14.4b. The peak height is highly
reduced when the real-gold permittivity is used as in the solid line of Fig. 14.4a.
These results indicate that the radiative loss of AB mode is so small that the energy
is kept around the metal region for a long period of time during which most of the
energy is dissipated by the internal loss of gold.

Figure14.5a shows themetal thickness (h) dependence of the transmission spectra
for r = 0.1µm case. In this case, since the cutoff frequency of the fundamental
mode is higher than the resonance frequencies, the coupling between the SPPs at top

(a) (b)

Fig. 14.4 a Zero-order transmission spectra for a square lattice of nanohole with the radius
r = 0.1µm and the film with thickness h = 0.1µm in water (n1 = n2 = 1.333). b Electric field
distributions in the xz plane for a bonding (B) mode and an anti-bonding (AB) mode
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Fig. 14.5 aMetal thickness dependence of the zero-order transmission spectra for a square lattice of
nanohole with the radius r = 0.1µm and b r = 0.15µm in water (n1 = n2 = 1.333). c Dispersion
relation of surface bound modes obtained by metamaterial treatment for r = 0.1µm and d r =
0.15µm

and bottom interfaces is induced by the decaying mode. Therefore, the strength of
coupling is reduced as h becomes large, and above 0.4µm the two peaks merges into
a single peak whose position coincide with the frequency of the surface bound mode
at a single interface on a semi-infinite metal (h = ∞) shown by the black dashed
vertical line. Other dashed vertical lines represent the frequency of LSBMs found
by SCM calculation. You can see that the transmission peaks deviate from the actual
resonance frequencies. This is due to the interference between the two resonances
as shown in the following sections.

Figure14.5b also shows the h-dependence of the transmission spectra for larger
hole case with r = 0.15µm. In this case, the cutoff frequency of the fundamental
mode is in the frequency range where resonances appear, and it seems to change
the resonance behavior considerably. The broader resonances of B modes are almost
stuck near the cutoff frequency, which is very close to the frequency of the surface
boundmode at a single interface (h = ∞).You can see that another resonance appears
around 420 THz in the thicker film above 0.5µm. This resonance is induced by the
first-order Fabry-Perot resonance in the nanohole as shown below.
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In order to reveal the role played by the waveguide mode, we approximately
analyze the dispersion relation of the SPP molecule produced by the fundamental
waveguide mode using metamaterial treatment as in [5], where only p-polarized
waves and the zero-order diffractionmode are considered in (14.10). In a systemwith
mirror symmetry in z-direction, the coefficients for the waveguide mode should obey
Bα = +Aα (symmetric) or Bα = −Aα (anti-symmetric). Neglecting the imaginary
part of the permittivity of gold εm, the condition for the existence of surface bound
mode becomes

G+
ααe

ikαzh/2 ± G−
ααe

−ikαzh/2 = 0, (14.42)

G±
αα = Ykxp

(
1 − ZsYkxp,α
1 + ZsYkxp

)

|S|2 ∓ Yα, (14.43)

|S|2 ≡ 〈α∗ |kxp
〉 〈kxp| α〉 = |〈kxp| α〉|2 . (14.44)

Solving these equations, the dispersion relations of the SPPmolecules for symmetric
B mode (+) and anti-symmetric AB mode (−) are given by

k±
x = √

εkω

√
√
√
√1 + ε

|εm|

{

1 + |S|2 (γ±
√

εm − Z0Ykxp,α
)

Z0Yα

}2

, (14.45)

γ± ≡ e−ikαzh/2 ± eikαzh/2

e−ikαzh/2 ∓ eikαzh/2
. (14.46)

From (14.45), we can see that the dispersion relation is reduced to that of SPF
within the SIBC approach, if the coupling between the waveguide mode and the
diffraction mode is negligibly small (|S|2 
 0). However, when γ± diverges, the
wavenumber also diverges. Although the loss of gold prevents form diverging, this
divergence property remains and the dispersion relation flattens when the denomi-
nator of γ± approaches zero, which is nothing but the condition for the Fabry-Perot
resonance. In other words, the even- (odd-) order Fabry-Perot resonances strongly
pull the dispersion of B (AB) mode away from the SPF dispersion into the Fabry-
Perot resonance frequency. This situation also applies in the zero-order Fabry-Perot
condition, which occurs at the cutoff frequency of the waveguide mode. In the zero-
order Fabry-Perot condition, the wave number diverges even in the semi-infinite
(h → ∞) limit where γ± → 1, since Yα also goes to 0 at cutoff frequency. This is
just the spoof surface plasmon.

Figure14.5c, d show the dispersion relation of (14.45) together with the SPF
dispersion (black dotted line) and the Fabry-Perot resonance frequencies (pink dotted
line for zero-order and light-blue dotted line for first-order). In the case of r =
0.15µm, the dispersion of B mode has the property of spoof surface plasmon and
largely deviates from the dispersion of SPP. On the other hand, we can think that the
AB mode is SPP-like.
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14.7 Multipole Surface Plasmon Polariton

Figure14.6 shows the spectra of (a) zero-order transmission, (b) zero-order reflection
and (c) total absorption. The panel (d) shows the dispersion relation of the four
LSBMs (two bonding modes, B1 and B2, shown by red dashed lines, and two anti-
bondingmodes,AB1 andAB2, shownbyblue dotted lines) togetherwith theRayleigh
frequencies (black dotted lines) and the empty-lattice band of SPP (black solid lines).
The dispersion relations of the surface bound modes are also shown in the panels
(a)–(c). We can clearly see that the resonant peaks or dips in the spectrum follow
the dispersion relations of LSBMs. Although there is abrupt change of the spectra
on the line of the Rayleigh frequency, the profile of change is quite different from
the resonant behavior. We conclude that the resonant structure of spectra is produced

(a) (b)

(c) (d)

Fig. 14.6 Zero-order a transmission, b reflection, and c total absorption spectra for a square lattice
of nanohole with the radius of 0.15µm in water. The bonding (anti-bonding) modes are shown by
the pink dashed (light blue dotted) lines. Black solid (dotted) lines in d indicate the empty-lattice
bands of SPP (Rayleigh frequency) at the metal-water interface
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Fig. 14.7 Electric field distributions of resonance modes at 2nm above the surface of the golden
film for kx = 0

by LSBMs. However, it is worth noting that the dispersion lines of LSBMs become
discontinuous or even vanish on the Rayleigh frequency lines. In the case of one-
dimensional gratings on a substrate, there is a situation that a sharp peak appears just
on the Rayleigh line due to this effect [44].

Figure14.7 shows the electric field distributions at 2nm above the surface of the
gold film for the surface bound modes for kx = 0. We can see dipole (B1, AB2) and
quadrupole (B2, AB1) texture for each branch of the surface bound modes.

In order to see the role played by the waveguide modes to create these multipole
textures, we have analyzed the contribution of waveguide modes for each branch.
Figure14.8 shows the rate of contribution of the dipolar HE11 mode (a, c) and the
quadrupolar HE21 mode (b, d). The bright color means that the rate of contribution
of the mode is high. It is clearly seen that each branch of the B modes is mainly
created by a single waveguide mode. This means that spoof-plasmon-like B modes
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(a) (b)

(c) (d)

Fig. 14.8 Rate of contribution of each waveguide mode to create bonding bound modes calculated
using the coupled-mode method. Insets show the electric field distributions of waveguide modes

yields higher energy branches with multipole textures according to the higher order
waveguidemodes. The contribution of thewaveguidemodes to theABmodes ismore
complicated. The contribution rates of HE11 and HE21 modes are reversed around
the � point.

14.8 Multiple Fano Resonance Interference

These four bound modes produce asymmetric Fano line shape in the transmission
spectra. Figure14.9 shows the transmission (a, c) and reflection (b, d) spectra for
normal incidence to a lattice of nanohole with the radius of 0.15µm in water. In this
case, B2 and AB1 modes are pure quadrupolar modes, and cannot be excited by the
incident light. You can see clear Fano line shape in the green dashed lines (lossless
cases) around the resonance concerning AB2 mode.

Figure14.10 shows the transmission (a, c) and reflection (b, d) spectra for the
oblique incidence with kx = 0.086π/L , where other conditions are the same as in
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Fig. 14.9 Transmission (a, c) and reflection (b, d) spectra for normal incidence to a lattice of
nanohole with the radius of 0.15µm in water. The blue solid and green dashed lines are for the real
gold and lossless gold systems, respectively. a and b are obtained by SCM method and c and d are
obtained by TCM method based on two-mode model

Fig. 14.9. This figure also shows the occurrence of Fano-resonance-like phenomena
concerning B2, AB1 and AB2 modes.

From now on, we will focus our attention to the region under the Rayleigh-
frequency line in Fig. 14.6. In this lower left region, only the zero-order diffraction is
radiative. Therefore, we can treat this system as a 4-mode or 2-mode cavity system
connected to the radiative field by 2 sets of input and output channels. The essential
parameters of cavity modes can be extracted from the results of SCM method. The
radiative damping rate γ can be estimated from the damping rate for the losslessmetal
system. By subtracting this rate from the total damping rate, we get the internal damp-
ing rate γi. In the following, we commonly take the transmission and reflection coeffi-
cients as td = −i [0.22i tanh {2(ν − 346[THz])} + 0.11], rd = −

√

1 − |td|2, part of
which may compensate the deficiency of the approximation in the TCM method to
express the broad peak of B1 mode.

Figures14.9c, d and 14.10 c, d show the results obtained by TCM method using
the above procedure, the TCM theory can reproduce qualitative feature of the trans-
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Fig. 14.10 Transmission (a, c) and reflection (b, d) spectra for the incidence with kx = 0.086π/L
to a lattice of nanohole with the radius of 0.15µm in water. The blue solid and green dashed lines
are for the real gold and lossless gold systems, respectively. a and b are obtained by SCM method
and c and d are obtained by TCM method based on four-mode model

mission spectra. As we mentioned above, the AB modes and the higher energy B
modes have multipole natures, and can be considered as dark modes. The peak and
dip structures in the spectra would be attributed to the Fano resonances between the
brighter modes and the darker modes [45].

The 4-mode phenomena can be understood by the combination of 2-mode effects.
Figure14.11 shows the results of 2-mode model of TCMmethod, B1 + B2, B1 + AB1

and B1 + AB2. We can see clear Fano line shapes as expected. The three resonance
peaks at higher frequency in Fig. 14.10 are basically understood by the combination
of these three Fano resonances, although the detailed line shape is determined by
the interference between them. Thus, rather complicated and rich structure in the
transmission and reflection spectra of this system can be attributed to the interference
between multiple Fano resonances concerning various orders of multipole surface
plasmons.
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Fig. 14.11 Transmission spectra obtained by two-mode model of TCM method with a B1 and B2
modes, b B1 and AB1 modes, c B1 and AB2 modes

14.9 EIT-like Phenomena

Due to the orthogonality between the B and AB modes, there remain some crossing
points in the dispersion curves. Figure14.12a shows the transmission, reflection, and
absorption spectra at the wavenumber kx = 0.2π/L , which contains the crossing
point between B2 branch and AB1 branch. Figure14.12b shows the transmission and
reflection spectra calculated by omitting the imaginary part of the dielectric function
of gold. Figure14.12c, d are the results calculated based on the 3-mode model of
TCM theory with the parameters extracted from the SCM results in (a) and (b). You
can see that the absorption is enhanced strongly around the crossing point. In the
results of lossless gold system, (b) and (d), you can see EIT-like line shape with
a narrow window within a broader band. These properties are seen more clearly
in Fig. 14.12e, f, which are calculated by the 2-mode model of TCM theory using
only B2 and AB1 modes. The sharpness of the resonance “window” means that the
energy remains in the localized modes in a long period of time. If the metal loss is
included, almost all the incident energy is consumed around the metal region before
it is radiated back. Thus, actual behavior results in a dip both in the transmission and
reflection as in Fig. 14.12a, c [29].

This EIT-like phenomenon causes quite high electric-field enhancement.
Figure14.13a and the green dashed line in (b) show the spectra of the averaged
field enhancement, |Eav|2/|E0|2, where |Eav|2 denotes the strength of the electric
field averaged within a unit cell at 2nm from the metal surface, and |E0|2 denotes
that of incident light. We can see that the field enhancement is increased strongly by
the occurrence of degenerate Fano resonance. The blue solid line in (b) represents
the maximum values of field enhancement. 14.13c shows the electric field distri-
bution at 2nm from the metal surface, where quadrupole texture and the hot spots
at the hole edges are clearly seen. Thus, the high degrees of freedom of multipole
surface plasmons in metallic nanohole arrays will open the possibility to improve
the functionality of plasmonic sensors and devices via degenerate Fano resonances.
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Fig. 14.12 a Reflection (red line), transmission (blue line), and absorption (black line) spectra
around the crossing point between B2 and AB1 modes. b Reflection (pink line) and transmission
(light-blue line) spectra for lossless gold system. c, d The results of three-mode model of TCM
method. e, f The results of two-mode model of TCM method



14 Multiple-Resonance Interference in Metallic Nanohole Arrays 353

(a) (b)

(c)

Fig. 14.13 a Spectra of electric field enhancement averaged in the unit cell. b Maximum (blue
solid line) and averaged (green dashed line) electric field enhancement around the crossing point
between B2 and AB1 modes. c Electric field distribution at the crossing point

14.10 Summary

In this chapter, we have shown the essential properties in metallic nanohole array
systems, such as spoof surface plasmon and surface plasmon molecule induced by
the Fabry-Perot resonance in nanohole waveguides, the Fano resonance due to the
interference between resonant and non-resonant transmission processes, short-circuit
effect on the dispersion relation of SPF, and multipole surface plasmons produced
by the multipolar waveguide modes, based on a set of theoretical formalism; spatial
coupled-mode (SCM) method and temporal coupled-mode (TCM) method.

As a result of these properties, various leaky surface bound modes with differ-
ent darkness according to their multipole natures coexist within a narrow range of
frequencies. We have shown that the interference between the radiations from these
multiple resonances yields sharp peak-dip structure in the transmission and reflection
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spectra. Especially, we have shown that the degeneracy of the surface bound modes
induces EIT-like phenomena and yields remarkable features, i.e. high enhancement
of absorption and electric-field.

Further study of this system with powerful theoretical tools like SCM and TCM
methods will give deeper understandings of not only the Fano resonance but also
other important concepts in the open wave system, such as exceptional point [46,
47] or bound state in the continuum [48].
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Chapter 15
Resonant-State Expansion of the Fano
Peak in Open Quantum Systems

Naomichi Hatano and Gonzalo Ordonez

Abstract We describe the Fano asymmetry by expanding the transmission ampli-
tude with respect to states with point spectra (discrete eigenstates), including not
only bound states but also resonant states with complex eigenvalues. We first intro-
duce a novel complete set that spans the Hilbert space of the central part of an open
quantum-dot system. This complete set contains all states of point spectra, but does
not contain any states of continuous spectra.We thereby analytically expand the con-
ductance of the dot in terms of all discrete states without any background integrals.
This expansion implies that the resonant states produce the main contributions to the
electron transmission.We then explain the Fano peak as an interference effect involv-
ing resonant states. We find that there are three types of Fano asymmetry according
to their origins: the interference between a resonant state and an anti-resonant state,
that between a resonant state and a bound state, and that between two resonant states.
We derive microscopic expressions of the Fano parameters that describe the three
types of Fano asymmetry. We show that the last two types display the asymmetric
energy dependence given by Fano, but the first one shows a slightly different form.

15.1 Introduction: Resonant States

15.1.1 Landauer Formula and the Transmission Probability

The Landauer formula [1, 2] tells us that the electronic conductance G in the situ-
ation of Fig. 15.1a (where we ignore the electron-electron interaction) is given by
the transmission probability T of the scattering problem in the infinite space as in
Fig. 15.1b:
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Fig. 15.1 a The situation of electronic conduction in mesoscopic systems. A quantum wire with a
quantum scatterer connects a source and a drain. The Landauer formula claims that the electronic
conductance of the setup (a) is proportional to the transmission probability of the setup (b). The
spatial divergence (c) of the resonant state of the scattering problem in the setup (b) indicates that
there are macroscopic numbers of electrons in the source and the drain in the setup (a)

G = 2e2

h
T , (15.1)

where e is the elementary charge of an electron and h is the Planck constant. The
two setups have the following common feature: once an electron goes out of the
central quantum scatterer, it never comes back to the scattering area, at least not
coherently [3]. This is why the quantum scattering problem in the setup (b) can
describe the electronic conduction in the setup (a).

The Fano asymmetry of the conductance is therefore equivalent to the Fano asym-
metry of the transmission probability. In the present chapter, we introduce the expan-
sion of the transmission probability in terms of all eigenstates of theHamiltonianwith
point spectra, including the bound, anti-bound, resonant, and anti-resonant states, but
not including the scattering states with a continuous spectrum, thereby excluding the
background integral [3–10]. Among the eigenstates with point spectra, the states
other than the bound states, namely the resonant and anti-resonant states, mostly
contribute to the electronic conduction; this is the point that we emphasize in the
present chapter. We describe the Fano asymmetry of the transmission probability in
terms of interference between two point-spectral eigenvalues [4].

We will try to make the chapter as self-contained as possible. For the purpose,
we will review in the present section the classification of the point-spectral eigen-
values in scattering theory in one dimension with a tutorial example. In the next
Sect. 15.2, we will show the resonant-state expansion of the transmission probability
with another tutorial example of the tight-binding model. In Sect. 15.3, we finally
show our numerical analysis of the Fano asymmetry in the tight-binding model. We
find three types of the Fano asymmetry, depending on what pair of point-spectral
states interferes with each other.
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15.1.2 Siegert Boundary Condition: A Tutorial Example

Wehereafter refer to the eigenstateswith point spectra as the discrete eigenstates. The
discrete eigenvalues are often defined as poles of the S-matrix, or the transmission
amplitude in one dimension. The transmission amplitude is given by the amplitude
of the transmitted wave divided by that of the incident wave. Therefore, the poles of
the transmission amplitude correspond to the zeros of the amplitude of the incident
wave [3, 11, 12]. This means that the wave function of the discrete eigenvalues
lacks the incident wave, retaining only the reflected and transmitted waves, in other
words, only out-going waves; see Fig. 15.2. This is why the poles of the transmission
amplitude are identified with the eigenstates of the time-independent Schrödinger
equation under the boundary conditions of out-going waves only, which was first set
by Siegert [13].

Let us demonstrate how to solve the time-independent Schrödinger equation under
the Siegert boundary condition. We consider the standard equation

(
− �

2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) (15.2)

with the square-well potential

V (x) :=
{

−V0 for |x| < a,

0 for |x| > a,
(15.3)

where V0 > 0; see Fig. 15.2. We solve this under the Siegert boundary conditions

ψ(x) ∼ eik|x|. (15.4)

More precisely, we assume the form

ψ(x) =

⎧⎪⎨
⎪⎩
Be−ikx for x < −a,

Feik
′x + Ge−ik ′x for |x| < a,

Ceikx for x > a,

(15.5)

Fig. 15.2 The potential
function given in (15.3). The
discrete eigenstates are given
by setting the incident wave
to zero, which is the Siegert
boundary condition (15.4)

incident wave transmission

reflection

(missing)
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where

E = �
2k2

2m
= �

2k ′2

2m
− V0. (15.6)

We then set the connection conditions at x = ±a, which produce four equations. On
the other hand, there are four unknown variables, namely the wave number k (or
equivalently the eigenenergy E) and the three ratios among the amplitudes B, C, F
and G. We therefore obtain discrete solutions, namely point spectra. Note that in
finding the standard scattering states, we have another unknown variable, namely the
amplitude of the incident wave A, in which case we obtain solutions for arbitrary k,
namely continuous spectra. This is the basic difference between the present discrete
solutions and the continuum scattering solution.

At this point, it is convenient to take advantage of the parity of the potential, finding
even and odd solutions separately. Even solutions should satisfy the equations B = C
and F = G, which yield

ψ(x) =
{
2F cos(k ′x) for 0 < x < a,

Ceikx for x > a.
(15.7)

The connection conditions give

2F cos(k ′a) = Ceika, (15.8)

−2k ′F sin(k ′a) = ikCeika. (15.9)

Dividing the second equation by the first one, we have

−k ′ tan(k ′a) = ik. (15.10)

We obtain the even eigensolutions by solving (15.6) and (15.10) simultaneously.
Similarly, odd solutions are given by solving (15.6) together with

k ′ cot(k ′a) = ik. (15.11)

Numerically computing the solutions by the Newton-Raphson method, we obtain
the solutions plotted in Fig. 15.3.

15.1.3 Resonant and Anti-resonant States

The state on the positive part of the imaginary axis of the complexwave-number plane
is a bound state. We can see this by inserting k = iκ with κ > 0 into the boundary
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Fig. 15.3 The locations of
the discrete eigenstates a in
the complex-wave-number
plane and b in the complex
energy plane. In both panels,
the circles indicate the even
solutions of (15.10) and the
squares the odd solutions of
(15.11)
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condition (15.4). It is located on the negative part of the real axis of the complex
energy plane.

The states on the fourth quadrant of the complex wave-number plane are histori-
cally called resonant states, while those on the third quadrant are called anti-resonant
states. These states are located, respectively, on the lower and upper halves of (the
second Riemann sheet of) the complex energy plane. We can prove that the time-
reversal symmetry of the original problem (15.2) dictates that each resonant state
must have its complex conjugate partner of anti-resonant state; although each of
resonant and anti-resonant states breaks the time-reversal symmetry, the whole set
of the solutions still observes the time-reversal symmetry. The state on the negative
part of the imaginary axis in the complex wave-number plane, and correspondingly
on the negative part of the real axis in the second Riemann sheet of the complex
energy plane, is called an anti-bound state, but we do not pay much attention to it
throughout this chapter.

Since all the resonant and anti-resonant states are located on the lower half of the
complex wave-number plane, their wave functions diverge spatially away from the
scattering potential, being unnormalizable. This is presumably the reason why they
are often called unphysical. Let us try in two ways to convince the readers that they
are actually physical entities.

We first clarify a physical view of the spatial divergence [3, 12] by multiplying
the wave function (15.4) by the temporal part as in
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Fig. 15.4 The proof of the probability conservation. As the time goes by, the wave function decays
exponentially. Accordingly, we expand the integration region to follow the exponential spatial
divergence

Ψn(x, t) ∼ eikn|x|−iEnt . (15.12)

For the resonant states in the fourth quadrant, the real part of the eigen-wave-number
kn is positive, while the imaginary part of the eigenenergy En is negative. Therefore,
the wave amplitude decays exponentially in time and the corresponding amount of
the amplitude leaks towards positive and negative infinities. For the anti-resonant
states in the third quadrant, the real part of the eigen-wave-number is negative and
the imaginary part of the eigenenergy is positive. Therefore, the wave amplitude
comes into the central scattering area and the amplitude there grows exponentially
in time. The anti-resonant states are time-reversal of the resonant states.

Based on this view, we can prove that the probability is conserved [3, 12, 14]
under the following two conditions (Fig. 15.4): first, we calculate the probability in
a finite segment [−L,L] containing the support [−a, a] of the scattering potential;
second, we let the integration area expand as in [−L(t),L(t)] in order to chase the
leaking amplitude for a resonant state. (We shrink the area for an anti-resonant state.)
The spatial divergence is exactly cancelled by the temporal decay. This indicates that
the spatial divergence is actually essential for the probability conservation.

Let us present another view of the spatial divergence. In what we will show
in Sect. 15.2, we reveal that the transmission probability mostly comes from the
resonant and anti-resonant states, in other words, the spatially divergent states. This
is indeed consistent with the original situation that was considered in the Landauer
formula. The Landauer formula assumes free electrons, neglecting electron-electron
interactions, and hence we can regard the probability of the present one-electron
problem as a quantity proportional to the number of electrons in a many-electron
problem. Therefore, the spatial divergence of the resonant and anti-resonant wave
functions of the one-electron problem implies that there are macroscopic number of
electrons far away from the scattering center. As we see in Fig. 15.1a, the system
indeed has two baths (source and drain) away from the scattering potential, both of
which have amacroscopic number of electrons under equilibrium. These baths are the
cause of the Joule heat generated by the resistance that the Landauer formula gives
as the inverse conductance; a microscopic number of electrons out of the source
keeps the Fermi distribution of the source during the energy-conserving quantum
scattering all the way up until it meets a different Fermi distribution of the drain
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and is equilibrated to it. That is when the Joule heat is generated [2]. In this view,
it is essential for the Landauer formula to hold that the baths have a macroscopic
number of electrons so that their Fermi distributions may never be disturbed by the
microscopic number of electrons that participate in the conduction. This situation
is reproduced quantum-mechanically by the spatial divergence of the resonant and
anti-resonant wave functions; see Fig. 15.1c.

We thus stress that the spatially divergent resonant and anti-resonant states are
not at all unphysical; on the contrary, they are indispensable states for the electronic
conduction.

15.2 Resonant-State Expansion: Another Tutorial Example

15.2.1 Transmission Probability and the Green’s Function

So far, we have considered a scattering potential in a continuum space.We here move
to a discretized model, namely the tight-binding model. As another tutorial example,
let us consider the T-shaped quantum-dot model (Fig. 15.5):

H := −thop

∞∑
x=−∞

(|x + 1〉〈x| + |x〉〈x + 1|)

+ ε0|0〉〈0| + εd|d〉〈d| − g (|0〉〈d| + |d〉〈0|) , (15.13)

where thop is the hopping amplitude on the quantum wire with −∞ < x < ∞, ε0 is
the potential at the site x = 0, εd is the potential at the quantum-dot site d, and g is
the hopping amplitude between x = 0 and d. We hereafter set thop = 1 for brevity.
The central scattering area consists of the two sites |d〉 and |0〉, while the rest is the
environment.

As we emphasized in Sect. 15.1.1, the electronic conductance is given by the
transmission probability. The energy dependence of the transmission probability of
the model above is given by the Green’s function in the following form [15]:

T (E) = (4 − E2)

∣∣∣∣〈0| 1

E − H
|0〉

∣∣∣∣
2

. (15.14)

The goal of the present section is to represent the Green’s function in terms of all
discrete states. In order to do so, we first use the Feshbach formalism [16] to eliminate

Fig. 15.5 The tutorial model
of (15.13)
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the infinite number of the environmental degrees of freedom and express the Green’s
function by means of an effective Hamiltonian as small as a two-by-two matrix. We
then expand the Green’s function of the effective Hamiltonian with respect to its
eigenstates.

15.2.2 Feshbach Formalism for the Tight-Binding Model

Let us overview the Feshbach formalism [4, 8, 16] here. Our task is to find the
solutions of the eigenvalue problem

H |ψ〉 = E|ψ〉. (15.15)

It is generally difficult to solve it because H is an ∞-by-∞ matrix. The Feshbach
formalism gives an effective Hamiltonian for the central scattering area:

Heff(E) (P|ψ〉) = E (P|ψ〉) , (15.16)

where

P := |d〉〈d| + |0〉〈0| (15.17)

with

Q := I∞ − P

=
( −1∑
x=−∞

+
+∞∑
x=+1

)
|x〉〈x|. (15.18)

Here I∞ denotes the identity operator in the entire space. The effective Hamiltonian
Heff(E) in the present tutorial example is a two-by-two matrix.

Let us applyP andQ from the left of (15.15) and at the same time insert 1 = P + Q
between H and |ψ〉:

PHP (P|ψ〉) + PHQ (Q|ψ〉) = E (P|ψ〉) , (15.19)

QHP (P|ψ〉) + QHQ (Q|ψ〉) = E (Q|ψ〉) , (15.20)

where we used the facts P2 = P and Q2 = Q. We now eliminate Q|ψ〉 by finding

Q|ψ〉 = 1

E − QHQ
QHP (P|ψ〉) (15.21)
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from the second equation and inserting it into the first equation, obtaining

(
PHP + PHQ

1

E − QHQ
QHP

)
(P|ψ〉) = E (P|ψ〉) . (15.22)

We thereby realize that the effective Hamiltonian in (15.16) is given by

Heff(E) = PHP + Σ(E) (15.23)

with the ‘self-energy’

Σ(E) := PHQ
1

E − QHQ
QHP. (15.24)

15.2.3 Green’s Function of the Effective Hamiltonian

In order to calculate (15.14), we need the Green’s function in the P subspace:

PGP = P
1

E − H
P. (15.25)

We will prove here that this Green’s function is equal to the Green’s function of the
effective Hamiltonian [8]:

P
1

E − H
P = P

1

E − Heff(E)
P. (15.26)

The proof is achieved by splitting the total Hamiltonian into the two parts

H = (PHP + QHQ) + (PHQ + QHP) (15.27)

and carrying out the resolvent expansion:

P
1

E − H
P = P

1

E − (PHP + QHQ)
P

+ P
1

E − (PHP + QHQ)
(PHQ + QHP)

1

E − (PHP + QHQ)
P

+ P
1

E − (PHP + QHQ)
(PHQ + QHP)

1

E − (PHP + QHQ)

× (PHQ + QHP)
1

E − (PHP + QHQ)
P + · · · (15.28)
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Using the fact PQ = QP = 0, we find that only the even-order terms survive, obtain-
ing

P
1

E − H
P = P

1

E − PHP
P

+ P
1

E − PHP
PHQ

1

E − QHQ
QHP

1

E − PHP
P

+ P
1

E − PHP
PHQ

1

E − QHQ
QHP

1

E − PHP

× PHQ
1

E − QHQ
QHP

1

E − PHP
P + · · · (15.29)

= P
1

E − PHP
P + P

1

E − PHP
Σ

1

E − PHP
P

+ P
1

E − PHP
Σ

1

E − PHP
Σ

1

E − PHP
P + · · · (15.30)

Summing up the resolvent expansion with respect to Σ , we end up with [8]

P
1

E − H
P = P

1

E − (PHP + Σ)
P, (15.31)

which is equivalent to (15.26). This implies that we can expand the Green’s function,
and hence the transmission amplitude (15.14), with respect to the eigenstates of the
effective Hamiltonian Heff . This is what we will do in Sect. 15.2.5.

15.2.4 Calculation of the Self-energy

Before finding the eigenstates of the effective Hamiltonian, let us show an easy
way [17] to compute the self-energy (15.24). We can find it in a straightforward
way [4, 8] but there is a trick to compute it in a much easier way. We first write down
the Schrödinger equation (15.15) for |x| ≥ 1:

− (ψx+1 + ψx−1) = Eψx, (15.32)

where

ψx := 〈x|ψ〉. (15.33)
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Let us set the Siegert boundary conditions:

ψx = Ceik|x| = C ×
{
e−ikx for x ≤ −1,

eikx for x ≥ 1.
(15.34)

Note that because of the discretized space, the real part of k is limited to the first
Brillouin zone −π < Re k < π. Inserting the wave function (15.34) into (15.32), we
have the dispersion relation

E = −2 cos k. (15.35)

We also realize in the Schrödinger equation for |x| = 1 that ψ0 = 〈0|ψ〉 = C.
We next write down the Schrödinger equation for x = 0 and for the dot site d:

− (ψ1 + ψ−1) − gψd + ε0ψ0 = Eψ0, (15.36)

−gψ0 + εdψd = Eψd. (15.37)

Inserting the Siegert boundary condition (15.34) into the first equation, we have

−2eikψ0 − gψd + ε0ψ0 = Eψ0. (15.38)

Combining this with the second equation, we can write down the matrix equation

(
ε0 − 2eik −g

−g εd

) (
ψ0

ψd

)
= E

(
ψ0

ψd

)
. (15.39)

We identify [17] the two-by-two matrix on the left-hand side as the effective Hamil-
tonian Heff in (15.16). We can indeed confirm [4, 8] (15.23) with

PHP =
(

ε0 −g
−g εd

)
, Σ(E) =

(−2eik 0
0 0

)
. (15.40)

We observe that the self-energy term functions as an effective complex potential at
the site x = 0, which makes the effective Hamiltonian non-Hermitian.

15.2.5 Quadratic Eigenvalue Problem

Let us stress here that the eigenvalue problem (15.39) is not a standard one in the
sense that the variable k, which is related to the energy E, exists on the left-hand
side. Therefore, this is a nonlinear eigenvalue problem. In fact, we will show that
this is formulated as a quadratic eigenvalue problem.
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In order to solve the nonlinear eigenvalue problem, we introduce another energy-
related variable as follows [5, 8]:

λ := eik . (15.41)

Because of the dispersion relation (15.35), the energy is given by

E = −
(

λ + 1

λ

)
. (15.42)

We can thereby transform (15.39) into

(
ε0 − 2λ −g

−g εd

) (
ψ0

ψd

)
= −

(
λ + 1

λ

)(
ψ0

ψd

)
, (15.43)

which is followed by

[
λ2

(−1 0
0 1

)
+ λ

(
ε0 −g
−g εd

)
+

(
1 0
0 1

)] (
ψ0

ψd

)
= 0. (15.44)

The fact that the left-hand side is a second-order matrix polynomial of λ is the reason
why we call it a quadratic eigenvalue problem.More formally, we have the following
equation:

Z(λ) (P|ψ〉) = 0, (15.45)

where

Z(λ) := λ2(I2 − Θ) + λPHP + I2 (15.46)

with

Θ := PHQHP (15.47)

and I2 is the two-dimensional identity operator. We note

E − Heff(E) = −Z(λ)

λ
. (15.48)

There is a standard way of treating the quadratic eigenvalue problem [18]. We
double the dimensionality as in [5, 8]

(−λI2 I2
I2 λ(I2 − Θ) + PHP

)(
P|ψ〉
λP|ψ〉

)
= 0. (15.49)
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Note that each matrix element is actually a two-by-two matrix. The first row gives an
equation that guarantees the doubled structure of the vector. The second row gives
the original quadratic eigenvalue problem (15.45).

We thereby find four solutions of the two-dimensional nonlinear eigenvalue prob-
lem (15.39) out of

det

(−λI2 I2
I2 λ(I2 − Θ) + PHP

)
= 0, (15.50)

which is a fourth-order equation with respect to λ. In order to show the attributes
of the solutions, let us solve the equation in the simplest case of ε0 = εd = 0. The
equation is then reduced to

λ4 + g2λ2 − 1 = 0, (15.51)

which produces

λ2 = −g2 ± √
g4 + 4

2
. (15.52)

The magnitude of the right-hand side is given by

0 <
−g2 + √

g4 + 4

2
< 1,

−g2 − √
g4 + 4

2
< −1. (15.53)

Therefore,

λ1,λ2 := ±
√

−g2 + √
g4 + 4

2
(15.54)

are located on the real axis inside the unit circle |λ| = 1, while

λ3,λ4 := ±i

√
g2 + √

g4 + 4

2
(15.55)

are located on the imaginary axis outside the unit circle |λ| = 1; see Fig. 15.6a. This
leads to the following solutions:

k1 := i

2

[
ln 2 − ln

(
−g2 +

√
g4 + 4

)]
, (15.56)

k2 := i

2

[
ln 2 − ln

(
−g2 +

√
g4 + 4

)]
+ π, (15.57)

k3 := − i

2

[
ln

(
g2 +

√
g4 + 4

)
− ln 2

]
+ π

2
, (15.58)
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Fig. 15.6 A schematic view of the locations of the four discrete solutions a in the complex λ plane,
b in the complex-wave-number plane, and c in the complex energy plane

k4 := − i

2

[
ln

(
g2 +

√
g4 + 4

)
− ln 2

]
− π

2
. (15.59)

The former two solutions are located on the upper half of the complex wave-number
plane, corresponding to bound states, while the latter two solutions are on the lower
half, corresponding to a pair of resonant and anti-resonant states; see Fig. 15.6b.
The only difference from the solutions in Fig. 15.3a of the continuous problem in
Sect. 15.1 lies in the fact that a bound state k = k2 exists on the line of Re k = π in
addition to the one k = k1 on the imaginary axis.

We finally obtain the discrete eigenvalues of the problem (15.15) in the form

En = −
(

λn + 1

λn

)
. (15.60)

For the two bound states, we have

E1,E2 = ∓
√
2 +

√
g4 + 4, (15.61)

which are located below and above the energy band E = −2 cos k. For the resonant
and anti-resonant states, we have

E3,E4 = ∓i
√

−2 +
√

g4 + 4, (15.62)

which are located on the imaginary axis of the second Riemann sheet of the com-
plex energy plane; see Fig. 15.6c. Again, the only difference from the solutions in
Fig. 15.3b is the existence of a bound state E = E2 above the continuum (the energy
band) in addition to the one E = E1 below it.

In order to find the eigenvectors corresponding to the four eigenvalues, we cast
(15.49) into the form of the generalized linear eigenvalue problem:

(A − λB) |Ψ 〉 = 0, (15.63)
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where

A :=
(
0 I2
I2 PHP

)
, B :=

(
I2 0
0 Θ − I2

)
, |Ψ 〉 :=

(
P|ψ〉
λP|ψ〉

)
. (15.64)

Wecan regard the generalized eigenvalue problemas the standard eigenvalue problem
of the form

(
B−1A − λ

) |Ψ 〉 = 0 as long as B is invertible. Note that B−1A is an
asymmetric matrix, although A and B are symmetric matrices.

We denote the four right- and left-eigenvectors corresponding to the four eigenval-
ues λn in (15.54)–(15.55) by |Ψn〉 and 〈Ψ̃n| with n = 1, 2, 3, 4. The left-eigenvector
〈Ψ̃n| is not the Hermitian conjugate of the right-eigenvector |Ψn〉 because B−1A is an
asymmetric matrix. In order to fix the normalization of the eigenvectors, we take a
look at the diagonal matrix element

0 = 〈Ψ̃n| (A − λnB) |Ψn〉 = 〈Ψ̃n|A|Ψn〉 − λn〈Ψ̃n|B|Ψn〉. (15.65)

We here normalize the eigenvectors so that 〈Ψ̃n|B|Ψn〉 = 1, which yields the eigen-
value in the form

〈Ψ̃n|A|Ψn〉 = λn. (15.66)

We next check the orthogonality of the eigenvectors. For the purpose, we consider
the matrix elements

〈Ψ̃m| (A − λnB) |Ψn〉 = 0, (15.67)

〈Ψ̃m| (A − λmB) |Ψn〉 = 0 (15.68)

for m 
= n. Subtracting the second equation from the first one, we have

(λm − λn) 〈Ψ̃m|B|Ψn〉 = 0. (15.69)

Assuming the lack of degeneracy, we have λm 
= λn, and hence 〈Ψ̃m|B|Ψn〉 = 0,
which is followed by 〈Ψ̃m|A|Ψn〉 = 0.

To summarize, we have the diagonalization and the orthonormality

〈Ψ̃m|A|Ψn〉 = δmnλn, (15.70)

〈Ψ̃m|B|Ψn〉 = δmn (15.71)

for general m and n. We can thereby expand the inverse of the four-by-four matrix
A − λB in the form [5, 8]

1

A − λB
=

4∑
n=1

|Ψn〉 1

λn − λ
〈Ψ̃n|. (15.72)
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15.2.6 Resonant-State Expansion of the Green’s Function

The next task is to relate the inverse (A − λB)−1 to the Green’s function (15.26)
so that we may expand the latter in terms of the discrete eigenstates λn. We first
block-diagonalize the matrix A − λB by means of the two matrices [5, 8]

X (λ) :=
(−λ(I2 − Θ) − PHP I2

I2 0

)
, Y (λ) :=

(
I2 0
λI2 I2

)
(15.73)

as in

X (λ)(A − λB)Y (λ) =
(
Z(λ) 0
0 I2

)
, (15.74)

where Z(λ)was given in (15.46).We therefore have the relation between the Green’s
function (15.26) and the inverse (A − λB)−1 in the form [5, 8]

P
1

E − H
P = P

1

E − Heff(E)
P

= − λ

Z(λ)
= −λ

(
I2 0

) 1

Y (λ)

1

A − λB

1

X (λ)

(
I2
0

)
. (15.75)

Since

1

X (λ)
=

(
0 I2
I2 λ(I2 − Θ) + PHP

)
,

1

Y (λ)
=

(
I2 0

−λI2 I2

)
, (15.76)

we arrive at the expansion of the Green’s function (15.26) as in [5, 8]

P
1

E − H
P = −λ

4∑
n=1

(
I2 0

) |Ψn〉 1

λn − λ
〈Ψ̃n|

(
0
I2

)

=
4∑

n=1

P|ψn〉 λλn

λ − λn
〈ψ̃n|P. (15.77)

Let us finally transform this to a more familiar form by using [8]

E − En = −
(

λ + 1

λ
− λn − 1

λn

)
= −(λ − λn)

(
1 − 1

λλn

)

= λ − λn

λλn
(1 − λλn) , (15.78)

which is followed by [8]
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P
1

E − H
P =

4∑
n=1

P|ψn〉1 − λλn

E − En
〈ψ̃n|P. (15.79)

We can further show that the sum of the retarded and advanced Green’s function

GR/A := 1

E − H ± iδ
, (15.80)

where δ is infinitesimally positive, is given by [4]

PΛP =
4∑

n=1

P|φn〉 1

E − En
〈φ̃n|P, (15.81)

where

Λ(E) := PGR(E)P + PGA(E)P = 2Re
(
PGR(E)P

)
(15.82)

for real E, while the states |φn〉 and 〈φ̃| have different normalization from the states
|ψn〉 and 〈ψ̃| as in [8]

|φn〉 :=
√
1 − λn

2|ψn〉, 〈φ̃n| :=
√
1 − λn

2〈ψ̃n|. (15.83)

In Sect. 15.2.7, we will express the transmission probability, and hence the elec-
tronic conductance, by means of Λ. As we emphasized at the end of Sect. 15.1,
this expansion reveals that the electronic conduction is dominated by transmission
through resonant and anti-resonant states; the bound states in the expansion con-
tribute to the transmission little. Note again that the expansion (15.81) does not
contain scattering states.

15.2.7 New Formula for the Transmission Probability

Wenow come back to (15.14) and derive a formula for the transmission probability in
terms of the sum (15.82),which enables us to take advantage of the expansion (15.81).
We first show that the retarded and advanced Green’s functions are given by the
Green’s function of the effective Hamiltonian Heff(E) with k in the self-energy term
in (15.40) set to be positive and negative, respectively.

We proved (15.26) for general complex values of E. We now set the energy E
to be real for the retarded and advanced Green’s functions in (15.80) to be used
in the formula for the transmission probability. We therefore consider the Green’s
function (15.26) of the effective Hamiltonian Heff(E) with real E. Remember that
the E dependence of the effective Hamiltonian comes from the k dependence of the
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self-energy in (15.40). Since the energy E and the wave number k are related by the
dispersion relation (15.35), two real values of k give the same real value of E. The
retarded Green’s function corresponds to emission from a source at the origin, and
hence has only out-going waves, while the advanced Green’s function corresponds
to absorption into a sink at the origin, and hence has only in-coming waves. We
therefore conclude [4, 8] that the retarded Green’s function is the Green’s function
of the effective Hamiltonian with positive k:

PGRP = P
1

E − H + iδ
P = P

1

E − Heff(E)
P

∣∣∣∣
0<k<π

. (15.84)

Conversely, the advanced Green’s function is that with negative k:

PGAP = P
1

E − H − iδ
P = P

1

E − Heff(E)
P

∣∣∣∣−π<k<0

(15.85)

with

PGA(E(k))P = PGR(E(−k))P, PGA(E(λ))P = PGR(E(1/λ))P. (15.86)

These give a formula for the Green’s functions [4]:

i�(E) := (
PGRP

)−1 − (
PGAP

)−1
(15.87)

= − [Heff(E(k)) − Heff(E(−k))]|0<k<π

=
(
2(eik − e−ik) 0

0 0

)∣∣∣∣
0<k<π

= 4i sin k|0<k<π |0〉〈0|
= 2iγ|0〉〈0| (15.88)

for real E, where

γ :=
√
4 − E2. (15.89)

More formally, it is written in the form

� = γPHQHP. (15.90)

This function in conjunction with the retarded and advanced Green’s functions is
often used in the Fisher-Lee relation for the transmission probability [15]:

T (E) = Tr
(
�GR�GA

)
. (15.91)
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Since � in our simple model has the only finite element for |0〉〈0|, the Fisher-Lee
relation (15.91) is reduced to [4]

T (E) = γ2〈0|GR|0〉〈0|GA|0〉 = γ2
∣∣〈0|GR|0〉∣∣2 , (15.92)

which is equivalent to (15.14). We added a factor 1/4 here because the two leads are
attached to the same site in our simple model.

We now try to transform (15.92) into an expression in terms of Λ in (15.82). For
brevity, we denote 〈0|GR|0〉, 〈0|GA|0〉 and 〈0|Λ|0〉 by GR

00, G
A
00 and Λ00. We solve

Λ00 = GR
00 + GA

00 = 2ReGR
00, (15.93)

which follows from (15.82), together with

GA
00 − GR

00 = 2iγGR
00G

A
00, (15.94)

which follows from (15.87), or

ImGR
00 = −γ

∣∣GR
00

∣∣2 = −γ
[(
ReGR

00

)2 + (
ImGR

00

)2]
. (15.95)

Inserting (15.93) into (15.95), we have

γ
(
ImGR

00

)2 + ImGR
00 + γ

4
(Λ00)

2 = 0, (15.96)

which produces

−γ
∣∣GR

00

∣∣2 = ImGR
00 = −1 ±

√
1 − (γΛ00)

2

2γ
. (15.97)

The choice of the sign ± is given by the sign of

∣∣∣∣ε0 + g2

E − εd

∣∣∣∣ − γ. (15.98)

We finally arrive at [4]

T (E) = 1

2

[
1 ±

√
1 − (γΛ00)

2

]
. (15.99)

If the system is more complicated in such a way that two leads are attached to
different sites of the central system, the formula becomes more complicated as in [4]
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T (E) =
(
1

4
+ α2

)
Tr �Λ�Λ, (15.100)

where

α2 = −1

4
+ 1

2(S2 − 4D)

(
4 − D ±

√
(D + 4)2 − 4S2

)
(15.101)

with

S := Tr �Λ, D := det �Λ. (15.102)

See [4] for the derivation, including the choice of the sign in (15.101).

15.3 Fano Asymmetry

Since Λ has the resonant-state expansion of the form (15.81), that is,

Λ00 =
4∑

n=1

〈0|φn〉 1

E − En
〈φ̃n|0〉, (15.103)

we are ready to expand the transmission probability (15.99) with respect to the
discrete eigenstates. For later use, let us split Λ00 into two parts: namely, the bound-
state terms

Λb(E) := 〈0|φ1〉 1

E − E1
〈φ̃1|0〉 + 〈0|φ2〉 1

E − E2
〈φ̃2|0〉, (15.104)

and the resonant-anti-resonant-state terms

Λpair(E) := 〈0|φ3〉 1

E − E3
〈φ̃3|0〉 + 〈0|φ4〉 1

E − E4
〈φ̃4|0〉. (15.105)

We again emphasize that the latter produce the dominant contributions.
Because we have the square of Λ00 in the formula (15.99), there occur various

interference terms. We plot in Fig. 15.7 the following quantities:

�(E) := (γΛ00)
2 = γ2

(
Λb(E) + Λpair(E)

)2
, (15.106)

�b(E) := (
γΛb(E)

)2
, (15.107)

�pair(E) := (
γΛpair(E)

)2
, (15.108)

�b-pair(E) := γ2Λb(E)Λpair(E) (15.109)
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Fig. 15.7 The transmission
probability T (E) (black solid
curve) as well as the
quantities �(E) (gray solid
curve), �b(E) (dotted curve),
�pair(E) (chained curve),
�b-pair(E) (broken curve) for
the parameter values ε0 = 4,
εd = 0 and g = 1. The gray
vertical line indicates the real
part of the resonant and
anti-resonant eigenvalues:
Re E3 = Re E4 = 0.200606
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together with the transmission probability T (E) as given in (15.99). We can first
observe that the transmission probability T (E) (black solid curve) has a Fano asym-
metric peak around the real part of the resonant and anti-resonant eigenvalues
E = Re E3 = Re E4 (gray vertical line), which results from the strong asymme-
try of the quantity �(E) (gray solid curve). We next observe that the bound-state
contribution �b(E) (dotted curve) is a smooth function, whereas the crossing term
�pair(E) (chained curve) between the resonant and anti-resonant states has a large
peak around the energy of the pair and the crossing term �b-pair(E) (broken curve)
between the bound states and the pair of resonant and anti-resonant states also has
a (negatively) large peak around the same point. We can thereby conclude that the
quantities �pair(E) and �b-pair(E) contribute to the asymmetry of �(E), and hence
to the Fano asymmetry of T (E).

Based on this observation, we classify the interference terms into three categories,
which thereby result in three types of the Fano asymmetry [4]:

(i) Interference between a resonant state and the corresponding anti-resonant state;
(ii) Interference between a bound state and a pair of resonant and anti-resonant

states;
(iii) Interference between two pairs of resonant and anti-resonant states.

In the first case (i), let us assume that for the resonant state n = 3, the summand in
(15.103) takes the form

〈0|φ3〉 1

E − E3
〈φ̃3|0〉 = Neiθ

E − E3
. (15.110)

Note that the left-eigenvector 〈φ̃| is generally not complex conjugate of the right-
eigenvector |φ〉, and hence the term above is generally complex. Since the anti-
resonant contribution n = 4 is its complex conjugate, we have the term in (15.105)
in the form
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Λpair(E) = 2
N

|Im E3|
sin θ + Ẽ cos θ

1 + Ẽ2
, (15.111)

where

Ẽ := E − Re E3

|Im E3| (15.112)

is the normalized energy measure from the separation from E = Re E3 = Re E4.
The sum of these two terms thereby contribute to the transmission probability T (E)

in the form [4]

�pair ∼
(
Ẽ + qpair

1 + Ẽ2

)2

, (15.113)

where

qpair := tan θ. (15.114)

The peak of �pair(E) around Ẽ = 0 observed in Fig. 15.7 underscores the behavior
in (15.113).

The parameter (15.114)may be referred to as a Fano parameter, although (15.113)
is not the original form derived by Fano [19]:

T (E) ∼
(
Ẽ + q

)2

1 + Ẽ2
. (15.115)

Indeed, many analyses take account only of resonant states, ignoring the correspond-
ing anti-resonant states [19–21]. This may be the reason why the behavior (15.113)
has never been pointed out. We will show below for the cases (ii) and (iii) that the
Fano asymmetry in these cases take the form of Fano’s formula (15.115). The reason
why the denominator of (15.115) has a single power of 1 + Ẽ2 in contrast to the
double power in (15.113) is because the other states that interfere with the resonant
state in question do not have singularities at E = E3 nor at E = E4. Conversely, the
double power of 1 + Ẽ2 in the denominator of (15.113) is due to the fact that both
the resonant and anti-resonant states have singularities with the same real part. In
other words, the new behavior (15.113) emerges only after we take account of the
anti-resonant state in addition to the resonant state [4].

Let us move to the second case (ii). This comes from the crossing term (15.109)
in the square of Λ00. We can derive an approximate energy dependence due to this
interference by expanding it in terms of Ẽ, which results in the form [4]
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Fig. 15.8 The model (15.117), which has two pairs of resonant and anti-resonant states in addition
to two bound states

�b-pair ∼
(
Ẽ + qb-pair

)2

1 + Ẽ2
(15.116)

for small Ẽ, where we can define the parameter qb-pair microscopically; see [4].
We believe that this corresponds to Fano’s phenomenological analysis [19]. The
behavior (15.116) is indeed consistent with Fano’s formula (15.115). The (negative)
peak of �b-pair around Ẽ = 0 observed in Fig. 15.7 confirms (15.116).

In order to discuss the case (iii), we need to move to a more complicated model
that has multiple resonant states. The simplest model with two pairs of resonant and
anti-resonant states may be the following one [4]:

H := −thop

∞∑
x=−∞

(|x + 1〉〈x| + |x〉〈x + 1|)

+ ε0|0〉〈0| + εd1 |d1〉〈d1| + εd2 |d2〉〈d2|
− g01 (|0〉〈d1| + |d1〉〈0|) − g02 (|0〉〈d2| + |d2〉〈0|) − g12 (|d2〉〈d1| + |d1〉〈d2|) ;

(15.117)

see Fig. 15.8. For an appropriate parameter set, it has two pairs of resonant and anti-
resonant states in addition to two bound states below and above the energy band. Let
us denote the one pair of resonant and anti-resonant states by n = 3, 4 and the other
pair by n = 5, 6. The square of Λ00 now has a crossing term between

Λ
pair
1 := 〈0|φ3〉 1

E − E3
〈φ̃3|0〉 + 〈0|φ4〉 1

E − E4
〈φ̃4|0〉 (15.118)

and

Λ
pair
2 := 〈0|φ5〉 1

E − E5
〈φ̃5|0〉 + 〈0|φ6〉 1

E − E6
〈φ̃6|0〉. (15.119)

We plot in Fig. 15.9 the following quantities:

�(E) := (γΛ00)
2 = γ2

(
Λb(E) + Λ

pair
1 (E) + Λ

pair
2 (E)

)2
, (15.120)

�
pair
2 (E) :=

(
γΛ

pair
2 (E)

)2
, (15.121)
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Fig. 15.9 The transmission probabilityT (E) (black solid curve) aswell as the quantities�(E) (gray
solid curve), �pair

2 (E) (chained curve), �b-pair
2 (E) (broken curve), �pair-pair(E) (thick dotted curve)

for the parameter values ε0 = εd1 = 0, εd2 = 1/2 and g01 = g02 = g12 = 1/2. The gray vertical line
indicates the real part of the resonant and anti-resonant eigenvalues: Re E5 = Re E6 = 0.805784

�
b-pair
2 (E) := γ2Λb(E)Λ

pair
2 (E) (15.122)

�pair-pair(E) := γ2Λ
pair
1 (E)Λ

pair
2 (E) (15.123)

together with the transmission probability T (E) as given in (15.99). The other quan-
tities not shown are smooth in the plotted region. We observe that the interference
between the two pairs of resonant and anti-resonant states, quantified by �pair-pair, is
relatively large in this case.

This interference approximately results in the form [4]

�pair-pair ∼
(
Ẽ + qpair-pair

)2

1 + Ẽ2
(15.124)

for small Ẽ := (E − Re E5)/| Im E5|, where we can again define the parameter
qpair-pair microscopically; see [4]. Each of the two pairs affect the Fano asymme-
try of the other pair, although the magnitudes of the Fano parameter can be very
different from each other. The interference between two resonant states has been
discussed in [20, 21], although we stress again that the corresponding anti-resonant
states are mostly ignored.

The values of the Fano parameters around E = 0.805784 are given by

qpair = 0.505055, (15.125)

qb-pair = −0.635981, (15.126)

qpair-pair = −0.607372 (15.127)
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for ε0 = εd1 = 0, εd2 = 1/2 and g01 = g02 = g12 = 1/2. The signs of the three
parameters indicate the parities of the Fano shapes. The positive value of qpair is
consistent with the fact that �

pair
2 (E) has a peak on the left and a dip on the right,

while the negative values of qb-pair and qpair-pair agree with the fact that both�
b-pair
2 (E)

and �pair-pair(E) have a dip on the left and a peak on the right.

15.4 Summary

To summarize, we succeeded in expanding the transmission probability, and hence
the electronic Landauer conductance, in terms of all discrete states but no continuous
states [4, 5, 8]. This expansion makes more transparent to trace the cause of the Fano
asymmetry back to the interference between various discrete states. Fano’s origi-
nal argument [19] considered the interference between a bound state and a resonant
state, which produced the celebrated formula (15.115). We not only reproduced it
but also found a new type of asymmetry with the double power in the denominator,
which is caused by interference between a resonant state and its anti-resonant part-
ner [4]; taking account of anti-resonant states made it possible. We also reproduced
the asymmetry due to the interference between two resonant-anti-resonant pairs. We
found microscopic derivation of the Fano parameters for the three types of the asym-
metry [4]. This may let us find experimentally the phase of a resonant state from qpair

as in (15.114), as well as from qb-pair and qpair-pair.
We also found in [4] that the Fano parameter of the first type can become complex

under an external magnetic field. This is consistent with experiments in [22–24],
which indeed observed complex Fano parameters.
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Chapter 16
Fano Resonances in Slanted Hyperbolic
Metamaterial Cavities

F. Vaianella and B. Maes

Abstract In this chapter we present the possibility to engineer Fano resonances
using multilayered hyperbolic metamaterials, either metal-dielectric or graphene-
based multilayers. The proposed cavity designs are composed of multilayers with
a central slanted part that allows the excitation of a propagative and an evanescent
mode, the interference between these twomodes being responsible for highly tunable
resonances. The propagating mode can reach an extremely high effective index,
making the realization of deeply subwavelength cavities possible, as small as 5nm
for visible light with a metal-dielectric multilayer, and 0.5µm in the terahertz regime
with a graphene-based multilayer. The evanescent mode is rarely analyzed but plays
an important role here, as its contribution determines the particular shape of the
cavity characteristic.Moreover, these phenomena cannot be described using effective
medium theory, and we provide a more rigorous analysis. The reported resonances
are very sensitive to any structural changes, but also to small variations of the doping
level for the graphene-based multilayers.

16.1 Introduction

Enhanced control over all aspects of light is a major research direction over the last
decades. In this direction, and thanks to progress in nanofabrication, metamaterials
have attracted a large scientific interest with their unusual properties arising from
subwavelength features [1–7].

This chapter is based in part on material that appeared in [22] which has been revised and updated.
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Among them, a particular subclass of these materials, the so-called hyperbolic
metamaterials (HMMs), presents various interesting properties, such as a very large
density of states [8, 9], an extreme refractive index and negative refraction [10, 11].
Typical structures providing these properties are periodic multilayers with subwave-
length thicknesses of metal and dielectric [12–16] and arrays of metallic nanorods
in a dielectric host [17–19].

Various designs of cavities based on HMMs have been studied, and they present
interesting features such as an anomalous scaling law [10], whispering-gallerymodes
[20], zeroth order Fabry-Perot resonances [21] and Fano resonances [22, 23].

Fano resonances are asymmetrically shaped resonant phenomena that arise from
the interference between a slowly varying background and a narrow resonant process
[24–26]. Because their features stem from the interplay between two distinct chan-
nels, the resonances are very sensitive to any changes, rendering them interesting,
among others, for sensing applications [27].

Here we propose very compact, high-quality cavities based on slanted multilayer
HMMs, which present Fano resonances. Using rigorous numerical simulations and a
thoroughmodal analysis, we elucidate the mechanism as the simultaneous excitation
of a propagating and an evanescent mode. The propagatingmode creates Fabry-Perot
resonances, whereas the evanescent modes leads to a slowly varying background, so
that their interference leads to narrow Fano-type features. This principle cannot be
explained using effective medium theory (EMT), and builds on a rarely exploited
evanescent mode.

Moreover, because the effective index is very high in the slanted cavity,we can cre-
ate deep subwavelength cavities of a few nanometers in the visible regimewithmetal-
dielectric structures and a few micrometers in the terahertz regime with graphene-
based multilayers. In addition, we show that this mechanism remains valid even in
the presence of losses.

The results of this research for metal-dielectric multilayers have been detailed in
[22]. Here we additionally show that the mechanism is more general and also valid
for graphene-based multilayers, the latter offering tunability and control on position
and sharpness of the Fano resonances through variation of the doping.

In Sect. 16.2 we present the proposed design. Section 16.3 inspects the light
behaviour using effective medium theory, leading to an incomplete description.
In Sect. 16.4 we calculate the correct characteristics, and explain the observed
behaviour for metal-dielectric multilayer, and subsequently for graphene multilayers
in Sect. 16.5. Finally, in Sect. 16.6we discuss the impact of loss in themetal-dielectric
multilayer, and Sect. 16.7 concludes.

16.2 Design

We study the transmission and reflection of light along the parallel direction (so
k⊥ = ky = 0) of a HMMwith a finite section of tilted layers in themiddle (Fig. 16.1).
The central tilt section is described by A (the vertical offset), B (the horizontal offset)
and L (the parallel length) with L = √

A2 + B2 = A
sin θ

, and θ is the tilt angle.
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Fig. 16.1 A multilayer
HMM with a tilted section in
the middle. The fundamental
mode is excited from the left.
The structure is divided in
three parts along the x
direction: Two identical
HMMs on the left and right
and an asymmetrical HMM
(or AHM) in the center

Because we work in the visible and near-infrared region, we use silver (Ag) as
metal and TiO2 as dielectric, which are well-known to provide good performances at
these frequencies [28–30]. We choose dm = 10 nm for the Ag thickness and dd = 20
nm for the TiO2 thickness. We use a dispersionless index for TiO2 with nTiO2 = 2.7
and a Drude model for Ag:

εAg = 1 − ω2
p

ω2 + iωγ
(16.1)

with ωp = 1.26 × 1016 Hz the plasma frequency and γ the collision frequency that
we fix equal to zero; we examine the influence of losses in Sect. 16.6.

We work in the regime where only one propagating Bloch mode exists in the
HMM, hence thewavelength is larger than 600 nm in our case.We excite the structure
from Fig. 16.1 with this propagating mode from the left and look at its reflectance
and transmittance for a Bloch momentum ky = 0.

In the next sectionwe study this structure using an effectivemedium theory, which
will show its limits to describe such systems.

16.3 Effective Medium Theory

For a uniaxial multilayer using effective medium theory, the dispersion relation for
TM waves (transverse magnetic, magnetic field along z direction) is [31, 32]:

k2‖
ε⊥

+ k2⊥
ε‖

= k20 (16.2)

where k‖ (k⊥) is the wavevector in the direction parallel (perpendicular) to the layers
and k0 the wavevector in free-space. The permittivity in the parallel and normal
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directions depends only on the permittivity of the constitutive materials and their
filling fraction:

ε‖ = f εm + (1 − f )εd , (16.3)

ε⊥ = εmεd

f εd + (1 − f )εm
(16.4)

where ε‖ and ε⊥ are the components of the permittivity in the parallel and perpen-
dicular directions, εm and εd are the permittivity of the metal and the dielectric,
respectively, and f is the metal filling fraction.

For the used wavelength regime, these materials turn out to be very particular
anisotropic media, namely HMMs, where components of the diagonalized permit-
tivity tensor have opposite sign, and (16.2) is thus the equation of a hyperbola. Conse-
quently, theHMMcan support propagatingmodeswith extremely largewavevectors.
We note, however, that this equation also has other solutions. There is an evanes-
cent mode (imaginary parallel momentum and real perpendicular momentum), and a
mode with real parallel momentum and imaginary perpendicular momentum. These
modes are often overlooked, because they are accessible only in certain conditions.
We show later on that we fulfill the conditions to excite the evanescent mode, and it
will play an important role for the cavity mechanism in the next section.

The geometry explained in the previous section can be divided in three different
parts (Fig. 16.1). The left and right parts are ‘standard’ HMMs and are governed by
(16.2) with ε⊥ = εy , ε‖ = εx and k‖ = kx , k⊥ = ky.

The central part however is a hyperbolic medium with the optical axis tilted with
respect to the x direction. In the literature these HMMs with tilted optical axis are
sometimes referred to as asymmetric hyperbolic metamaterials (AHMs) [33, 34].

The AHM part of Fig. 16.1 is also governed by (16.2), but with ε⊥ = εy′ , ε‖ = εx ′

and k‖ = k ′
x , k⊥ = k ′

y . Even if the thicknesses of the Ag and TiO2 layers in the central
part change (d ′

m = dm cos θ and d ′
d = dd cos θ), we still have the same εx = εx ′ and

εy = εy′ , because (16.3) and (16.4) only depend on the filling fraction f , which
remains the same.

Using a coordinate transformation (16.2) in the AHM becomes, in the main coor-
dinates:

k(1,2)x =
kyεxy ±

√
(ε2xy − εxxεyy)(k2y − k20εxx )

εxx
(16.5)

with the the solution k(1)x corresponds to the sign “+” in the formula for mode propa-
gating towards smaller x and k(2)x to the sign “–” for waves propagating towards larger
x . Note that in our case of normal incidence, k(1)x and k(2)x are equal in magnitude. εxx ,
εxy and εyy are the permittivity components of the AHM in the main coordinates,
which are obtained by applying a rotation matrix to the diagonal permittivity tensor
in the tilted coordinates:
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ε = R(θ) ε′ R(θ)T =
(

εxx εxy
εxy εyy

)
(16.6)

withR(θ) the matrix of rotation around the z axis and ε′ =
(

ε′
x 0
0 ε′

y

)
the permittivity

tensor in the tilted coordinates. This leads to

εxx = εx ′ cos2 θ + εy′ sin2 θ (16.7)

εxy = (εx ′ − εy′) cos θ sin θ (16.8)

εyy = εx ′ sin2 θ + εy′ cos2 θ (16.9)

For zero momentum in the y direction (i.e. ky = 0), the momentum in the
x direction is different in the HMMs (kx = √

εy k0) and in the AHM

(kx =
√

(ε2xy−εxxεyy)(−k20εxx )

εxx
), leading to reflection at the interfaces. Thus the intro-

duced design functions as a cavity structure of width B.
Now that we have defined the effective permittivity components in the HMM

and AHM parts, we can easily calculate numerically the scattering characteristics
of the structure with the different parts replaced by homogeneous blocks with these
effective parameters. The reflectance of light as a function of the tilt angle θ and the
length L at a wavelength λ0 = 700 nm is shown in Fig. 16.2.

We observe two distinct behaviours above and below a transition tilt angle of
about θt ≈ 21◦. This phenomenon can be understood by looking at the isofrequency
contours of the HMM and the AHM section, respectively (Fig. 16.3).

Blue curves correspond to the isofrequency contour of propagating modes, thus
with real components for the x and y momenta (therefore, real part of momenta is

Fig. 16.2 Reflectance versus tilt length L and angle θ using effective medium theory
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(a) HMM (b) AHM

Fig. 16.3 Isofrequency contours a in the HMM, and b in the AHM for a tilt angle of 45◦ with
EMT, for λ0 = 700 nm. Blue curve corresponds to propagating waves, green curve corresponds to
evanescent waves and red curve corresponds to propagating wave in the x direction and evanescent
in the y direction. The orange arrow in (a) indicates the input wavevector, in (b) the dominant
(green) mode in the AHM

plotted). Green curves correspond to evanescent modes with imaginary momentum
components in both directions (therefore, imaginary part of momenta is plotted).
Red curves correspond tomodeswith real x-momentum and imaginary y-momentum
(therefore, the real part of the momentum is plotted on the abscissa and the imaginary
part is plotted on the ordinate). Note that the isofrequency contours of Fig. 16.3b are
just the isofrequency contours of Fig. 16.3a rotated by 45◦.

The conservation of the momentum in the transverse direction (ky = 0) imposes
in the tilted coordinates (x ′, y′):

ky = k ′
x sin θ + k ′

y cos θ = 0 (16.10)

so
k ′
x sin θ = −k ′

y cos θ (16.11)

and thus, the mode evanescent in the y′ direction and propagating in the x ′ direction
(red curves in Fig. 16.3) inside the AHM cannot be excited because (16.11) cannot
be fulfilled. The mode evanescent in all directions (green curves in Fig. 16.3) and
the propagating one (blue curves in Fig. 16.3) however can fulfilled (16.11) and can
be excited for normal incidence (ky = 0).

The orange arrow in Fig. 16.3a shows the incident momentum inside the HMM.
From Fig. 16.3b we see that transverse momentum conservation (the orange arrow
in Fig. 16.3b needs to be horizontal) requires that only one mode at a time is excited
inside the AHM. The latter mode is either propagating (blue) or evanescent (green),
in function of the tilt angle.

The transition angle θt between the two regimes is determined by the asymptote
of the hyperbolic contours (the same asymptote for both blue or green contours), this
angle equals
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Fig. 16.4 Exact reflectance in function of θ and L . Black dashed line corresponds to the eight first
orders of the Fabry-Perot constructive interferences. The wavelength is 700 nm

θt = atan

(√
εx

εy

)
≈ 21.6◦ (16.12)

at λ0 = 700 nm.
Thus, below θt only a propagating mode (orange arrow touches blue curve) is

excited inside the AHM, so the lobes in the lower part of Fig. 16.2 are Fabry-Perot
resonances of the cavity. The fairly weak reflectance of the lobes is typical of Fabry-
Perot cavities with low reflection at each interface, which is the case for small tilt
angles.

Above θt only the evanescent mode (orange arrow touches green curve) is
excited in the AHM, leading to the absence of Fabry-Perot fringes. Furthermore,
the reflectance increases monotonously with B (= L cos θ), because the mode ampli-
tude decreases exponentially with the length of propagation.

In the next section, we show that this EMT description is actually incomplete, and
only provides for qualitative trends compared to the exact simulations.

16.4 Rigorous Calculations and Analysis

We employ the commercial finite-element software COMSOL Multiphysics 5.2
to calculate the exact propagation through the structure (Fig. 16.1), with slightly
rounded corners to avoid hotspots. The reflectance in function of the tilt angle θ and
the parallel propagation length L is shown in Fig. 16.4. The same lobe-like behaviour
as with EMT below θt is present, but the behaviour above θt is completely different.
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In order to understand this difference, we need to take into account the exact
dispersion relation obtained by solving Maxwell’s equations and applying Bloch’s
theorem [13, 35]

cos (kyD) = (κdεm + κmεd)
2

4κdκmεdεm
cosh (κddd + κmdm)

− (κdεm − κmεd)
2

4κdκmεdεm
cosh (κddd − κmdm)

(16.13)

with D = dm + dd the period of themultilayer,κd,m =
√
k2x − k20εd,m the decay coef-

ficients in the dielectric and metallic layers, respectively. This dispersion relation is
also valid in theAHM, by replacing (kx , ky) with (k ′

x , k
′
y), dd,m with d ′

d,m = dd,m cos θ
and D with D′ = D cos θ. Combining (16.13) with the transverse momentum con-
servation condition (16.11) in the AHM, we finally arrive at

cos (k ′
x D

′ tan θ) = (κdεm + κmεd)
2

4κdκmεdεm
cosh (κdd

′
d + κmd

′
m)

− (κdεm − κmεd)
2

4κdκmεdεm
cosh (κdd

′
d − κmd

′
m)

(16.14)

The main conclusion is that two modes satisfy this equation at the same time for
all tilt angles θ: an evanescent one and a propagating one. This result is consistent
with the rigorously simulated isofrequency contours (Fig. 16.5), where the blue curve
represents the propagating mode and the green curve the evanescent mode.

The orange arrow in Fig. 16.5a shows the incident momentum inside the HMM. In
Fig. 16.5b, two horizontal arrows are needed to represent the momentum of the two
excited modes inside the AHM. The orange arrow represents the momentum of the
propagating mode and the green arrow represents the momentum of the evanescent
mode.

The first important difference with the EMT contours of Fig. 16.3 is that the
evanescent wave contour (green contours) that was an open curve is now a closed
curve for the exact calculations of Fig. 16.5. Secondly, because the structure is peri-
odic, all the information is encoded in the first Brillouin zone, thus the isofrequency
contour of the propagating wave (blue curves) is also periodic and is not limited by
asymptotes, in contrast with the EMT contours.

For these reasons, inside the AHM, an evanescent and a propagating modes are
always excited together. The interferences between these twomodes inside the AHM
cavity are responsible for the Fano resonances appearing in Fig. 16.4. Indeed, Fano
resonances can be described as arising from the interference between a slowly varying
background (here: the evanescentwave) and a resonant process (here: the Fabry-Perot
oscillations of the propagating mode).
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(a) HMM (b) AHM

Fig. 16.5 Exact isofrequency contours a in the HMM and b in the AHM for a tilt angle of 45◦
in the first Brillouin zone for λ0 = 700 nm. Blue curves correspond to propagating waves, green
curves correspond to evanescent waves. Conservation of the transverse wavevector is illustrated by
the orange and green arrows

Fig. 16.6 Comparison
between the exact
calculation of the reflectance
(blue solid curve) and the
slowly varying background
of the evanescent mode
(green solid curve) and the
Fabry-Perot oscillations of
the propagating mode (red
dashed curve) for θ = 45◦ at
λ0 = 700 nm
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The Fano nature is more visible in Fig. 16.6 (blue curve), which shows the
reflectance for an angle θ = 45◦ as a function of thewidth B of the cavity. Figure 16.6
further illustrates the cavity principle in detail: the Fabry-Perot oscillations of the
propagating mode (red dashed curve) and the slowly increasing evanescent back-
ground (green curve) are shown separately. Both reflectance curves are obtained
using a transfer matrix method under the hypothesis of an isotropic medium (a good
approximation for normal incidence) as:

R = |r |2 =
∣∣∣∣rH A + tH AtAHrAH exp (2ikx B + ϕ)

1 − r2AH exp (2ikx B + ϕ)

∣∣∣∣
2

(16.15)

with rH A and rAH the Fresnel coefficients of reflection of the propagating (resp.
evanescent) mode for the HMM-AHM and AHM-HMM interfaces, tH A and tAH
the Fresncel coefficient of transmission, kx the wavevector in the x direction of the
propagating (resp. evanescent) mode and ϕ a fitted phase term.
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Fig. 16.7 Momentum in the
x direction kx inside the
AHM in function of the tilt
angle for ky = 0. Blue curve
and axis represent the
propagating mode, green
curve and axis represent the
evanescent mode
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The exact reflectance thus arises from the interference of these two phenomena
(leading to the blue curve). When the cavity length B becomes larger, the effect
of the evanescent mode disappears, as its resulting reflectance (green curve) tends
to 1, as the mode decays and does not manage to transmit. Then the characteristic
only consists of typical Fabry-Perot oscillations from the propagating mode. For
smaller lengths we obtain the typical asymmetric double-peak (maximum-minimum
or vice-versa) Fano characteristics.

Black dashed lines in Fig. 16.4 show the good correspondance between the Fano
resonances and the Fabry-Perot peaks of the propagating mode; the latter are plotted
using a typical phase-matching round-trip relation

2kx (θ)B + 2ϕ(θ) = 2πm (16.16)

with m an integer indicating the order, ϕ(θ) the phase change at each interface
obtained by fitting, and kx (θ) the wavevector in the x direction for ky = 0 obtained
from (16.14) (and using kx = k ′

x cos θ − k ′
y sin θ). The momentum in the x direction

for the evanescent and propagating modes is shown in Fig. 16.7.
The very high value of the mode index inside the cavity leads to the possibility

to create very compact cavities, on the order of 5 nm width for θ = 45◦ (first peak
in Fig. 16.6). For the first order (m = 1) the reflectance shows a single peak, so
no asymmetric double-peak characteristic, which is similar to other contexts, such
as a cavity placed on the side of a waveguide [36]. The latter effect is intuitively
acceptable as the evanescent mode background (the ‘direct’ channel) has a very
large transmission for very thin cavities.

The shapes of the resonances are also present in the spectra of the structure. We
show these spectra in two cases for θ = 45◦, with a reflectance peak for A = 5 nm,
B = 5 nm (first order resonance, Fig. 16.8a), and with asymmetric Fano shapes for
A = 35 nm, B = 35 nm (third order resonance for λ0 = 700 nm, second order for
λ0 = 885 nm , Fig. 16.8b).
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(a) A = 5 nm, B = 5 nm (b) A = 35 nm, B = 35 nm

Fig. 16.8 Reflectance spectrawith geometric parameters a A = 5 nm, B = 5 nm and b A = 35 nm,
B = 35 nm. Insets show the magnitude of the electric field at the resonance wavelength λ0 = 700
nm for a single unit cell of the periodic stacks
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(a) θ = 30◦, λ0 = 700 nm
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(b) θ = 60◦, λ0 = 700 nm

Fig. 16.9 Reflectance for specific configurations at λ0 = 700 nm: a θ = 30◦. b θ = 60◦

The insets of Fig. 16.8 present the magnitude of the electric field at the first order
resonance (inset of Fig. 16.8a) and third order resonance (inset of Fig. 16.8b) for
the wavelength λ0 = 700 nm. As we can expect, the first order resonance does not
present a node in the cavity and the third order profile indicates two nodes. The field
inside the cavity for the first order resonance is quite large, so one needs to pay
attention to losses, this is discussed in the Sect. 16.5.

The reflectance for two specific tilt angles is presented in Fig. 16.9, showing that
cavity engineering is possible in the regime where hyperbolic modes are supported.
For an angle θ = 30◦ and λ0 = 700 nm (Fig. 16.9a), the green curve of the isofre-
quency contour of Fig. 16.5b indicates that the imaginary part of the momentum of
the evanescent mode is fairly high, which is true for small θ (see also Fig. 16.7). This
explains why the asymmetric Fano resonances disappear rapidly, and quickly lead
to standard Fabry-Perot features.

For θ = 60◦ and λ0 = 700 nm (Fig. 16.9b) the imaginary part for the evanescent
mode is low enough to allow for the existence of Fano resonances over a large range
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of cavity widths (see also Fig. 16.7). Moreover, as the reflection of the propagating
mode at each HMM-AHM interface is larger (because of the larger effective index,
see Fig. 16.7), the peaks are narrower than for the smaller tilt angle (e.g. Fig. 16.9a).

16.5 Graphene Multilayers

In this section we describe the Fano resonances in a different system, namely
graphene-based multilayers. This shows that the mechanism is more general, and
can appear in various structures.

Graphene is a two-dimensional hexagonal lattice of carbon atoms whose inter-
esting properties have been studied intensively over the last decade. This material
supports surface waves in the near- to far-infrared, similar to the surface plasmons
of metal-dielectric interfaces [37–40]. Even if graphene is not a suitable platform
for visible and near-infrared applications because of large losses, when combined
with dielectrics, graphene-based multilayers offer a good opportunity for hyper-
bolicmetamaterials in the terahertz regime [41–43]. Such graphene-based hyperbolic
metamaterials offer interesting opportunities for a large variety of applications, such
as negative refraction [44], total absorption [45] and enhancement of spontaneous
emission of an emitter placed in the vicinity of the multilayer [46].

We search for similar phenomena as in the previous sections, by investigating the
slanted multilayer as in Fig. 16.10. For this structure we model the graphene layers
as conductive sheets, with conductance obtained by the Kubo-Greenwood formula
[47–50]:

σ = σintra + σinter (16.17)

Fig. 16.10 A
graphene-based multilayer
with a tilted section in the
middle. The fundamental
mode is excited from the left.
The structure is divided in
three parts along the x
direction: Two identical
HMMs on the left and right
and an asymmetrical HMM
(or AHM) in the center. Grey
lines are the graphene sheets
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with

σintra = 2ie2kBT
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ln

[
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(16.18)

σinter = e2

4�

[
1

2
+ 1

π
arctan

(
�ω − 2EF

2kBT

)]

− e2

4�

[
i

2π
ln

(�ω + 2EF )
2

(�ω − 2EF )2 + (2kBT )2

]
(16.19)

with σintra the conductivity related to the intraband electron-photon scattering pro-
cesses, σinter related to the interband electron transitions, EF the doping level, τ the
electron scattering lifetime, T the temperature (we use room temperature, 300 K)
and kB the Boltzmann constant. We neglect spatial dispersion of graphene because
the lattice constant is deeply subwavelength in the terahertz regime [51].

For simplicity, we model lossless graphene to compare with the previous section
and so we take the imaginary part of the conductivity given by (16.17). We use
n1 = 1.5 for the refractive index of the dielectric (permittivity ε1 = 2.25) and a
period P = 1 µm. The exact dispersion relation is obtained similarly to equation
(16.13) combining the transfer-matrix method (with surface currents) with Bloch’s
theorem, and one obtains [26, 45, 46]:

cos (kyP) = cos (ky,1P) − i

2
σZ0Z

(p) sin (ky,1P) (16.20)

with Z0 the impedance of free-space, ky,1 =
√

ε1k20 − k2x thewavevector in the dielec-

tric, Z (p) = ky,1/(k0ε1) the impedance of the dielectric for TM-polarized waves.
With (16.20) we can calculate the isofrequency contours both in the graphene-

based HMM (Fig. 16.11a) and the AHM (with a tilt angle θ = 60◦, Fig. 16.11b). We
can see themagnitude of thewavevectors aremuch larger than for themetal-dielectric
case, reducing drastically the size of the cavity (compared to the wavelength).

In a similar way than in the previous sections, we have highlighted the incident
wavevector by the orange arrow in Fig. 16.11a. Note that unlike Fig. 16.5, we have
rotated the wavevectors and not the axes here. The effective refractive index at nor-
mal incidence is approximatively the refractive index of the dielectric (n = 1.5),
simplifying drastically the problem of light incoupling that can occur with a metal-
dielectric multilayer. Similar to the previous metal-dielectric case, two modes are
always excited in the AHM: an evanescent one and a propagating one (green and
orange arrows in Fig. 16.11b).

The resonances in this cavity are also Fano resonances, see the blue solid curve
in Fig. 16.12, which can again be explained as an interference between the smooth
evanescent transmission (solid green curve in Fig. 16.12) and the Fabry-Perot modes
of the propagating mode (dashed red curve in Fig. 16.12). Here, because of the large
contrast between the refractive index in the HMMs and in the AHM, the peaks are
very sharp and the quality factor of the resonances becomes large. Note that Fano
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(a) HMM (b) AHM

Fig. 16.11 Exact isofrequency contours a in the graphene-based HMM and b in the AHM for a tilt
angle of 60◦ in the first Brillouin zone forλ0 = 100µmand a doping level EF = 0.1 eV.Blue curves
correspond to propagating waves, green curves correspond to evanescent waves. Conservation of
the transverse wavevector is illustrated by the orange and green arrows. The inset in (a) shows a
zoom on the small momentum part of the isofrequency contours of the HMM
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Fig. 16.12 Comparison between the exact calculation of the reflectance (blue solid curve) and
the slowly varying background of the evanescent mode (green solid curve) and the Fabry-Perot
oscillations of the propagating mode (red dashed curve) for the graphene-based HMM with a tilt
angle θ = 60◦ and λ0 = 100 µm and a doping level EF = 0.1 eV

resonances for cavities as small as 0.5µmcan be realized,which is drastically smaller
than the wavelength in free-space (100 µm).

Interestingly, the sharpness of the resonances depends on the particular order.
We observe in Fig. 16.12 that odd orders are wider than even orders. By odd order
we mean the first, third, fifth …peaks in Fig. 16.12. This behaviour is caused by an
interplay between the evanescentmode and the Fabry-Perot resonances, as confirmed
by the fact that for large cavity widths, the evanescent background disappears and the
sharpness of the peaks remains constant. The presence of the evanescent mode adds
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Fig. 16.13 Momentum in the x direction kx inside the graphene-based AHM in function of the tilt
angle for ky = 0, and various doping levels EF . Blue curves and left axis represent the propagating
mode, green curves and right axis represent the evanescent mode

an extra amplitude to the reflection, which interferes with the symmetry of the odd
and even Fabry-Perot resonances. This results in a more rapid phase change for the
even Fano order and a slower one for the odd ones. This effect is much less visible in
the metal-dielectric multilayer case (Fig. 16.6), as the coupling with the two modes
is too different there.

By calculating the refractive index inside the cavity, we can also demonstrate
that the system is highly tunable. Combining (16.20) with the transverse momentum
conservation condition (16.11), we determine the refractive index for the propagating
and evanescent mode (Fig. 16.13). Thus, at the angle of Fig. 16.12 (θ = 60◦), a small
change of the doping level can lead to a drastic change in the wavevector of the
propagating and evanescent modes.

For example, a small decrease of the doping level from 0.1 to 0.07 eV changes the
refractive index of the propagative mode from about 60 to 100, and of the evanescent
mode from about 4i to 2i . This completely modifies the position and sharpness of
the Fano resonances, see Fig. 16.14 (blue curve compared to red curve). This tuning
is not only geometric, but is also clearly visible in the dispersion spectra. Compare
for example the blue curve to the red curve in Fig. 16.15a (B = 0.55 µm), and in
Fig. 16.15b (B = 1.38 µm).

However, an increase of the doping level from 0.1 eV to 0.15 eV strongly reduces
the refractive index of the propagative mode, and increases the imaginary part of
the wavevector for the evanescent mode. Thus, the Fabry-Perot resonance becomes
very broad (as the contrast between the HMM and AHM is low), and the evanescent
background disappears for a very small cavity width. For these reasons, the Fano
resonances are destroyedwhen increasing the doping level (Fig. 16.14, yellow curve).
The latter is also observed in the reflectance spectra (Fig. 16.15a, b, yellow curve
compared to red curve).
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Fig. 16.14 Reflectance versus the cavity width B for various doping levels. Blue curve corresponds
to EF = 0.07 eV, red curve to EF = 0.1 eV, and yellow curve to EF = 0.15 eV
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(b) A = 2.39 μm, B = 1.38 μm

Fig. 16.15 Reflectance spectra of the graphene-based multilayer for various doping levels: a A =
0.96 µm, B = 0.55 µm, b A = 2.39 µm, B = 1.38 µm

16.6 Loss Effect

In this section, we return to the metal-dielectric structure, and study the influence
of loss on the Fano resonances. Therefore, we use a Drude model with loss for the
metal. The collision frequency in (16.1) is now γ = 0.5 × 1014 Hz, which fits well
with experimental measurements [10, 52].

Unlike the losslessmodel,modeswith purely real or purely imaginary propagation
constant do no longer exist. However, the mainly evanescent and propagating modes
still exist (if losses are not too large) and are excited with the provision of momentum
conversation (16.11). Furthermore, in order to show the same Fano mechanism as in
the previous section, the modal parameters should obey certain conditions. Specifi-
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Fig. 16.16 Ratio between the real and imaginary parts of the refractive index of the propagating
mode inside the AHM

cally, the propagating mode should have a large real part and small imaginary part of
the modal refractive index in the x direction, whereas the evanescent mode should
have an imaginary part of the mode index in the x direction in the range between
around 1 and 2 (above 2 the Fano resonances disappear quickly, below 1 the slowly
varying background is not effective).

We focus on structureswithmetal filling fraction f = 1
3 as in the previous sections.

(16.14) is still valid, so we can calculate the refractive index of the modes inside the
AHM. Figures 16.16 and 16.17 show the ratio between the real and imaginary parts of

Fig. 16.17 Imaginary part of the refractive index of the evanescent mode inside the AHM
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Fig. 16.18 Reflectance and
transmittance with period 30
nm and tilt angle 65◦ with
losses. Blue curve
corresponds to the
reflectance, red curve to
transmittance
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Fig. 16.19 Reflectance and
transmittance spectrum with
period 30 nm, tilt angle of
65◦ and cavity width
B = 17.7 nm with losses.
Blue curve corresponds to
the reflectance, red curve to
transmittance
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the propagating mode, and the imaginary part of the evanescent mode, respectively.
The structure with period of 30 nm and tilt angle of 65◦ respects the conditions cited
above, so we use these parameters for the simulations.

From the field profiles (insets of Fig. 16.8) we can see hotspots created by sharp
corners. These hotspots are critical in the presence of loss and can kill the resonance
effect, therefore we limit their influence by replacing sharp corners with sections of
10 nm radius circles.

The reflectance and transmittance in function of the cavity width B is shown
in Fig. 16.18. We still observe the Fano resonances and the extreme sensitivity to
small changes in the cavity width. The cavity principle thus remains operational, as
the spectrum in Fig. 16.19 also illustrates. Note that the decrease in transmittance
corresponds to an increase in reflectance, so it is an interference effect, and not only
due to metal absorption.
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16.7 Conclusion

We show in this chapter the possibility to excite Fano resonances inmultilayerswith a
central tilted section that functions as a cavity. Inside this cavity, for normal incidence
(ky = 0), a propagating mode and an evanescent mode are always excited, the prop-
agating mode being responsible for Fabry-Perot oscillations, while the evanescent
mode ‘direct’ channel leads to a slowly varying background. Furthermore, effective
medium theory cannot explain the existence of these resonances, as it only predicts
a single mode at a time, either propagating or evanescent.

The relatively large effective index inside the cavity offers the possibility to create
very compact extremely subwavelength cavities as small as 5 nm in the visible
regime with metal-dielectric multilayers, and 0.5 µm in the terahertz regime with
graphene-based multilayers. In addition, the specific characteristics can be tailored,
either presenting total transmittance or total reflectance at resonance, or exhibiting
an asymmetric spectrum.

For the graphene-based multilayers, the doping level is another parameter to con-
trol the position and sharpness of the Fano resonances, with a variation as small as
0.03 eV changing completely the reflectance spectrum. Moreover, compared to the
metal-dielectric devices, light incoupling can be easier because the mode index is
approximatively equal to the index of the dielectric at normal incidence, avoiding
the necessity to rely on incoupling techniques such as gratings or prisms.

Finally, we calculate that for structures with metal losses, these Fano resonances
still exist. This bimodal interference mechanism in slanted cavities is therefore quite
general and offers new practical possibilities, for instance in the domain of sensing
applications.
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Chapter 17
Fano Resonance Generation
and Applications in 3D Folding
Metamaterials

Z. Liu, S. Y. Yang, J. J. Li and C. Z. Gu

Abstract The development of nanotechnology has endowed the light-matter inter-
action with more degrees of freedom, and made the manipulation of optical phe-
nomena more precise and arbitrary. Fano resonance is a type of resonant scattering
phenomenonwith asymmetric line profile,whichwasfirstly studied in atomic physics
and then introduced to photonics and plasmonics. This phenomenon is due to the
interference between a discrete bound state and a continuum state, thus a two-body
or few-body system is needed to provide different types of states that are necessary
in this phenomenon. Artificial metamaterial is a very good candidate to generate
Fano resonances because of its designable configuration. In this paper, a new type
of structure—3D folding metamaterial—is introduced for Fano resonance genera-
tion and application. The structure, fabricated by focused-ion-beam based folding
technique, is composed of planar and out-of-plane parts, which are essential for the
excitation of the discrete bound states and continuum states. The intensity, frequency
and quality factor of the Fano resonances can bemodulated by the configuration of the
3D folding structures (shape, size, inclined angle, etc.), thus enlarges its application
potential such as index sensing and surface enhanced Raman scattering.
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17.1 Fano Resonances Excited in Composite Structures

TheFano resonance got its name fromUgoFano,whowas an “outstanding interpreter
of how radiation interacts with atoms and cells” [1]. It was first put forward to
explain the sharp asymmetric profile of Rydberg spectral atomic lines based on a
superposition principle from quantum mechanics. The ionization of an atom by a
high-energy photon can proceed in two distinct ways: (i) through direct excitation
of an electron from its bound state into an unbound (continuum) state; (ii) through
indirect excitation of two electrons into an intermediate bound state, followed by an
Auger-like process of electron ejection. The first process is non-resonant because
the electron can be excited as long as the photon energy exceeds the ionization
threshold. However, in the second process, it is inherently resonant because the two
electrons must be excited into a well-defined auto-ionizing state. Electron-electron
interactions are responsible for the excitation and subsequent auto-ionization so the
quantum mechanical interference between these two ionization pathways results in
highly asymmetric dependence of the ionization cross-section on the photon energy
[2, 3].

The asymmetric profile can be described by the formula that put forward by Fano
[2, 4] of a scattering cross section:

σ � (ε + q)

ε2 + 1

2

(17.1)

where q is the shape parameter, ε is the reduced energy that equals to 2(E − EF)/Γ ,
EF is the resonant energy and Γ is the width of the autoionized state. The asymmetry
parameter q is a ratio of the transition probabilities to the mixed state and to the con-
tinuum. When q is of the order of unity, both the continuum and discrete transitions
are of the same strength, resulting in the asymmetric profile. In the situation q � 0, it
is a unique Fano resonance with symmetrical line shape, which is sometimes called
an antiresonance. In the limit |q|→∞, the transition to the continuum is very weak,
and the line shape is entirely determined by the transition through the discrete state
only with the standard Lorentzian profile of a Breit-Wigner resonance [4].

Similar asymmetric profiles can not only be observed in electron-electron inter-
actions but also in other systems such as two weakly coupled harmonic oscillators
[4], electron transition in helium [2], or a single quantum dot [5]. In recent years,
it has been further extended to photonic crystals, metamaterials (MMs), and other
plasmonic systems [6–14]. In analogywith the ionization of atomic system, themeta-
materials should also possess two types of resonances, i.e., a discrete bound state
(subradiant mode with sharp resonance that weakly coupled to incident light) and
a continuum state (superradiant mode with large linewidth that strongly coupled to
incident light) [15–17]. For example, for a dolmen structure composed of two hori-
zontal bars and one vertical bar, the coupling between the sharp bonding mode and
broad dipole mode results in the asymmetric Fano line shape (Fig. 17.1a) [9]. And
when a disk is introduced into the center of the split ring resonators (SRRs), the sur-
face plasmon resonance modes of the SRRs are coupled with the dipole mode of the
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Fig. 17.1 a Fano resonance of an individual dolmen structure (top) and calculated surface charge
distributions of the dipolar mode and the Fano extinction dip, respectively (bottom) [9]. b Trans-
mission spectra of disk (1), SRR (2), and SRR/D (3) arrays [18]

disk through capacitive interaction, thus an asymmetric line shape appears through
the Fano interference (see Fig. 17.1b) [18]. Therefore, in principle, it is promising to
construct composite structures composed of different resonant elements to flexibly
excite Fano resonances.

17.2 Fabrication of 3D Folding Metamaterial

In high frequency region (visible, infrared or terahertz), the feature size of the sub-
wavelengthmetamaterial unit ranges fromhundreds of nanometers to tens ofmicrons.
Traditional planar techniques such as UV/E-beam lithography, film deposition and
plasma etching were applied for the fabrication of high frequency metamaterials,
however their configurations were restricted to be two dimensional. 2D metamateri-
als have intrinsic limitations compared to 3D ones: (i) Negative permeability cannot
be achieved by planar SRRs unless oblique incident light radiates on the plane [19].
(ii) The orientations of planar structures are restricted by the substrate so that the
density of unit cells and the interaction type with the incident light are limited. (iii)
Planar structures usually have smaller scattering cross sections compared to 3D ones
thus their resonance intensity are smaller [20, 21]. In order to overcome the above dis-
advantages, 3D fabrication techniques are necessary to construct 3D metamaterials
for diverse Fano resonances.

Up to now, quite a number of 3D fabrication techniques has been developed. These
techniques can be classified into two types: one is the combination of the traditional
planar techniques, and the other one is brand new techniques beyond the planar ones.
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Fig. 17.2 a SEM image of the 21-layer fishnet structure [22]. b SEM images of vertical SRRs by
stress-driven assembly method [26]. c–e SEM images of a composite 3D unit cell with SRRs [31,
32]

17.2.1 Combination of Traditional Planar Techniques

In the first type, layer-by-layer stacking is the simplest way that can be thought
of. For example, the layer-by-layer fishnet structure composed of Ag and MgF2
films have effective negative refractive index over a broad spectral range, where
the negative index is provided by the negative permeability from broad metal strips
and negative permittivity from narrow metal strips [22], as shown in Fig. 17.2a.
In addition, multilayer SRRs [20] with broadband resonance spectra and Yagi-Uda
nanoantenna arrays with directional radiations [23] were also studied based on the
layer-by-layer stacking method. Besides stacking, rolling up 2D planar unit cells
on flexible substrate is also an intuitive way to construct “metamaterial tube” with
3D configuration based on traditional planar techniques [24], but the orientation of
these units cells are still severely restricted by the substrate thus they were so called
“quasi-3D”.

Stress-driven assembly [25–29] and oblique angle deposition [30–32] are 3D
fabrication techniques combining different types of planar processes that the as-
fabricated structures are truly 3D. For stress-driven assembly method, the residual
stress and strain gradient in single layer [25–27] or bilayer [28, 29] films were used
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after the patterns were released from substrate to get vertical structures (Fig. 17.2b),
and their radius were determined by material type, film thickness and temperature.
For oblique angle deposition, target materials were obliquely deposited onto side
walls of grating [30] or containers [31, 32] and the orientation of the 3D units are
restricted by the shape and profile of the framework (Fig. 17.2c–e).

17.2.2 Brand New Techniques

In the second type, new techniques were developed to replace the existing planar
techniques. The most flexible one is direct laser writing (DLW) based on two-photon
absorption (TPA) [33]. The probability of the photon absorption is proportional to
the square of light intensity thus only in a very small region in themiddle of light spot
the light intensity is large enough for TPA, therefore the resolution of DLW system
is beyond the diffraction limit. A variety of 3D structures were fabricated based
on this technique including woodpile photonic crystal [34–36], bi-chiral photonic
crystal structure [37] and elasto-mechanical unfeelability cloak [38] (Fig. 17.3a–c).
However, there are also disadvantages of DLW: (i) It has very low efficiency due
to its dot-by-dot scanning process; (ii) The materials are restricted to the ones that
have TPA effect, such as photoresist [39, 40], protein [41], arsenic trisulfide [42], etc.
Metal (which is a good candidate for plasmonic metamaterials) is very difficult to be
fabricated out of photoresist, but can be indirectly made by electroplating filling in
the hole in positive photoresist [21]. Two-photon-induced reduction of metal ions is
a solution to directly write metal structures (Fig. 17.3d) [43, 44], but the metal grains
are very large that increase the loss of surface plasmon.

Focused ion beam induced folding is also a new technique that beyond the tradi-
tional planar technique. In this technique, when focused ion beam irradiates on the
bottom of nanowires [45–47] or metal cantilevers [48, 49], the nanowires or metal
cantilevers will gradually bend towards the direction of ion beam, and finally be par-
allel to the ion beam. Therefore, there are two parameters that are most important for
the folding process: the ion beam dose (i.e., ion beam scanning times, which is pro-
portional to the bending angle before saturation) and ion beam direction (determines
the ultimate bending angle). A schematic of the fabrication strategies for 3D plas-
monic structures, e.g. single-folding, double-folding and multi-folding, is illustrated
in Fig. 17.4.

First, the metal film is released from the sacrificial layer on substrate and then
transferred onto a copper grid by a lift-off process [48]. Self-supported metal film is
obtained as shown in Fig. 17.4a. The total size of the pattern area is determined by
the size of the hollow grid, which can be chosen flexibly. Then focused-ion-beam is
applied onto the film to: (i) cut through the metal film to get in-plane cantilevers with
only one edge connected to the rest of the film as shown in Fig. 17.4b–d (red path
labeled S1); (ii) scan along specific path to fold the cantilever to a certain inclined
angle (blue path). For a typical single-folding process (Fig. 17.4b), line scanning on
the base of the cantilevers is processed to fold them to specific angles (labeled S2), the
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Fig. 17.3 a SEM cross-sectional view of a 3D photonic crystal woodpile structure [36]. b SEM
images of a Bi-chiral photonic crystal structure [37]. c SEM images of elasto-mechanical structures
[38]. d SEM images of silver pillar and pyramid structures [44]

length-width ratio of which can reach over 10:1. Figure 17.4c illustrates the double-
folding process, that smaller cantilevers are firstly cut on a larger cantilever (S1) and
line-scanned to be folded up (S2), then followed by an extra line scanning across the
base of the large cantilever to make a hierarchy folding configuration (S3). A multi-
folding design shown in Fig. 17.4d is carried out by multiple scanning step by step
(S2–S5) along one direction of the cantilever. The corresponding scanning electron
microscope (SEM) images of structures obtained by the aforementioned three kinds
of strategies are displayed in Fig. 17.4e–g, respectively [49]. These images indicate
very good degree of control and reproducibility of this in situ ion-beam irradiation-
induced folding technique.

An advantage of this 3D nanofabrication approach is that the 3D structures can be
prepared with high consistency across a sufficiently large area, e.g., on the order of
squaremillimeters, with amanageable processing time using a step-repeat patterning
strategy [48]. In addition, it should be emphasized that not only metal films but also
other materials including dielectric, semiconductor and composite multilayer films
canbe used in this process,which enlarges its application in photonics andplasmonics
[50].
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Fig. 17.4 Fabrication of spatially orientated 3D structures by focused-ion-beam induced folding
technique: a A suspend gold film on Cu grid. b–d Single-folding, double-folding and multi-folding
process. e–g SEM images of structures achieved with single, double and multi-folding strategy,
respectively. The scale bars are 2 µm [49]

17.3 Fano Resonances in 3D Folding Metamaterials

An intrinsic property of the 3D folding metamaterial is that, whatever the shape
of the folding part is, there is complementary hole shape on the film. This means
that the 3D folding metamaterials are combined by two parts: the out-of-plane part
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folded by ion beam, and the planar part containing holes. Therefore, distinct types
of resonances can be excited in this composite metamaterial.

17.3.1 Unusual Fano Resonance in Composite 3D Structures

In this work, we proposed a MH-VSRR structure that consists of vertical SRRs
(VSRRs) standing along an edge of planar metal holes (MHs) to generate Fano
resonances, as shown in Fig. 17.5a–c. U-shape SRRs have been widely employed
as building blocks for various 2D and 3D MMs [20, 51–56]. Conventionally, the
resonances of an SRR can be excited by polarized incident light with the electric
field (E-field) parallel to the ‘U’-plane (e.g., k parallel to z direction and E-field
parallel to x direction as shown in Fig. 17.5a), or as to say, the magnetic field (H-
field) perpendicular to the ‘U’-plane [53, 57]. Alternatively, when the E-field is
perpendicular to the ‘U’-plane in the y direction, it will induce no electromagnetic
resonance for SRR structures, regardless of planar [53, 57], vertical [58, 59] or
multi-layered [20, 51] configurations. Here we will show that, the integration of
SRRs can significantly change the extraordinary optical transmission (EOT) [60]
properties of the original MH arrays. In Fig. 17.5d and f, although the incident light
has an x-polarizedE-field component corresponding to the conventional situation, the
resonance peaks are rather weak (which will be explained latter) and the red curves
(MH-VSRRs) in Fig. 17.5d and f are quite similar to the black curves (EOT property
of MHs). When the polarization of the incident light changes to an alternative y
direction, as shown in Fig. 17.5e and h, clear Fano-type asymmetric line shapes
(red curves) at both low and high frequencies are observed on the background of
broad EOT peak (black curves), with Fano asymmetry factors of q �0.86 and−0.14
respectively. Here, the ‘broad’ resonance of EOT background can be treated as a
continuum state but a discrete bound state seems to be missing, since the VSRRs do
not support any resonance under such unconventional excitation scheme [53, 57],
making the observed Fano resonances quite unusual.

17.3.2 Mechanism of Fano Resonance Excitation

For the EOT mode, it is induced by the surface plasmon polarition that scattered
by the metallic hole array on metal/air interface. Only TM mode can exist on the
interface, and in the half space on the air side (z>0) the field component can be
expressed as:

Hy(z) � Aeiβxe−kzz (17.2)

Ex(z) � iA
1

ωε0εair
keiβxe−kzz (17.3)



17 Fano Resonance Generation and Applications … 411

Fig. 17.5 a Schematic of theMH-VSRR structure. b–c SEM images of the fabricatedMH-VSRRs,
with h=1.2 µm, l � 1.0 µm, w � 340 nm, ax � ay � 2.0 µm and px � py � 3.0 µm. d–e As-
measured transmission spectra of the MH-VSRRs shown in c under normal incidence with electric
field polarized along x- and y-direction, respectively. f–g Simulated transmission spectra of the
MH-VSRRs corresponding to (d) and (e), respectively [48]

Ez(z) � −A
β

ωε0εair
eiβxe−kzz (17.4)

whereA is the field amplitude, and β � k0
√

εairεmetal/(εair + εmetal) is the propagation
constant of SPP. It is obvious that in the near field region, there are enhanced Ez

component that decays exponentially with distance from the meta/air interface in z
direction. Figure 17.6a shows the electric field distribution (indicated by dark arrows)
of a pure metallic hole array without SRRs in the yz plane in the near field, and the Ez

component is plotted in color. When a vertical SRR is placed within the intensified



412 Z. Liu et al.

Ez field (as the dashed outlines in Fig. 17.6a and green SRR in Fig. 17.6b), the
electric resonances of the vertical structure could be naturally and efficiently excited,
which could not be directly excited by incident light thus is a “dark mode” [15–17].
Therefore, the Fano resonances are resulted from the coupling between the “bright
mode” (SPP scattered by the periodic MH array) and “dark mode” (electric dipole
on VSRRs that indirectly excited by evanescent wave of SPP) [61].

The coupling effect can be verified by the simulated surface current distribution
at the two resonance dips of both low-order (Fig. 17.6c) and high-order (Fig. 17.6d)
modes. As illustrated in Fig. 17.6c, the current distribution at the low-order reso-
nance dip exhibits a 3D configuration, which is a hybridized current flowing between
VSRRs and MHs units. This hybridized current is also evident in the experimental
and simulated spectra with different arm length h (Fig. 17.6e and f) that the Fano res-
onance dips shifted toward longer wavelength as the height of the VSRRs increased.
In fact, the resonance wavelength of the low-order mode increases linearly with the
‘empirical length’ (EL), which is defined as EL � h+(ax − l)/2 + ay/2 [48]. By
contrast, the current distribution at the high-order resonance dip exhibits anti-phase
current flow resonances on the arms of VSRRs and edges of MHs, as shown in
Fig. 17.6d. This means that the high-order resonance induced by these current flows
is a relative local effect and an exotic coupling behavior of the VSRR and MH,
which is more dependent on the length of the VSRR arms than on other geometrical
parameters.

From Fig. 17.6c, it should be noted that the surface currents concentrate on the
outside of the VSRRs, which indicates that if we replace the VSRRs by vertical
metal plates, similar responses may be excited. Two samples, 3D metamaterials
with vertical SRRs and vertical plates were fabricated as shown in Fig. 17.7a and
b, respectively. The measured and simulated spectra are given in Fig. 17.7c and d.
As expected, the transmission spectra of both 3D MMs exhibit significant Fano-like
resonances for both low-order and high-order modes (labelled #1 and #2), with great
distinction compared to the spectrum of theMHswithout vertical parts (grey curve in
Fig. 17.7c, d). The vertical-part-related Fano resonances indicates that the central part
of the vertical SRRs has little effect to the generation of prominent Fano resonances
in this evanescent wave excitation scheme (Fig. 17.7e and f). In this way, simple
vertical plates can replace complicated VSRRs and two points should be empha-
sized: Firstly, compared to the 3D MMs with SRRs, the 3D MMs with micro-plates
have obvious advantages on fabrication efficiency and yield rate due to their much
simpler geometry and mechanical stabilities. Secondly, these observations indicate
an underlying physical mechanism responsible for the generation of prominent Fano
resonances, which might be universal for the design of other types of 3D MMs with
versatile Fano resonances and thus deserves in-depth studies.
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Fig. 17.6 a Simulated E-field distribution (indicated by dark arrows) of a pure metallic hole array
without SRRs in the yz plane. Ez is plotted in color. b Schematic of the unit cell of a 3D MM. c–d
Simulated current distributions of the sample at the low-order and high-order resonance dips. e–f
Measured and calculated transmission spectra of the MH-VSRRs under normal incidence with the
electric field polarized along the y-direction [48, 61]

17.3.3 Conductive Coupling and Capacitive Coupling

It is now explicit that the Fano resonances of the 3D MM comes from the coupling
between the “brightmode” of EOT supported byMHarrays and “darkmode” of elec-
tric dipole generated by VSRRs. Generally, the coupling mechanisms of plasmonic
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Fig. 17.7 a–b Side-view SEM images of the fabricated 3D MMs with vertical SRRs and vertical
plates, respectively. The scale bars are 500 nm. c–d Measured and calculated transmission spectra
of an MHs without any vertical part and two 3D MMs with different vertical structures under y-
polarized light excitation. e–f Simulated current distributions of the 3D MMs with vertical plates
at two distinct modes #1 and #2 [61]
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Fano resonances could be summarized into three types, i.e. capacitive (electric) cou-
pling, inductive (magnetic) coupling and conductive (connective) coupling [62–64].
Among them, the capacitive coupling depends on the charge oscillations on the two
sides of the plasmonic gaps [9, 65] and the inductive coupling relies on the current
flows in coil-type configurations [18, 64, 66], both of which are well known and have
been widely adopted in the generation of plasmonic Fano resonance [4, 7, 67]. In
comparison, the conductive coupling has been largely overlooked due to its simple
configuration, since the 2D conductive structures look like simple electric connection
of individual elements although it has exhibited strong impacts on the modifications
of plasmonic properties in systems such as gold nanorod dimers [68, 69], theta-
shaped ring-rod nanostructures [63], and THz JSRR structures [62, 70]. In this case,
the 2D connected elements were generally treated as single conductive structures and
the resulted couplings were traditionally rationalized as the interference between the
bright dipole modes and the dark high-order modes [63].

To demonstrate the importance of the 3D conductive coupling mechanism in our
MMs, the vertical SRRs are fictitiously lifted from the in-plane MH structure as
shown in Fig. 17.8a, which is difficult to be achieved in actual experiment. For x-
polarized exitation, as shown in Fig. 17.8b, the transmission of the 3D MMs with
different gap distances shows little spectral shift, and simply represents a linear spec-
tral overlapping between the SRR (green triangles) andMH (black circles) structures,
indicating there is almost no couplings between the SRRs and MH structures when
the two parts are separated. It should be mentioned that the tiny spectral dip at 4 µm
in the case of g � 0 results from the modified magnetic resonance of the SRR when
it is connected to the MH structure (identical to the weak resonance peak mentioned
in Sect. 3.1).

For comparison, when the incident light is y-polarized, the coupling scheme is
quite different that it gradually transforms from 3D conductive coupling (g=0 nm)
towards capacitive coupling (g>0 nm). From the normalized transmission spectra
of the 3D MM to that of the MH structure shown in Fig. 17.8c, the low-order mode
#1 shows significant constructive (enhanced by~52% at the peak) and destructive
(suppressed by~92%at the dip) interference effectswhen the vertical and planar parts
are connected (g=0 nm). This is quite consistent with the classical understanding that
Fano resonance describes both destructive and constructive interferences between a
discrete state and a continuum state [4]. When the gap increases, the Fano resonance
#1 is found to be highly sensitive on both the resonancewavelength and the amplitude
of constructive and destructive interferences. Its peak-to-dip depth drops quickly by
75% when the 3D MM deviates slightly from conductive coupling (g=0 nm) to
capacitive coupling with a gap distance as small as λ/20 (g=150 nm), as shown
in Fig. 17.8d, further illustrating the critical role of the 3D conductive coupling. In
comparison, both resonance wavelength and amplitude of Fano resonance #2 change
slowly with the varied gap distance. This is because for the anti-phase coupling case,
the repelling currents in SRR and MH structure are relatively independent thus the
existence of gap does not change the type of coupling. Therefore, it is actually
capacitive coupling for Fano resonance #2 and the gap size affects its wavelength
and amplitude in a much mild way.
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Fig. 17.8 a Schematic of the unit cell of a 3DMM inwhich the vertical SRR is lifted above theMH
structure by a gap distance of g. b Simulated transmission spectra of anMH structure, an SRR array,
and 3D MMs with different g (unit: nm) under x-polarized excitation. c Normalized transmission
spectra of the 3D MMs with SRRs to that of MH structure under different gap distances (unit: nm)
upon y-polarized excitation. d Absolute peak-to-dip depth and dip wavelength as a function of the
gap distance for resonances #1 and #2, respectively [61]

17.4 Applications

Fano resonance metamaterials have steep profiles, high quality factors and strong
enhancement of electromagnetic field, thereby potentially available for sensing and
detecting applications. On one hand, very weak perturbation in the electromagnetic
environment of the metamaterial can significantly alter its scattering characteristics,
thus the resonance is very sensitive to the refractive index of the environment. On the
other hand, the enhanced electromagnetic field could significantly facilitate light-
matter interaction, thus helpful in molecule detection by surface enhanced Raman
scattering (SERS).
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17.4.1 Refractive Index Sensing

Refractive index sensing is one of themost commonmethods to detect material index
variation, by which the wavelength shift of resonance peak can be monitored as a
function of the index of local dielectric environment. In order to facilitate the study
of engineering material in visible and infrared range (e.g., through Abbe number
[71]), the 3D MMs were scaled down (a repeating unit of 750 nm on 50-nm-thick
Au film as shown in Fig. 17.9a) and still present well-preserved resonance shapes
(black curve in Fig. 17.9b) compared with their mid-infrared counterparts [48]. The
sensitivity is defined as:

Fig. 17.9 a SEM images of the fabricated nano-structures. bMeasured transmission spectra of the
MH-VSRRs in air and oil with a refractive index of 1.300 ± 0.0002, respectively. c The measured
transmission spectra of theMH-VSRRs in oilwith refractive indices of 1.300 and1.320, respectively.
dThewavelengths of the low-order andhigh-order Fano resonance dips as a function of the refractive
index of the surrounding medium [48]
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S � �λ/�n (17.5)

based on the fact that there is a linear relationship between the peak shift �λ and the
index variation �n [72]. The nanoscale 3D MMs were immersed in index matching
oil with different refractive indices (Cargille Labs) for transmission measurement.
The low-order Fano resonance dip shifts from 1.620 µm in air to 2.233 µm in oil
with refractive index of 1.300±0.0002 (shown in Fig. 17.9b), and for oils with very
small index differences (1.30 and 1.32) the peak shift can still be recognized demon-
strating a large resolution capability (shown in Fig. 17.9c). The relationship between
the resonance dip wavelength and refractive index is shown in Fig. 17.9d, and the
sensitivity can be calculated according to 17.5, which is the change of the resonance
dip wavelength per RIU. The sensitivity was 2040 nm/RIU for the low-order Fano
resonance and 1,400 nm/RIU for the high-order mode. In addition, the figure of
merit (FOM) values, which equals the refractive index sensitivities divided by the
resonance linewidth, are 12.5 and 35 for the low-order and high-order resonance
respectively. Both the refractive index sensitivity and FOM values observed in this
work appear to be higher than those reported SRR structures in NIR [59, 73].

17.4.2 SERS Detection

Figure 17.10a illustrates a scaled-down 3D folding metamaterial containing planar
metal holes and vertical metal plates, the designed geometrical parameters of which
are l � 200 nm, h � 350 nm, ax � ay � 360 nm, px � py � 560 nm, and t �
90 nm respectively, to match the laser wavelength of 785 nm for SERS detection.
Figure 17.10b and c depict the calculated and measured transmission spectrum of the
scaled-down 3D metamaterials. The calculated results indicate that the proposed 3D
MM exhibit excellent scaling behavior and the high-Q-factor Fano resonance occurs
at 785 nm with a Q factor of 76, which matches the frequency of the excitation laser.
However, the measured high-Q-factor Fano resonance exhibit a slight red shift to
775 nm with a Q factor of about 24, which is attributed to the larger fabrication
tolerance and larger ohmic loss at nanoscale. As a demonstration of the SERS per-
formance of the 3D MM array, we have conducted a comparative experiment using
the 3DMM array as SERS substrate for probing 4-mercaptopryidine (4-MP), which
has a large scattering cross-section and forms a self-assembled monolayer on metal
surfaces similar to alkane thiols and thus has been extensively used in the studies of
SERS. The Raman signals were detected separately from an unpatterned area of the
gold film as a reference to other three typical areas in the 3D MM arrays (center and
edge). The SERS spectra were collected in the Raman shift range of 800–1800 cm−1.
Figure 17.10d shows the measured SERS spectra of the 4-MP molecules on the 3D
MM array and the reference gold film, in which a low 4-MP solution concentra-
tion of 1×10−6 mol/L is directly selected for demonstrating our prior judgment in
high-sensitive SERS detection. It can be seen that there are almost no feature peak
of the 4-MP molecule on the reference gold film, while three typical areas in 3D
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Fig. 17.10 a Oblique view of SEM image of the fabricated scaled-down 3D metamaterials. Insets:
zoom in image.b–cCalculated andmeasured optical transmission spectra of the 3Dplasmonicmeta-
materials as a SERS substrate. d Experimentally measured Raman spectra of the 4-MP molecules
on three typical areas of the 3D metamaterial-based substrate. The laser excitation wavelength is
785 nm

MM arrays all show a strong SERS signal. In addition, the tiny difference in Raman
signal intensity of three typical areas in 3D MM arrays maybe originate from the
deviation of electric field enhancement in the 3D structure and the error in measure-
ment process, which should be reasonable at such a low concentration. The SERS
experiment provides persuasive evidence that the proposed 3D MMs possess sig-
nificant enhanced SERS performance. The strong spatial electric field enhancement
and confinement produced in the 3D MMs by the robust high-Q-factor Fano reso-
nance is responsible for the enhancement of SERS detection. These results strongly
substantiate our expectation on utilizing high-Q-factor Fano resonance supported by
3DMMs to boost SERS applications and exhibit promising prospect for light-matter
interaction based applications.
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17.5 Conclusion

The 3D folding metamaterial is a novel type of artificial composite structure com-
posed of planar part and out-of-plane part that support Fano resonances. It has a
variety of advantages compared to the existing 3D metamaterials: good controlla-
bility on the orientation of the out-of-plane units, nanoscale precision endowed by
the focused ion beam spot, and complex configurations based on the multifolding
feature. By simply combining MHs and VSRRs together, two Fano resonances were
observed due to the coupling between the ‘bright’ mode and ‘dark’ mode excited
by the two parts of the 3D units, where the ‘dark’ mode was indirectly excited by
the evanescent wave of SPP. The low-order and high-order Fano resonances should
be attributed to conductive and capacitive coupling respectively. The Fano reso-
nance on the suspending 3D structures have very large sensitivity (2040 nm/RIU)
to distinguish very small differences on refractive index, and can be also used for
bio-molecule detection by SERS due to the large electromagnetic field enhancement.
It can be expected that by further increasing the complexity of the folding configu-
ration, more resonant modes can be excited to contribute to the research on optical
coupling, hybridization and superposition mechanism.
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Chapter 18
Fano Resonances in Topological Photonic
Systems

Xiang Ni, Maxim A. Gorlach, Daria A. Smirnova, Dmitry Korobkin
and Alexander B. Khanikaev

Abstract Though Fano resonances were originally discovered in quantum physics,
they can emerge in the variety of wave processes including photonic systems. In
this chapter, we demonstrate how the concept of Fano resonances can be applied in
topological photonics to describe photonic topological states supported by metasur-
faces. As we prove, leaky nature of metasurface’s modes allows one to probe them
from the far field, while the observed Fano-type features in transmittance spectrum
can be unequivocally related to the topological properties of photonic bands. This
fundamental link between Fano resonances in transmittance and photonic topolog-
ical states opens an appealing perspective to control scattering of light through the
topological characteristics of metasurface.

18.1 Introduction

In condensed matter systems, topological phase transitions from trivial phases to
the nontrivial ones, characterized by non-vanishing topological indices, give rise to
exotic states of matter such as topological insulators, superconductors and superflu-
ids [1–12]. A broad range of phenomena stemming from topological states of quan-
tum matter has recently found a variety of analogues in classical systems, including
mechanical, acoustic and photonic designs [13–30]. In the context of photonics, spin-
locking and one-way propagation have been shown to drastically alter our view on
scattering of electromagnetic waves, and offer unprecedented robustness to defects
and disorder. Nevertheless, emulating many of the key manifestations of topological
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physics in condensed matter with photons, such as quantization of the Hall
conductance, is not straightforward and often simply impossible, because of the
key differences between electrons and photons. In contrast to electrons, photons
possess an integer spin, as a consequence they are subject to Bose statistics and
they cannot interact with magnetic fields directly. Because of these key differences
between electronic and photonic topological phases, topologically protected states
of light can only be obtained through judicious design of a photonic system. Con-
versely, the distinctions of photonic systems make them unique, and may potentially
open a whole new realm of research and applications of topology in photonics. One
such distinction is related to the fact that photonic modes can leak into free space
due to their coupling to the electromagnetic continuum, which may not only alter
topological properties, but alsomake it possible to probe topological photonic phases
by spectroscopic means, including Fano resonances. Moreover, topological states of
open photonic systems appear to offer a way to control scattering of light via their
topological characteristics, which will enable a new class of optical elements whose
scattering characteristics are determined via topological effects and thus exhibit con-
siderable robustness.

While Fano resonances were originally discovered in quantum physics [31]
to describe asymmetrically shaped photoionization spectral lines of atoms and
molecules, due to the fact that wave interference is specific not only to quantum
mechanics, a great number of classical systems exhibiting Fano resonance have
since been identified. Most recently the concept of Fano resonances was introduced
to the field of photonics and metamaterials [32–34]. By analogy with the original
atomic system, a photonic structure can possess two scattering pathways via two res-
onances, which are generally classified as “bright” (i.e., exhibiting strong coupling
to incident light and short radiative lifetime) and “dark” (exhibiting weak radia-
tive coupling and long lifetime). Similar to electronic Fano resonances, interference
between these scattering pathways may lead to asymmetric scattering characteristics
(i.e. transmission and reflection spectra).

The aimof the present chapter is to demonstrate that the concept of Fano resonance
can be of significant interest in the context of a new emerging topic of topological
photonics, specifically, in the context of open optical systems where the topological
modes can be directly probed via far-field measurements.

18.2 Theoretical Description of Topological Fano
Resonances: Coupled Mode Theory Approach

To fully consider the topological properties of open topological systems the con-
ventional theory of Fano resonances has to be modified to correctly include pseudo-
spin degrees of freedom. In the simplest case this can be achieved by formulating
a scattering theory based on coupled mode theory (CMT), where the incident and
scattered fields of the continuum couple to the discrete states of a topological sys-
tem described by its effective Hamiltonian. When only general understanding of



18 Fano Resonances in Topological Photonic Systems 427

(a) (b)

R
a a

R

(c)

Al O  substrate2 3

Al O  mask2 3

Si
 p

ill
ar

Fig. 18.1 A schematic view of the topological metasurface under study. (a, b) Metasurface with a
shrunken a/R > 3 and b expanded a/R < 3 unit cells. c A schematic of a silicon pillar placed on
the sapphire substrate

topology is required, such effective Hamiltonians need only to be described near
particular point(s) of the Brillouin zone, where band crossings responsible for topo-
logical transitions occur. Over the past few years, photonics community developed a
powerful toolkit of theoretical and numerical methods for obtaining such Hamiltoni-
ans directly from Maxwells equations, e.g by the plane wave expansion method, or
rigorous electromagnetic perturbation theory (including electromagnetic analogue
of k · p-theory) [24, 35] as detailed below.

As a representative example, we consider a metasurface based on cylindrical
Si pillars arranged in hexagon clusters with the edge length R, placed at the sites
of triangular lattice with period a (Fig. 18.1a, b). The topological properties of its
infinite 2D analogue possessingC6v symmetry have been the subject of several recent
studies [36–42]. For a/R = 3, this system is a conventional honeycomb lattice with
the unit cell formed by two cylinders, which exhibits Dirac cones centered at K
and K′ points of the Brillouin zone. However, if the lattice symmetry is reduced
by clustering six neighboring pillars so that a/R �= 3 (distorted lattice), the size of
the unit cell increases leading to the reshaping of the first Brillouin zone and as a
result the Dirac points appear in the vicinity of the � point due to band folding.
Additionally, photonic bandgaps open. Previous studies suggested that the shrunken
structure with a/R > 3 is topologically trivial, whereas the expanded system with
a/R < 3 is topologically nontrivial [36]. To perform spectroscopy measurements of
metasurfaces with two topologically distinct geometries, two sets of samples were
fabricated (Fig. 18.1a, b) with the same lattice period a = 750 nm, radius of silicon
pillars r = 75 nm and height of the pillars h = 1.0 μm (Fig. 18.1c). The sizes of the
clusters R shown in Fig. 18.1a, b were chosen to be a/R = 3.15 and a/R = 2.85
for shrunken and expanded structures, respectively.

To give an idea how an open topological Fano-resonant system can be described
near a Dirac Point, we consider a simple example of the effective Dirac-type Hamil-
tonian:

Ĥ =
(
Ĥ− K̂
K̂ † Ĥ+

)
. (18.1)
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The reasons for choosing such type of effectiveHamiltonian are outlined inSect. 18.4.
The 2 × 2 matrices Ĥ± and K̂ read

Ĥ± =
(

μ(k) v (∓kx − iky)
v (∓kx + iky) −μ(k)

)
, (18.2)

K̂ =
(

α (kx + iky)2 0
0 −α (kx − iky)2

)
, (18.3)

where +/– indicates pseudo-spin up/down state, implying TR-invariant character of
the system, the 2 × 2 blocks are written in the basis of dipole (p) and quadrupole
(d) states, v is the Dirac velocity, μ(k) = μ + βk2, μ and β are the mass term and
band parabolicity, respectively. If the terms K̂ and K̂ † coupling two pseudospins are
neglected, the Hamiltonian splits into two decoupled blocks. As such, spin Chern
number given by the difference of the Chern numbers for the individual 2 × 2 blocks
can be introduced. The result reads:

C = 1

2

[
sgnμ − sgnβ

]
. (18.4)

To describe the evolution of the modes of the open system, we employ the following
coupled mode equation [43]:

− iε |ψ±〉 = −i Ĥ± |ψ±〉 + κ

(
Ein

0

)
−

(
γ0 + κ

2/2 0
0 γ0

)
|ψ±〉 (18.5)

Here, |ψ±〉 is the “wavefunction” composed of p (dipole) and d (quadrupole) modes
of the system: |ψ±〉 = (|p±〉 , |d±〉 )T .± sign refers to the left- or right-hand circular
polarizations of the mode. The first term of (18.5) describes the evolution of the
coupled modes in a closed system. The second term is associated with the external
driving field. The third term captures the effect of losses that lead to the diminishing of
the mode amplitude including both radiative γr = κ

2/2 and non-radiative γ0 losses,
and an explicit expression for Ĥ± is given by (18.2).

Once (18.5) is solved with respect to the unknown |ψ±〉 , the transmitted wave
can be calculated as follows:

E (±)
t = t0 E

(±)
in + cψ±(p) , (18.6)

where t0 is the transmission coefficient of the substrate on which the structure is
fabricated and ψ±(p) is the first (dipole) component of the two-component wave
function |ψ±〉 . The magnitude of the c coefficient is determined by the requirement
of energy conservation: the change of themode energymeasured by 〈ψ±| ψ±〉 should
be equal to the intensity of the incoming wave minus the intensity of the transmitted
and reflected waves and minus the non-radiative dissipation rate. Since the results
turn out to be the same for left- and right circular polarizations, we omit the ±
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Fig. 18.2 Fitting of the experimental transmittance spectra 1 − T/T0, where T0 is the substrate
transmittance, by the analytical model (18.8) for shrunken (top row) and expanded (bottom row)
structures with a/R = 3.15 and a/R = 2.85, respectively. a, d Normal incidence. b, e Incidence
angle θ = 16◦. c, f The influence of the phase shift ϕ (18.9) on the asymmetry of the transmittance
peaks in shrunken and expanded structures, respectively

subscript thus obtaining the result:

t = t0 [1 − κ ψ(p)/Ein] . (18.7)

Plugging the solution of (18.5) into the (18.7), we finally derive

R̃ ≡ 1 − |t |2
|t0|2 =

2 γ0 κ
2 (ε + μ(k))2 + v2 k2 + γ2

0[
μ2(k) − ε2 + v2 k2 + γ0

(
γ0 + κ

2/2
)]2 + [

2γ0 ε + κ
2/2 (μ(k) + ε)

]2 .

(18.8)
Equation (18.8) suggests in particular that the peaks in the 1 − T/T0 spectrum are
impossible without both radiative and non-radiative losses. Overall, there are six
parameters in the effective Hamiltonian: μ, γr = κ

2/2, γ0, v and β. To determine
these parameters we used the transmittance spectra measured in the wavelength
range from 896 to 2142 nm for the set of the incidence angles from 0◦ to 16◦ with
the step equal to 2◦. Parameters μ, γr and γ0 were determined from the spectra
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Fig. 18.3 Measured transmittance spectra for the fabricated dielectric metasurface. Color encodes
the magnitude of 1 − T/T0 (T and T0 are metasurface and substrate transmittances, respectively)
for p-polarized incident light. (a, b) Results for the shrunken structure with a/R = 3.15: a whole
studied spectral range; b range 1.6 < λ < 1.9 μm. (c, d) Results for the expanded structure with
a/R = 2.85: c whole studied spectral range; d range 1.6 < λ < 1.9 μm

for normal incidence (k = 0) since in such scenario these three parameters and the
center-of-bandgap frequency f0 are the only essential parameters determining the
transmittance spectrum (see (18.8)). The remaining two parameters, v and β, were
determined from the reflectance spectra for oblique incidence. While analyzing the
experimental data on transmittance, we aimed to achieve the best possible fit of the
spectral positions, width and height of the characteristic peaks in 1 − T/T0 spectrum
(see Fig. 18.2). The results of fitting are presented both for shrunken and expanded
structures in Fig. 18.2.

18.3 Fitting of Experimental Data with the Analytical
Model

The deviations of experimental spectra from the analytical formulas occur due to the
structure imperfections (defects, non-cylindrical form of pillars, etc.) as well as due
to the approximate nature of the used theoretical model. Specifically, the developed
analytical approach does not describe the asymmetry of the transmittance peaks
observed in experiment. This asymmetry can be explained by the phase difference
between the light reflected fromsapphire substrate and fromSi pillarswhich gives rise
to Fano-type interference of the two reflected waves. The discussed phase difference
can be incorporated into our analytical formula by means of the auxiliary parameter
ϕ:
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t = t0
[
ei ϕ − κ ψ(p)/Ein

]
. (18.9)

While the parameter ϕ defines the asymmetry of transmittance peaks, its incorpo-
ration into the model does not significantly change the numerical results for the
remaining parameters. Therefore, in the following we used simplified formulas with
smaller number of fitting parameters thus ensuring greater robustness of the devel-
oped numerical scheme (18.7)–(18.8).

With the developed technique, we analyzed the experimental data for both
shrunken (a/R = 3.15) and expanded (a/R = 2.85) structures for the range of inci-
dence angles from 0 to 16 degrees (Fig. 18.3). The retrieved values of the effective
Hamiltonian parameters are provided in the Table 18.1.

Using (18.4), we calculated spin Chern number for both of the structures confirm-
ing the theoretical result that the shrunken structure is topologically trivial, whereas
the expanded one is topological. The agreement between the analytical model (18.8)
with the fitted parameters (Table 18.1) and the experimental data is further illustrated
in Fig. 18.4.

18.4 Constructing the Effective Hamiltonian
Using the Plane Wave Expansion Method

While discussing the theory of Fano-resonant topological metasurfaces in Sect. 18.2
we assumed a Dirac-type Hamiltonian. Now we support this conclusion by the rig-
orous derivation based on plane-wave expansion method [24, 35]. To apply this
method, we assume that the structure consists of dielectric cylinders with the permit-
tivity that differs only slightly from the permittivity of the background medium. We
consider a TM polarization of the wave with the wave vector perpendicular to the
axis of cylinder, Oz. Permittivity of all cylinders along their axes is εzz ≡ εr . The
equation for Ez component of electric field has a form

[
q2 ε(x, y) + ∂2

x + ∂2
y

]
Ez(x, y) = 0 , (18.10)

where q = ω/c, ε(x, y) = εr inside cylinder and ε(x, y) = 1 outside of the cylinder.
Further we expand the field Ez(x, y) and the permittivity ε(x, y) in Fourier series as
follows:

Table 18.1 Extracted parameters of the effective Hamiltonian for shrunken and expanded meta-
surfaces

Structure μ, THz β, m2/s v, 106 m/s γr , THz γ0, THz C (Spin Chern
number)

Shrunken, a/R = 3.15 –5.22 –1.00 4.76 1.83 1.03 0

Expanded, a/R = 2.85 5.22 –1.96 7.31 0.437 1.06 1
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(a) (b)

(c) (d)

Fig. 18.4 Comparison of experimental (a, c) versus theoretical (b, d) transmittance spectra. Color
encodes the magnitude 1 − T/T0, where T0 is the transmittance of the sapphire substrate, whereas
T is the transmittance of the entire structure. Theoretical spectra are computed for the parameter
values determined by the experimental data fitting. a, bTransmittance spectra for shrunken structure
with a/R = 3.15 taken from Table18.1. c, d Transmittance spectra for expanded structure with
a/R = 2.85

Ez(r) =
∑
G

EG ei(G+k)·r , (18.11)

ε(r) =
∑
G

εG eiG·r , (18.12)

where G and G′ denote reciprocal lattice vectors. Combining (18.11), (18.12) with
(18.10), we obtain:

q2
∑
G ′

εG−G′ EG′ − [
(Gx + kx )

2 + (Gy + ky)
2
]
EG = 0 . (18.13)

Now we consider the system of equations in the vicinity of � point of the crystal first
Brillouin zone (see Fig. 18.5b).We truncate the system leaving only the contributions
from �0 and six neighboring � points denoted by the indices 1–6 in Fig. 18.5b.
The length of all reciprocal lattice vectors Gi is equal to G = 4π/(

√
3 a), where

a = 2 R + R′ is the lattice period, R is the edge length for a hexagonal cluster, and
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(a) (b)

Fig. 18.5 a A schematic representation of triangular lattice formed by hexamer clusters with inter-
and intracell tunneling amplitudes equal to J and K , respectively. αi , i = 1 . . . 6 represent Wannier
functions. b First Brillouin zone of the lattice

R′ is the distance between the centers of the nearest rods from the different clusters.
The radius of the rod is denoted by r .

First we calculate the Fourier coefficients εG−G′ comprising the system (18.13).
By definition,

εG = 1

S0

∫
S0

ε(x, y) e−iG·r d2r , (18.14)

where S0 = a2
√
3/2 is the area of the structure unit cell. For instance, εG0 ≡ ε0 is

defined by

ε0 = 1 + 6π (εr − 1) r2

S0
. (18.15)

Other coefficients comprising the truncated system (18.13) are as follows:

• ε1 = εG1 = εG2 = · · · = εG6 . The expression for ε1 reads:

ε1 = −4π2r2 (εr − 1)√
3 S0

2 J1(Gr)

Gr

R − R′

a
≈ −4π2r2 (εr − 1)√

3 S0

R − R′

a
≡ −u ,

(18.16)
where J1 is the Bessel function of the first kind and an assumption Gr � 1 is
used. If εr is real, the quantity ε1 is also purely real.

• ε3 = εG3−G6 = εG2−G5 = εG1−G4 . Under the assumption Gr � 1 ε3 is given by
the formula

ε3 = 2u . (18.17)

where u is defined from (18.16). Quite importantly, the coefficient u vanishes in
the case of a simple honeycomb lattice thus being analogous to the parameter
J − K in tight binding model.
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• ε2 = εG3−G1 = εG5−G3 = εG1−G5 = εG4−G2 = εG6−G4 = εG2−G6 . This coefficient
is also purely real:

ε2 = −3πr2 (εr − 1)

S0

2 J1(Gr
√
3)

Gr
√
3

≈ −3πr2 (εr − 1)

S0
, (18.18)

The truncated system of equations (18.13) yields the set of the self-consistent
equations with respect to the amplitudes Ei ≡ EGi :[

ε0 − q−2 k2
]
E0 + ε1 E1 + ε1 E2 + ε1 E3 + ε1 E4

+ε1 E5 + ε1 E6 = 0 , (18.19)

ε1 E0 +
[
ε0 − q−2

(
G2 + 2Gky + k2

)]
E1 + ε1 E2 + ε2 E3 + ε3 E4

+ε2 E5 + ε1 E6 = 0 , (18.20)

ε1 E0 + ε1 E1 +
[
ε0 − q−2

(
G2 + G

√
3kx + Gky + k2

)]
E2 + ε1 E3 + ε2 E4

+ε3 E5 + ε2 E6 = 0 , (18.21)

ε1 E0 + ε2 E1 + ε1 E2 +
[
ε0 − q−2

(
G2 + G

√
3kx − G ky + k2

)]
E3 + ε1 E4

+ε2 E5 + ε3 E6 = 0 , (18.22)

ε1 E0 + ε3 E1 + ε2 E2 + ε1 E3 +
[
ε0 − q−2

(
G2 − 2G ky + k2

)]
E4

+ε1 E5 + ε2 E6 = 0 , (18.23)
ε1 E0 + ε2 E1 + ε3 E2 + ε2 E3 + ε1 E4

+
[
ε0 − q−2

(
G2 − G

√
3 kx − G ky + k2

)]
E5 + ε1 E6 = 0 (18.24)

ε1 E0 + ε1 E1 + ε2 E2 + ε3 E3 + ε2 E4

+ε1 E5 +
[
ε0 − q−2

(
G2 − G

√
3 kx + G ky + k2

)]
E6 = 0 , (18.25)

where k2 = k2x + k2y . Thematrix of this system isHermitian. To simplify the analysis,
we perform a unitary transformation of the system matrix as follows:

U = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 1 0 1 0
0 0 1 0 η2 0 η
0 0 1 0 η 0 η2

0 1 0 η2 0 η 0
0 1 0 η 0 η2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18.26)

where η = e2π i/3. After the transformation (18.26) the matrix of the system consists
of 3 × 3 and 4 × 4 blocks, the coupling between these blocks is proportional to k.
However, the blocks are not diagonal even for k = 0.
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As a first step, we diagonalize thematrix of the system for k = 0 and small u (from
nowon terms proportional to u2, u3, etc. are neglected). The necessary transformation
is given by the matrix W = W1 ⊕ W2, where matrix W1

W1 =
⎛
⎝ 1 −√

3 u/(q−2 G2 − 2ε2) −√
3 u/(q−2 G2 − 2ε2)

0 −1/
√
2 1/

√
2√

6 u/(q−2G2 − 2ε2) 1/
√
2 1/

√
2

⎞
⎠ (18.27)

diagonalizes the 3 × 3 block of the Hamiltonian for k = 0 with the precision up to
the terms linear in u, and the matrix W2

W2 = 1√
2

⎛
⎜⎜⎝

0 i 0 eiπ/6

e5iπ/6 0 eiπ/6 0
e5iπ/6 0 e−5iπ/6 0
0 −i 0 eiπ/6

⎞
⎟⎟⎠ . (18.28)

diagonalizes the 4 × 4 block of the Hamiltonian for k = 0.
Next we would like to exclude the 3 × 3 block of singlet states. To this end we

treat coupling between the two blocks of the matrix using degenerate perturbation
theory in the special form [44]. To ease the comparison with Sect. 18.2, we also make
a redefinition kx → ky and ky → kx . As a result, we obtain the following eigenvalue
problem:

Ĥeff |ψ〉 = λ |ψ〉 . (18.29)

Here, the effective 4 × 4 Hamiltonian is given by the expression

Ĥeff =

⎛
⎜⎜⎝

μ + β k2 kx − iky α (kx + iky)2 0
kx + iky −μ − β k2 0 −α (kx − iky)2

α (kx − iky)2 0 μ + β k2 −kx − iky
0 −α (kx + iky)2 −kx + iky −μ − β k2

⎞
⎟⎟⎠ (18.30)

withμ = 3uq2/G,β = −Gu/(3 ε22 q
2),α = −G/(3ε2 q2), andλ = −G + q2 (ε0 −

ε2)/G − k2/G − Gk2/(3 q2 ε2). The components of bispinor |ψ〉 comprising
(18.29) are defined in terms of the field Fourier components:

ψ1 = 1√
6

[
eiπ/6 EG1 + eiπ/2 EG2 + e5iπ/6 EG3 + e−5iπ/6 EG4 + e−iπ/2 EG5 + e−iπ/6 EG6

]
,

(18.31)

ψ2 = 1√
6

[
eiπ/6 EG1 + e5iπ/6 EG2 + e−iπ/2 EG3 + eiπ/6 EG4 + e5iπ/6 EG5 + e−iπ/2 EG6

]
,

(18.32)

ψ3 = 1√
6

[
e−5iπ/6 EG1 + e5iπ/6 EG2 + eiπ/2 EG3 + eiπ/6 EG4 + e−iπ/6 EG5 + e−iπ/2 EG6

]
,

(18.33)

ψ4 = 1√
6

[
eiπ/6 EG1 + e−iπ/2 EG2 + e5iπ/6 EG3 + eiπ/6 EG4 + e−iπ/2 EG5 + eiπ/6 EG6

]
.

(18.34)
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Note that the derived form of the effective Hamiltonian (18.30) is consistent with
(18.1) used in the analysis of experimental spectra.

18.5 Perturbative Electromagnetic Theory of Radiative
Losses

To support our phenomenological CMT model and elaborate more on the underly-
ing physics, we additionally apply the method of guided mode expansion (GME)
to describe the photonic bands of the non-Hermitian PhC slab. In particular, this
treatment allows us to get an approximate analytical expression for the radiative
coupling, which was not captured by the plane wave expansion method. After the
folding due to the permittivity modulation, the localized guided modes of the unper-
turbed dielectic waveguide fall above the cladding light line, leading to a radiative
decay and complex eigenfrequencies. To tackle this leaky behavior, we utilize the
approach recently developed in [45–47].

We write the equation for the magnetic field H:

∇ ×
[

1

ε(r)
∇ × H(r)

]
= q2H(r), (18.35)

where q = ω/c, and focus on the TM-like polarization characterized by the compo-
nents (Hx , Hy, Ez). To develop a perturbation theory, we adopt the expansion in the
basis of Bloch waves. The high-order waves and radiative waves are assumed to be
excited by the basic waves. As follows from Maxwell’s equations, in our geometry
coupling of the waves is governed by the two physical mechanisms: (i) in-plane
permittivity modulation; (ii) the surface coupling stemming from the permittivity
discontinuity at the slab interfaces. The latter effect can be incorporated in equations
as boundary conditions using the formalism of Dirac δ-functions.

We employ the basis of Bloch wavesV associated with the reciprocal vectorsG j ,
j = 1 ÷ 6. In this way, at the � point, the components Hx,y can be expanded as

Hx =
6∑
j=1

G jy

G
VjΘ0(z) e

−iG j ·r⊥ (18.36)

Hy =
6∑
j=1

−G jx

G
VjΘ0(z) e

−iG j ·r⊥ , (18.37)

where r⊥ = (x, y),Θ0(z) is the unperturbed transverse profile of themode supported
by the effective dielectric waveguide,

∫
Θ∗

0 (z)Θ0(z)dz = 1. At the � point, the basic
waves have the same transverse profile Θ0(z) and wavenumber β0. The dispersion
relation for TM guided modes is given in the following implicit form
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tan

(√
εavgq2 − β2h

)
= 2εavgεcl

√
(εavgq2 − β2)(εclq2 − β2)

ε2cl(εavgq
2 − β2) − ε2avg(εclq

2 − β2)
, (18.38)

where εavg is the average dielectric permittivity of the slab, and εcl are the per-
mittivities of the claddings. We assume the permittivities of the upper and lower
cladding equal. Here, for simplicity, we neglect TE-TM coupling and coupling
to higher-order modes. Thereby, we disregard the Hz component (responsible for
coupling to TE modes) that means the trivial transversality condition of the form
G jx Hjx + G jyHjy = 0. We also expand the inverse permittivity in Fourier series
1/ε(r) = κ0(z) + ∑

G j

κG j e
−iG j ·r⊥ .

Using these expansions, equations for the field components can be recast to the
eigenvalue problem for the modes amplitudes

(q2 − β2
0)V = ĈV (18.39)

where V = [V1, V2, V3, V4, V5, V6]T . The coupling matrix Ĉ consists of two parts

Ĉ = Ĉ1 + Ĉrad , (18.40)

where Ĉ1 and Ĉrad correspond to the direct couplings between basic modes and
the coupling with the radiative mode (H0x , H0y), respectively. The matrix elements
depend on the parameters of the structure.

Due to theC6v symmetry of the PC slab, the matrix C exhibits the following form

Ĉ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 κ1(G
2 + I/2) κ2(G

2 − I/2) κ3(G
2 − I ) κ2(G

2 − I/2) κ1(G
2 + I/2)

κ1(G
2 + I/2) 0 κ1(G

2 + I/2) κ2(G
2 − I/2) κ3(G

2 − I ) κ2(G
2 − I/2)

κ2(G
2 − I/2) κ1(G

2 + I/2) 0 κ1(G
2 + I/2) κ2(G

2 − I/2) κ3(G
2 − I )

κ3(G
2 − I ) κ2(G

2 − I/2) κ1(G
2 + I/2) 0 κ1(G

2 + I/2) κ2(G
2 − I/2)

κ2(G
2 − I/2) κ3(G

2 − I ) κ2(G
2 − I/2) κ1(G

2 + I/2) 0 κ1(G
2 + I/2)

κ1(G
2 + I/2) κ2(G

2 − I/2) κ3(G
2 − I ) κ2(G

2 − I/2) κ1(G
2 + I/2) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where κ1,2,3 = κG1,G1−G3,G1−G4 ,

I =
∫
PC

(
− ∂2

∂z2
+ [δ(z − h/2) − δ(z + h/2)] ∂

∂z

)
Θ0(z)Θ

∗
0 (z)dz . (18.41)

Coupling to free-space modes causes the out-of-plane diffraction losses. The profile
of the radiative mode (H0x , H0y) generated by basic waves can be found using the
Green’s function method [46, 47]:

H0x = κ1

(
V1 + 1

2
V2 − 1

2
V3 − V4 − 1

2
V5 + 1

2
V6

)
Ĩ0 ,

H0y = κ1

(
−

√
3

2
V2 −

√
3

2
V3 +

√
3

2
V5 +

√
3

2
V6

)
Ĩ0 ,
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where Ĩ0 stands for the integral

Ĩ0 =
∫
PC

(
∂2

∂z′2 − [δ(z′ − h/2) − δ(z′ + h/2)] ∂

∂z′

)
G0(z, z

′)Θ0(z
′)dz′ ,

and Green’s function is the solution of equation

(
q2 + κ0∂

2/∂z2 + [(ε−1
cl − κ0){δ(z − h/2) − δ(z + h/2)}]∂/∂z

)
G0(z, z

′) = −δ(z, z′) .

The coupling of the guided modes with this radiative mode is then calculated by
overlap integrals

Ĉrad = I0

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1/2 −1/2 −1 −1/2 1/2
1/2 1 1/2 −1/2 −1 −1/2

−1/2 1/2 1 1/2 −1/2 −1
−1 −1/2 1/2 1 1/2 −1/2

−1/2 −1 −1/2 1/2 1 1/2
1/2 −1/2 −1 −1/2 1/2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

I0 = κ2
1

∫∫
PC

{[−∂2/∂z2 + [δ(z − h/2) − δ(z + h/2)]∂/∂z] · G0(z, z
′)

[(∂2/∂z′2 − [δ(z′ − h/2) − δ(z′ + h/2)]∂/∂z′)Θ0(z
′)]}Θ∗

0 (z)dz
′dz (18.42)

is a purely imaginary quantity.
To block-diagonalize Ĉ , we next perform the unitary transformation Ĉcp =

UĈU−1 with the matrix

U = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 eiπ/3 e2iπ/3 −1 e−2iπ/3 e−iπ/3

1 e2iπ/3 e−2iπ/3 1 e2iπ/3 e−2iπ/3

1 e−iπ/3 e−2iπ/3 −1 e2iπ/3 eiπ/3

1 e−2iπ/3 e2iπ/3 1 e−2iπ/3 e2iπ/3

1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

After excluding the first and the sixth rows describing singlet states, we get thematrix
in the subspace of the circular-polarized states.

It can be proved using (18.38) that in the vicinity of the � point, the propagation
constants of the modes are linearly dependent on small deviations (kx , ky) [47]

β j = β0 + β̃

(
G jx

G
kx + G jy

G
ky

)
, (18.43)



18 Fano Resonances in Topological Photonic Systems 439

that is the right-hand side of (18.39) is additionally correctedwith the diagonalmatrix
�K̂

�K̂ = 2β0β̃

⎛
⎜⎜⎜⎜⎜⎜⎝

ky 0 0 0 0 0
0

√
3kx/2 + ky/2 0 0 0 0

0 0
√
3kx/2 − ky/2 0 0 0

0 0 0 −ky 0 0
0 0 0 0 −√

3kx/2 − ky/2 0
0 0 0 0 0

√
3kx/2 + ky/2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As a result, we finally obtain the right-hand side of the eigenvalue problem (18.39)
describing a photonic bandstructure of the PhC slab in the proximity of � point as
follows

Ĉcp + �K̂cp =⎛
⎜⎜⎝

(κ1 − κ2 − κ3)G2 −β0β̃(ikx − ky) 0 0
β0β̃(ikx + ky) (κ3 − κ2 − κ1)G2 0 0

0 0 (κ1 − κ2 − κ3)G2 β0β̃(ikx + ky)
0 0 −β0β̃(ikx − ky) (κ3 − κ2 − κ1)G2

⎞
⎟⎟⎠

+ I

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κ1 + κ2

2
+ κ3 0 0 0

0
κ2 − κ1

2
− κ3 0 0

0 0
κ1 + κ2

2
+ κ3 0

0 0 0
κ2 − κ1

2
− κ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ I0

⎛
⎜⎜⎝
3 0 0 0
0 0 0 0
0 0 3 0
0 0 0 0

⎞
⎟⎟⎠ ,

(18.44)
where similarly to Sections I and II we redefine kx → ky , ky → kx . In the absence of
dissipation, the first and second matrices in (18.44) compose the Hermitian Hamil-
tonian which contains the Dirac part and real mass-terms. The imaginary part of p
(dipolar) modes eigenfrequencies is determined by I0 which is directly related to the
magnitude of radiative losses γr . Thus, the GMEmethod fully confirms applicability
of our phenomenological model.

18.6 Numerical Calculation of Transmissivity Using
Tight-Binding-Based Coupled Mode Theory

One of the most remarkable manifestations of the topological order is the emergence
of topologically protected interface states at the boundary of media with different
topological invariants. For that reason, we consider here an array of domain walls
between shrunken and expanded domains. To prove the existence of interface states
on sample consisting of an array of domain walls formed by repetitive stitching of
N unit cells of shrunken and expanded domains, we use the coupled mode theory
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described in Sect. 18.2 which contains Hamiltonian constructed by tight binding
(TB) method. Intercell and intracell tunneling amplitudes are denoted as J and K .

The translationvectors of the lattice are equal toa1 = a (1, 0) anda2 = a
(
1/2,

√
3/2

)
,

where a is the lattice period. Bloch vectors are defined as kp = 2π/λ sin (θ), where
λ is the wavelength of the incident wave, and θ is the angle between propagation
direction and normal to the sample. We assume Oxz to be a propagation plane, and
electric field is polarized along y direction. From the symmetry perspective, plane
wave excites directly only dipolar modes, while quadrupolar modes are excited indi-
rectly, through their coupling to dipolar modes, and two types of dipolar modes can
be excited near zero incident angle θ ≈ 0, namely |u1〉 = (1, 1, 0,−1,−1, 0)T and
|u2〉 = (1, 0, 0,−1, 0, 0)T . We consider specifically the case of former mode here,
and the second type can be analyzed with a similar approach. omain walls are aligned
along x direction, thus the equations describing such system are as follows (Fig. 18.6)

− iε |ψ〉 = −i Ĥ |ψ〉 + κ Ŝ1 − L̂ |ψ〉 (18.45)

where Ĥ is constructed from TBM and it reads as

W
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Fig. 18.6 Far-field spectroscopy of topological edge states a Schematic optical setup for far-field
mapping of photonic bands corresponding to edge states in a topological meta-grating. b The results
of TB-CMT calculations of the scattering from topological meta-grating. The number of unit cells
for both shrunken lattices and expanded lattices are 6, and other parameters used in TB-CMT
model are: on-site energy ω0 = 173.61 THz, intra-cell tunneling amplitude K = 33.00 THz,
inter-cell tunneling amplitude J = 23.00 THz, radiative loss γr = 0.25 THz, and non-radiative
loss γ0 = 0.30 THz
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Ĥ = Diag (N , N ) ⊗ ĤI ⊕ Diag (N , N ) ⊗ ĤI I

+Diag (2N − 1, 2N ) ⊗ Ĥm

+Diag (2N , 2N − 1) ⊗ Ĥp

(18.46)

with ĤI/I I , Ĥp/m defined as

ĤI =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −K 0 0 0 −K
−K 0 −K 0 −J eik(a2−a1) 0
0 −K 0 −K 0 −J eika2

0 0 −K 0 −K 0
0 −J eik(a1−a2) 0 −K 0 −K

−K 0 −J e−ika2 0 −K 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ĤI I = ĤI (K ↔ J ) ,

(18.47)

Ĥm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−J 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Ĥp = ¯̂Hm .

(18.48)

and Ŝ1 = Ein |2N 〉 ⊗ |u1〉 , where |2N 〉 = (1, 1, ..., 1)T which has 2N sites.

L̂ = Diag (2N , 2N ) ⊗

⎛
⎜⎜⎜⎜⎜⎜⎝

γ0 + κ
2/2 0 0 0 0 0

0 γ0 + κ
2/2 0 0 0 0

0 0 γ0 0 0 0
0 0 0 γ0 + κ

2/2 0 0
0 0 0 0 γ0 + κ

2/2 0
0 0 0 0 0 γ0

⎞
⎟⎟⎟⎟⎟⎟⎠

(18.49)
Periodic boundary conditions are applied at the outer domain walls in the y direc-

tion. In analogy to (18.7), we solve (18.5) and calculate the transmittance.
Compared to the bulk structures without domain wall, the extra periodicity of

domain wall along y direction with lattice constant ay =√
3Na0 supplies extra

diffraction channels for the scattered fields in the wavelength range under study.
Due to the continuity of Ey at boundary y = nay , the transmitted field can be written
in the following form absorbing the continuity boundary condition [48]

Et
y (r) =

∞∑
m=−∞

∞∑
n=1

an,me
i(kmx x+kz z) sin kny y (18.50)

where kmx = 2π/λ sin(θ) + m2π/a, kny = nπ/ay , and

kz =
√(

nef f 2π/λ
)2 − kmx

2 − kmy
2, nef f
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is the effective index of the substrate. We notice these diffraction modes become
leaky if kz becomes real, thus both reflectivity and transmissivity drop due to the
diffraction losses. To emulate the diffraction losses in tight-binding-based coupled
mode approach, we introduce increased losses in all situations when kz becomes real.
In this way we recover the characteristic Wood’s nomaly in the transmittance spec-
trum.

18.7 Conclusion

In conclusion, this chapter demonstrates the link between the well-celebrated con-
cept of Fano resonances and the topological states supported by metasurfaces.
Leaky nature of metasurface’s modes allows one to probe them from the far field,
while the observed Fano-type features in transmittance spectrum can be uniequivo-
cally associated with the topological properties of photonic bands.
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Chapter 19
Fano Resonances in Plasmonic
Core-Shell Particles and the Purcell
Effect

Tiago José Arruda, Alexandre Souto Martinez, Felipe A. Pinheiro,
Romain Bachelard, Sebastian Slama and Philippe Wilhelm Courteille

Abstract Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many of
them are related to the Fano effect. Originally described in the context of atomic
physics, the Fano resonance in light scattering arises from the interference between
a narrow subradiant mode and a spectrally broad radiation line. Here, we present
an overview of Fano resonances in coated spherical scatterers within the framework
of the Lorenz-Mie theory. We briefly introduce the concept of conventional and
unconventional Fano resonances in light scattering. These resonances are associated
with the interference between electromagnetic modes excited in the particle with
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different or the same multipole moment, respectively. In addition, we investigate the
modification of the spontaneous-emission rate of an optical emitter at the presence
of a plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the Purcell
factor related to a dipole emitter oriented orthogonal or tangential to the spherical
surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.

19.1 Introduction

The Fano resonance, discovered in the realm of atomic physics by Fano in 1961 [1],
is one of the hallmarks of interference in open quantum systems. This interference
effect was originally conceived as an interference between a transition to a bound
state, coupled weakly to a continuum, and a transition directly to the same contin-
uum [1]. As a signature of quantum interference, the Fano effect has been extensively
investigated in electronic transport at the nanoscale, in systems such as quantum dots,
quantum wires, and tunnel junctions [2].

Being a wave interference phenomenon, Fano resonances are also present in clas-
sical optics and mechanics, where it can be understood as weak coupling between
two classical oscillators driven by an external harmonic force [2, 3]. With the advent
of metamaterials and plasmonic nanostructures, the Fano effect has recently become
an important tool for tailoring and controlling electromagnetic mode interactions at
subwavelength scale [4, 5]. In plasmonics, it generally arises from the interference
between a localized surface plasmon resonance and a spectrally broad superradi-
ant mode acting as a background radiation [2]. Due to the sharpness of the Fano
asymmetric line shape, systems exhibiting the Fano effect are highly sensitive to
the local dielectric environment. As a consequence, in plasmonic systems the Fano
effect has been explored in the development of optical sensors, nonlinear devices,
and low-threshold nanoscopic lasers [5].

Within the Lorenz-Mie scattering theory, the Fano effect results from the interfer-
ence between electromagneticmodes excited in the scattererwithmultipolemoments
of different orders (e.g., dipole-quadrupole interference) [5] or same orders (e.g.,
dipole-dipole interference), which is sometimes referred to as unconventional Fano
resonance [6–8]. In contrast to the conventional Fano resonance [9], the unconven-
tional Fano effect in light scattering does not depend on the scattering direction, and
it can be realized, e.g., with layered [7, 8, 10–12] or high-index [6, 13–15] particles.

Here, we study the influence of an unconventional Fano resonance of a plasmonic
nanoshell on a single optical emitter in its vicinity [16]. The presence of a nanostruc-
ture is known to enhance the spontaneous-emission rate of optical emitters, which
is generally referred to as the Purcell effect [17–21]. Many theoretical and experi-
mental approaches have been developed to maximize [22–24] or minimize [25, 26]
the spontaneous-emission rate by changing the electromagnetic environment with
engineered nanostructures. In this chapter, we are interested in describing the con-
nection between the Fano resonance usually observed in the Purcell factor [27] and
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the unconventional Fano resonance exhibited by plasmonic nanoshells in light scat-
tering [7, 14, 16].

This chapter is organized as follows. We recall the main analytical expressions of
the Lorenz-Mie theory for light scattering by coated spherical particles in Sect. 19.2.
The concept of conventional and unconventional Fano resonances in plasmonic
nanoshells are briefly introduced. In Sect. 19.3, we study the decay rates of sin-
gle dipole emitters in the vicinity of plasmonic nanoshells. Analytical expressions
connecting Fano resonances in light scattering and the Purcell factor of dipole emit-
ters are derived. Finally, in Sect. 19.4, we summarize our main results and contents
of this chapter.

19.2 Light Scattering by Core-Shell Spheres: Conventional
and Unconventional Fano Resonances

Light scattering by small particles is a fundamental topic in classical electrodynamics
that has been studied and treated by several researchers, with applications ranging
frommeteorology and astronomy to biology and medicine [28]. A complete analytic
solution for homogeneous dielectric spheres with arbitrary radius was first derived,
in an independent way, by Lorenz [29] and Mie [30] more than a century ago. This
solution, which is widely known as the Lorenz-Mie theory, is based on the expansion
of the electromagnetic fields in terms of spherical wave functions [28]. An interest-
ing generalization of this theory is the case of a spherical scatterer composed of
materials with different optical properties, with the core-shell geometry being the
simplest one. Historically, the standard Lorenz-Mie theory, which deals with homo-
geneous spheres, was extended to single-layered spheres by Aden and Kerker [31]
in 1951. With the advent of plasmonics and metamaterials, core-shell systems have
been extensively applied for experimental and theoretical investigations, such as the
plasmonic cloaking technique [32, 33], comb-like scattering response [10], tunable
light scattering [34, 35], fluorescence enhancement of optical emitters [16], and Fano
resonances [36]. Indeed, the presence of cavities or dielectric materials inside metal-
based nanostructures strongly modifies the scattering response due to the so-called
plasmon hybridization [37].

In this section,we briefly recall themain analytical expressions used in theLorenz-
Mie theory for single-layered spheres. Our aim is to introduce the concept of the Fano
resonance in light scattering by plasmonic nanoshells, which will be further applied
to the spontaneous-emission rate of single dipole emitters in Sect. 19.3. With this
aim, we present the complete theoretical framework in Sect. 19.2.1. The discussion
on plasmonic Fano resonances is treated in Sect. 19.2.2 for a coated nanosphere
composed of a silicon (Si) core and a silver (Ag) nanoshell.
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19.2.1 The Lorenz-Mie Theory for Single-Layered Spheres

Let us consider a coated sphere interacting with a plane wave [E(r),H(r)]e−ıωt ,
where ω is the angular frequency. The coated sphere is composed of a spherical
core with radius a and a single, center-symmetric shell with radius b, as depicted in
Fig. 19.1.The involvedmedia are assumed tobe linear, homogeneous and isotropic. In
this case, the optical properties ofmedia are described by a scalar electric permittivity
εp and amagnetic permeabilityμp, with label p = 1 for the core (0 ≤ r ≤ a), p = 2
for the shell (a ≤ r ≤ b) and p = 0 for the surrounding medium (r ≥ b), which is
assumed to be the vacuum. At optical frequencies, naturally occurring media are
usually non-magnetic: μ1 = μ2 = μ0.

The macroscopic Maxwell’s equations associated with the system illustrated in
Fig. 19.1 provide the vector Helmholtz equation (∇2 + k2)[E(r),H(r)] = (0, 0),
where k = 2π/λ is the wave number and λ is the wavelength of the light in each
medium p = {0, 1, 2}. The interested reader is referred to [28] for a complete and
detailed solution of this vector equation. Since the sphere material is non-optically
active [38], without loss of generality, we consider the polarization of the incident
wave along the x-direction. In terms of spherical wave functions, the incident and
scattered electric fields (r ≥ b) can be cast as

Ein(r, θ, ϕ) = − 1

kr

∞∑

�=1

E�

{
ı cosϕ sin θ j�(kr)�(� + 1)π�(cos θ)êr

− cosϕ
[
π�(cos θ)ψ�(kr) − ıτ�(cos θ)ψ ′

�(kr)
]
êθ

− sin ϕ
[
ıπ�(cos θ)ψ ′

�(kr) − τ�(cos θ)ψ�(kr)
]
êϕ

}
, (19.1)

Fig. 19.1 A non-magnetic
core-shell sphere interacting
with an electromagnetic
plane wave. The inner sphere
has radius a and electric
permittivity ε1, whereas the
outer sphere has radius b and
electric permittivity ε2. The
surrounding medium is the
vacuum ε0. An
electromagnetic plane wave
propagating along the z axis
impinges on the sphere from
below
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Esca(r, θ, ϕ) = 1

kr

∞∑

�=1

E�

{
ı cosϕ sin θa�h

(1)
� (kr)�(� + 1)π�(cos θ)êr

− cosϕ
[
b�π�(cos θ)ξ�(kr) − ıa�τ�(cos θ)ξ ′

�(kr)
]
êθ

− sin ϕ
[
ıa�π�(cos θ)ξ ′

�(kr) − b�τ�(cos θ)ξ�(kr)
]
êϕ

}
, (19.2)

where k = ω
√

ε0μ0, E� = ı�E0(2� + 1)/[�(� + 1)], π�(cos θ) = P1
� (cos θ)/ sin θ ,

τ�(cos θ) = dP1
� (cos θ)/dθ , with P1

� being the associated Legendre function of first
order. The coefficients a� and b� are the transverse magnetic (TM) and transverse
electric (TE) Lorenz-Mie coefficients, respectively, and are determined from bound-
ary conditions. For center-symmetric coated spheres, these coefficients read [28,
39]:

a� = ñ2ψ ′
�(kb) − ψ�(kb)A�(n2kb)

ñ2ξ ′
�(kb) − ξ�(kb)A�(n2kb)

, (19.3)

b� = ψ ′
�(kb) − ñ2ψ�(kb)B�(n2kb)

ξ ′
�(kb) − ñ2ξ�(kb)B�(n2kb)

, (19.4)

with the auxiliary functions

A�(n2kb) = ψ ′
�(n2kb) − A�χ

′
�(n2kb)

ψ�(n2kb) − A�χ�(n2kb)
, (19.5)

B�(n2kb) = ψ ′
�(n2kb) − B�χ

′
�(n2kb)

ψ�(n2kb) − B�χ�(n2kb)
, (19.6)

A� = ñ2ψ�(n2ka)ψ ′
�(n1ka) − ñ1ψ ′

�(n2ka)ψ�(n1ka)

ñ2χ�(n2ka)ψ ′
�(n1ka) − ñ1χ ′

�(n2ka)ψ�(n1ka)
, (19.7)

B� = ñ2ψ ′
�(n2ka)ψ�(n1ka) − ñ1ψ�(n2ka)ψ ′

�(n1ka)

ñ2χ ′
�(n2ka)ψ�(n1ka) − ñ1χ�(n2ka)ψ ′

�(n1ka)
, (19.8)

where the functions ψ�(z) = z j�(z), χ�(z) = −zy�(z) and ξ�(z) = ψ�(z) − ıχ�(z)
are the Riccati-Bessel, Riccati-Neumann and Riccati-Hankel functions, respectively,
with j� and y� being the spherical Bessel and Neumann functions [28]. The refrac-
tive and impedance indices are np = √

εpμp/(ε0μ0) and ñ p = √
εpμ0/(ε0μp), with

p = {1, 2} [39]. For non-magnetic materials (μp = μ0), one has ñ p = np [40]. The
solution for a homogeneous sphere of radius b can be readily obtained by setting
ε1 = ε2 and μ1 = μ2, i.e., A� = 0 = B�. It is worth mentioning that these Lorenz-
Mie coefficients can be trivially generalized to the case of center-symmetric multi-
layered spheres [41].

Analogously, within the core (0 ≤ r ≤ a) and shell (a ≤ r ≤ b) regions, we have
the electric fields [39, 42]
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E1(r, θ, ϕ) = − 1

n1kr

∞∑

�=1

E�

{
ı cosϕ sin θd� j�(n1kr)�(� + 1)π�(cos θ)êr

+ cosϕ
[
c�π�(cos θ)ψ�(n1kr) − ıd�τ�(cos θ)ψ ′

�(n1kr)
]
êθ

+ sin ϕ
[
ıd�π�(cos θ)ψ ′

�(n1kr) − c�τ�(cos θ)ψ�(n1kr)
]
êϕ

}
, (19.9)

E2(r, θ, ϕ) = − 1

n2kr

∞∑

�=1

E�

{
ı cosϕ sin θg� j�(n2kr)�(� + 1)π�(cos θ)êr

+ı cosϕ sin θw�y�(n2kr)�(� + 1)π�(cos θ)êr
+ cosϕ

[
f�π�(cos θ)ψ�(n2kr) − ıg�τ�(cos θ)ψ ′

�(n2kr)
]
êθ

− cosϕ
[
v�π�(cos θ)χ�(n2kr) − ıw�τ�(cos θ)χ ′

�(n2kr)
]
êθ

+ sin ϕ
[
ıg�π�(cos θ)ψ ′

�(n2kr) − f�τ�(cos θ)ψ�(n2kr)
]
êϕ

− sin ϕ
[
ıw�π�(cos θ)χ ′

�(n2kr) − v�τ�(cos θ)χ�(n2kr)
]
êϕ

}
, (19.10)

respectively. In terms of the auxiliary functions defined in (19.7) and (19.8), the
Lorenz-Mie coefficients c�, d�, f�, g�, v� and w� read [28, 39]

c� = n1 f�
n2ψ�(n1ka)

[ψ�(n2ka) − B�χ�(n2ka)] , (19.11)

d� = n1g�

n2ψ ′
�(n1ka)

[
ψ ′

�(n2ka) − A�χ
′
�(n2ka)

]
, (19.12)

f� = ın2
[ψ�(n2kb) − B�χ�(n2kb)]

[
ξ ′
�(kb) − ñ2ξ�(kb)B�(n2kb)

] , (19.13)

g� = ın2
[ψ�(n2kb) − A�χ�(n2kb)]

[
ñ2ξ ′

�(kb) − ξ�(kb)A�(n2kb)
] , (19.14)

v� = B� f�, (19.15)

w� = A�g�. (19.16)

Equations (19.1)–(19.16) are the complete Lorenz-Mie solution for center sym-
metric core-shell spheres [28]. The corresponding magnetic field H(r) can be
straightforwardly obtained from (19.1), (19.2), (19.9), and (19.10) by Maxwell’s
curl equations. In the following, we discuss the cross sections and internal field
intensities in the context of Fano resonances in plasmonic nanoshells.

19.2.2 Fano Resonances in Optical Cross Sections

The cross sections of a spherical particle can be calculated exactly from the net rate
of electromagnetic energy crossing an imaginary surface at the far field (for details,
see [28]). From the standard Lorenz-Mie theory, by using (19.1) and (19.2), the
extinction, scattering and absorption cross sections of a spherical particle irradiated
by plane waves are, respectively,
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σext = 2π

k2

∞∑

�=1

(2� + 1)Re (a� + b�) , (19.17)

σsca = 2π

k2

∞∑

�=1

(2� + 1)
(|a�|2 + |b�|2

)
, (19.18)

σabs = σext − σsca, (19.19)

where a� and b� carry the dependence on the geometrical and optical parameters
of the scatterer, and are defined in (19.3) and (19.4) for a single-layered core-shell
sphere. Equations (19.17)–(19.19) are calculated from averaging over all possible
directions and polarizations. By considering the backward (θ = π ) and forward (θ =
0) directions, we obtain

σback = π

k2

∣∣∣∣∣

∞∑

�=1

(2� + 1)(−1)� (a� − b�)

∣∣∣∣∣

2

, (19.20)

σforward = π

k2

∣∣∣∣∣

∞∑

�=1

(2� + 1) (a� + b�)

∣∣∣∣∣

2

, (19.21)

which are the differential backward and forward scattering cross sections, respec-
tively. Usually the optical cross sections are calculated in units of the geometrical
cross section σg = πb2, where b is the effective radius of the spherical scatterer.

From (19.17)–(19.21), it is clear that one can achieve interferences between dif-
ferent electric and magnetic scattering amplitudes (namely, a� and b�) only for direc-
tional scattering, e.g., σback and σforward [9]. Of particular interest is the case of light
scattering by small plasmonic spheres (kb ≤ 1). In this limiting case, the dipolar
Rayleigh scattering (� = 1) plays the role of a broad spectral resonance, whereas
the localized surface plasmon resonance, e.g., quadrupole (� = 2) or higher order
resonance, plays the role of a narrow spectral line interacting with a broad spectral
line. As a result, in the vicinity of the narrow plasmon resonance there is a π -phase
jump, leading to the coexistence of constructive and destructive interferences with
the broad dipole resonance. This interference between the electric scattering ampli-
tudes a1 and a2 is described by a characteristic asymmetric line shape, known as the
conventional Fano resonance.

19.2.2.1 Unconventional Fano Resonances in Plasmonic Nanoshells

Recently, other mechanisms of Fano-like resonances have been described in light
scattering by small particles relative to the light wavelength. For instance, Fano reso-
nances were shown to occur beyond the applicability of the Rayleigh approximation
in high-index particles, where the interference between electromagnetic modes with
the same multipole moment (e.g., dipole-dipole interference) is crucial [6, 13, 15].
These Fano-like resonances also manifest themselves in plasmonic layered particles
with moderate permittivities [10], even in the Rayleigh scattering approximation [7].
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Since these interferences occur in the total scattering cross section σsca and, hence,
do not depend on the scattering direction, they were named unconventional Fano
resonances [6].

To picture these concepts, let us consider a core-shell nanoparticle consisting
of a silicon (Si) core with refractive index n1 = 3.5 and radius a = 60 nm coated
with a dispersive silver (Ag) nanoshell with radius b = 90 nm. The Ag dielectric
permittivity is well described by the generalized Drude model [43, 44]

εAg(ω)

ε0
= εint −

ω2
p

ω(ω + ıγ )
, (19.22)

where εint = 3.7 is a contribution due to interband transitions, ωp = 9.2 eV
(≈ 2π × 2.2 × 1015 Hz) is the plasmon frequency associated with conduction elec-
trons, and γ = 0.02 eV is the effective dumping rate due to material losses. These
Drude parameters for Ag are valid below the frequency of onset for interband tran-
sitions: ω/ωp < 0.42 [44]. These are the optical and geometric parameters that we
consider for numerical calculations throughout this chapter.

Figure 19.2 shows the plots of the optical cross sections defined in (19.17)–
(19.21) as a function of the frequency of the incident electromagnetic wave. For the
frequency range 0.135ωp < ω < 0.225ωp, the corresponding size parameters of the
core-shell sphere are 0.56 < kb < 0.95, so we can restrict our discussion on electric
multipole moments up to � = 2 (quadrupole). Also, since the involved materials are
non-magnetic with moderate permittivities, one has b� ≈ 0 for kb < 1.

In themain plot of Fig. 19.2, one can clearly see thatσsca presents a Fano line shape,
where the dipole-dipole (|a1|2) resonance occurs at ω ≈ 0.170ωp and the antireso-
nance (Fano dip) occurs atω ≈ 0.175ωp. In this same frequency range, the absorption
cross section σabs exhibits a Lorentzian line shape [45]. In addition, a quadrupole-
quadrupole (|a2|2) resonance also shows up at ω ≈ 0.208ωp, but only contributes to
the absorption cross section. However, the overlap of the narrow quadrupole (� = 2)
resonance and the broad dipole resonance (� = 1) leads to a Fano line shape in the
differential scattering cross sections, see the inset of Fig. 19.2.

The unconventional Fano resonance observed in σsca and σext can be explained by
the interference between out of phase electric fields within the plasmonic nanoshell.
Recently, Tribelsky and Miroshnichenko [15] have shown that the Fano line shape
associated with high-index spherical particles can be calculated exactly within the
Lorenz-Mie theory. Here, we generalize their result to the case of a core-shell sphere.
Since we are not interested in magnetic resonances (namely, b�) [40, 46], we restrict
our discussion on the electric scattering amplitude a�. Indeed, the magnetic case is
completely analogous and the interested reader is referred to [15].

Following [15], we rewrite the electric scattering coefficient a�:

a� = F�

F� + ıG�

= ζ�(ω) + q�

ζ�(ω) + q� − ı [ζ�(ω)q� − 1]
, (19.23)
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Fig. 19.2 Optical cross sections in the light scattering by a (Si) core-shell (Ag) nanosphere in free
space. The dielectric core has radius a = 60 nm and refractive index n1 = 3.5, whereas the plas-
monic shell has radius b = 90 nm and electric permittivity ε2 = εAg(ω) (19.22). The plot shows the
scattering (σsca), absorption (σabs), and extinction (σext) cross sections (in units ofπb2) as a function
of the frequency ω (in units of Ag plasmon frequency ωp). An unconventional Fano resonance can
be observed in σsca (ω ≈ 0.170ωp) associated with the dipole-dipole interference a1a∗

1 excited in
the shell, where a1 is the electric Lorenz-Mie coefficient. The inset shows two conventional Fano
resonances in the differential backward (σback) and forward (σforward) scattering cross sections at
ω ≈ 0.208ωp. These Fano resonances are related to the dipole-quadrupole interference a1a∗

2 at the
backward and forward directions, respectively

with the new auxiliary functions being

F� = n2ψ
′
�(kb) [ψ�(n2kb) − A�χ�(n2kb)]

−ψ�(kb)
[
ψ ′

�(n2kb) − A�χ
′
�(n2kb)

]
, (19.24)

G� = −n2χ
′
�(kb) [ψ�(n2kb) − A�χ�(n2kb)]

+χ�(kb)
[
ψ ′

�(n2kb) − A�χ
′
�(n2kb)

]
, (19.25)

where ζ�(ω) ≡ ζ ′
�(ω) + ıζ ′′

� (ω) and q� is the Fano asymmetry parameter. Here,
ζ ′ = Re(ζ ) and ζ ′′ = Im(ζ ) (not to be confused with derivatives with respect to the
argument). Although the demonstration is not trivial [15], one can formally show that

ζ�(ω) = F�ψ
′
�(kb) − G�χ

′
�(kb)

ψ ′
�(n2kb) − A�χ

′
�(n2kb)

, (19.26)

q� = χ ′
�(kb)

ψ ′
�(kb)

. (19.27)
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If the sphere is lossless, one has ζ ′′
� (ω) = 0 and |a�|2 = (ζ ′

� + q�)
2/[(1 + q2

� )(ζ
′2
� +

1)], i.e., |a�|2 is a normalized Fano lineshape as a function of ζ ′
�. These expressions

agree with [15] for A� = 0 (homogeneous sphere).
Considering only the dipole scattering resonance (� = 1) and defining qLM ≡ q1

and ζ(ω) ≡ ζ1(ω), we finally have

σsca ≈ 6π

k2
(
1 + q2

LM

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
ζ ′(ω)

1 + ζ ′′(ω)
+ qLM

1 + ζ ′′(ω)

]2

+
[

ζ ′′(ω)

1 + ζ ′′(ω)

]2

[
ζ ′(ω)

1 + ζ ′′(ω)

]2

+ 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (19.28)

In the vicinity of a Fano resonance, one can use the approximation ζ ′
�(ω)/[1 +

ζ ′′(ω)] ≈ (ω − ωres)/�, where � is associated with the curve linewidth. The func-
tion ζ ′′(ω) has a very complicated analytical expression, and it can be estimated
from the dipole resonance [ζ ′(ωres) = 0]: σ (max)

sca = 6π(q2 + ζ ′′2)/[(k2(1 + q2)(1 +
ζ ′′2)]. From Fig. 19.2, one has σmax

sca (ωres) ≈ 5.9πb2 for ωres ≈ 0.170ωp. Indeed,
we have used (19.28) to fit the scattering cross section in Fig. 19.2. For our set
of parameters, the effective Fano asymmetry parameter is qLM/(1 + ζ ′′) ≈ −2.81,
where qLM ≈ −3.84 and ζ ′′ ≈ 0.368.

19.2.2.2 Off-Resonance Field Enhancement in Plasmonic Nanoshells

The presence of Fano-like resonances in Lorenz-Mie theory is associated with very
interesting optical phenomena, such as the formation of optical vortices and saddle
points in the energy flowaround particles [9], enhanced light scattering response [34],
and off-resonance field enhancement within core-shell scatterers [47, 48]. Indeed,
as can be observed in Fig. 19.3, both dipole and quadrupole scattering resonances
discussed above are associated with saddle points in the time-averaged energy flow
S(r) = Re[E(r) × H∗(r)]/2 in the vicinity of the Ag nanoshell, where the local
electromagnetic field (E,H) is calculated from (19.1) and (19.2).

To show the effect of off-resonance field enhancement, we calculate the corre-
sponding electric field intensity 〈|E|2〉 within the coated sphere [7, 42, 49]. Here,
the operator 〈· · · 〉 = (1/4π)

∫ 1
−1 d(cos θ)

∫ 2π
0 dϕ(· · · ) is the angle average over 4π .

Using the exact expression for the electric fields within the core (0 ≤ r ≤ a) and
shell (a ≤ r ≤ b), (19.9) and (19.10), we obtain the angle-averaged intensities [7,
42]

〈|E1(r)|2〉
|E0|2 = 1

2

∞∑

�=1

{
(2� + 1)|c�|2| j�(n1kr)|2

+|d�|2
[
�| j�+1(n1kr)|2 + (� + 1)| j�−1(n1kr)|2

] }
, (19.29)
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(a) (b)

(c) (d)

Fig. 19.3 Time-averaged energy flow (normalized Poynting vector field) in the vicinity of a (Si)
core-shell (Ag) nanosphere for dipole (ω ≈ 0.170ωp) and quadrupole (ω ≈ 0.208ωp) scattering
resonances. The dielectric core has refractive index n1 = 3.5 and radius a = 60 nm, whereas the
Ag nanoshell (19.22) has radius b = 90 nm. The xz plane shows the presence of a saddle point
in the energy flow in the z-axis around z ≈ 1.25b for dipole resonance a and two saddle points
for quadrupole resonance b around z ≈ ±1.20b. The yz plane shows singular points along the y
direction for dipole c and quadrupole d resonances

〈|E2(r)|2〉
|E0|2 = 1

2

∞∑

n=1

{
(2� + 1)

[| f�|2| j�(n2kr)|2 + |v�|2|y�(n2kr)|2
]

+|g�|2
[
�| j�+1(n2kr)|2 + (� + 1)| j�−1(n2kr)|2

]

+|w�|2
[
�|y�+1(n2kr)|2 + (� + 1)|y�−1(n2kr)|2

]

+2Re

[
(2� + 1) f�v

∗
� j�(n2kr)y�(n

∗
2kr)
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Fig. 19.4 The angle-averaged electric field intensity inside a (Si) core-shell (Ag) nanosphere in
free space, as depicted in Fig. 19.1, as a function of the distance from the center of the scatterer
to its surface. The dielectric core has radius a = 60 nm and refractive index n1 = 3.5, whereas the
plasmonic shell has radius b = 90 nm and electric permittivity ε2 = εAg(ω) (19.22). The maximum
electric field intensity stored inside the scatterer occurs at the dipole resonance (ω ≈ 0.170ωp). The
intensity at the Fano dip (ω ≈ 0.175ωp) is comparable to and even greater than the intensity at the
quadrupole resonance (ω ≈ 0.208ωp) inside the core

+g�w
∗
�

[
�j�+1(n2kr)y�+1(n

∗
2kr)

+(� + 1) j�−1(n2kr)y�−1(n
∗
2kr)

]]}
, (19.30)

where we have used the relations [28]: (2� + 1)
∫ 1
−1 d(cos θ)(π�π�′ + τ�τ�′) = 2�2

(� + 1)2δ��′ ,
∫ 1
−1 d(cos θ)(π�τ�′ + τ�π�′) = 0, and (2� + 1)

∫ 1
−1 d(cos θ)π�π�′ sin2 θ

= 2�(� + 1)δ��′ , with δ��′ being theKronecker delta. Note that the electric field inten-
sity 〈|E2|2〉 inside the shell is a quantity sensitive to interference between different
electromagnetic modes, i.e., f�v∗

� and g�w∗
� . This is due to the interference between

partial waves generated fromBessel or Neumann functionswithin the spherical shell.
Indeed, one can show that these interferences are related to the unconventional Fano
resonance observed in the total scattering cross section [7].

In Fig. 19.4,we showhow the electric field intensity 〈|E|2〉 depends on the distance
from the center of the sphere to its surface r = b. We study three main frequencies
obtained from σsca plotted in Fig. 19.2: the dipole resonance (ω ≈ 0.170ωp), the
Fano dip (ω ≈ 0.175ωp), and the quadrupole resonance (ω ≈ 0.208ωp). We verify
that even at the Fano dip (with σsca ≈ 0) it is possible to obtain a large field intensity
enhancement inside the (Si) core-shell (Ag) nanosphere. Indeed, the intensity inside
the lossless dielectric core (r < a) is even greater than the intensity obtained for the



19 Fano Resonances in Plasmonic Core-Shell Particles and the Purcell Effect 457

quadrupole resonance, which characterizes an off-resonance field enhancement at
the subwavelength scale.

In the following, we use the ideas presented in this section to study how the Fano
resonances are connected to the enhancement or suppression of the spontaneous-
emission rate of optical emitters near plasmonic nanostructures.

19.3 Spontaneous Emission of a Dipole Emitter Near
a Plasmonic Nanoshell

Plasmonic surfaces are known to enhance or quench the fluorescence response of
quantum emitters due to near- and far-field interactions between emitter and sur-
face [17, 50]. This modification of the spontaneous-emission rate of a quantum
emitter due to the electromagnetic environment is generally refereed to as the Pur-
cell effect [27]. Historically, this effect was first described by E. M. Purcell in the
context of nuclear magnetic resonance [51], and was followed by the reports of K.
H. Drexhage on the effects of metallic surfaces on fluorescence decay rate [52] and
Chance et al. concerning molecular fluorescence near interfaces [53]. At present, this
effect is widely used in several applications involving the enhancement and control-
ling of light emission and absorption at nanoscale, such as nanoplasmonic devices,
nanoscale sensors, and the design of novel optical antennas in surface enhanced
spectroscopy and microscopy [27, 50, 54].

This section is devoted to the classical electrodynamics theory that describes the
interaction between a single dipole emitter and a coated nanosphere. In quantum
electrodynamics, the standard approach to calculate the variation on linewidth and
energy level shift of a quantum emitter due to boundary conditions is the first-order
perturbation theory [55]. In the weak coupling regime, the excited emitter decays
exponentially to its ground state with life time τ = 1/�. A remarkable feature of this
approximation is that the decay rate � of a quantum emitter in the vicinity of a body,
normalized by the spontaneous-emission rate in free space �0, can be calculated in
the framework of classical electrodynamics [50, 56–58]. In this case, the excited
emitter is modeled as a point dipole source interacting with local electric field at the
same position as the quantum emitter, and the Purcell factor�/�0 is derived from the
radiated power normalized to free space [18, 59]. This equivalence between classical
and quantum calculations in the weak coupling regime occurs due to the fact that
both the mode functions of the quantized electromagnetic fields and the classical
electric field are derived from the same vector Helmholtz equation [57, 60].

In the following,we present in Sect. 19.3.1 an overviewof the fully classical theory
used to derive the spontaneous-emission rates of dipole emitters in close proximity
of spheres. In Sect. 19.3.2, we calculate the influence of near-field interactions on
the radiation efficiency of a dipole emitter near a plasmonic nanoshell. The relation
between Fano resonances and the spontaneous-emission rate is discussed in detail
in Sect. 19.3.3. It is worth emphasizing that the final expressions for �/�0 derived
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in Sect. 19.3.1 agree with the first-order perturbation theory in the weak coupling
regime [18, 27].

19.3.1 Radiative and Non-radiative Decay Rates
of a Dipole Emitter

Let us consider the same geometry investigated in Sect. 19.2: a core-shell sphere of
inner radius a and outer radius b in free space (ε0, μ0). The sphere has optical proper-
ties (ε1, μ1) for the core (r ≤ a) and (ε2, μ2) for the shell (a ≤ r ≤ b), as depicted
in Fig. 19.5. Both core and shell consisting of isotropic and linear materials, and
may have absorption and dispersion that satisfies the Kramers-Kronig relations [25,
61]. In addition, we consider a single dipole emitter located at position r′, with
r ′ = |r′| > b. The dipole emitter is characterized by its electric dipole moment d0
and its emission frequency ω. The electric field emitted by this electric dipole in the
region b < r < r ′ can be expanded in terms of vector spherical harmonics [18, 59]
and reads

Fig. 19.5 An optical dipole emitter in the vicinity of a core-shell sphere in free space. The inner
sphere has radius a and electric permittivity ε1, whereas the outer sphere has radius b and electric
permittivity ε2. The surrounding medium is the vacuum ε0. The optical emitter is located at the
position r′, with |r′| = r ′ = b + �r . There are two basic orientations for the electric dipolemoment
d0 associated with the dipole emitter: it can be orthogonal (d⊥

0 ) or tangential (d
||
0 ) to the spherical

surface. Any arbitrary dipole moment orientation in relation to the sphere can be decomposed in
orthogonal and tangential contributions
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Ed0
dip(r, θ, ϕ) =

∞∑

�=1

�∑

m=−�

1

�(� + 1)

{
α�m

1

k
∇ ×

[
j�(kr)L̂Y�m(θ, ϕ)

]

+β�m j�(kr)L̂Y�m(θ, ϕ)

}
, (19.31)

α�m = −ık2d0 · ∇′ ×
[
h(1)

� (kr ′)L̂′Y ∗
�m(θ ′, ϕ′)

]
, (19.32)

β�m = −ık3h(1)
� (kr ′)d0 · L̂′Y ∗

�m(θ ′, ϕ′), (19.33)

where k = ω
√

ε0μ0, Y�m(θ, ϕ) is the spherical harmonics, and L̂ = −ır × ∇ is the
angular momentum operator [28]. The derivation of (19.33) can be found in [62].
Here, the superindex d0 is just a reminder that the emitted electromagnetic fields
depend on the dipole orientation. Also, Ed0

dip(r) for r > r ′ can be readily obtained

from (19.31)–(19.33) by interchanging j� with h(1)
� . Here, the choice of a Hankel

function of the first kind h(1)
� for outgoing waves is closely related to the assumption

of a time harmonic dependence e−ıωt [28]. From Maxwell’s curl equations, this
implies a magnetic field Hd0

dip = −ı∇ × Ed0
dip/ωμ0.

The electromagnetic wave [Ed0
dip(r),H

d0
dip(r)]e−ıωt impinges on a spherical particle

centered at r = 0, with radius b, and it is scattered to the far field for r > b. From
the boundary conditions, one can show that the scattered electric field Ed0

sca(r) can be
obtained from (19.31) by simply replacing coefficients (α�m, β�m) with (a�m, b�m)

and the function j� with h(1)
� [18, 56, 59, 62]. This procedure leads to

Ed0
sca(r, θ, ϕ) =

∞∑

�=1

�∑

m=−�

1

�(� + 1)

{
a�m

1

k
∇ ×

[
h(1)

� (kr)L̂Y�m(θ, ϕ)
]

+b�mh
(1)
� (kr)L̂Y�m(θ, ϕ)

}
, (19.34)

a�m = −α�ma�, (19.35)

b�m = −β�mb�, (19.36)

where α�m and β�m are given by (19.32) and (19.33), respectively. The coefficients a�

and b�, which encode the dependence on the sphere parameters, are the usual electric
and magnetic Lorenz-Mie coefficients, respectively, given by (19.3) and (19.4).

Using the Green’s tensor formalism [18, 56], the solution for the total decay rate
associated with an electric dipole moment d0 can be expressed as

�
d0
total

�0
= 1 + 6πε0

k3d2
0

Im
[
d0 · Ed0

sca(r
′)
]
, (19.37)

where the scattered electric field contains the information of the environment inwhich
the optical emitter is embedded. Equation (19.37) takes into account both radiative
and non-radiative contributions, and provides a fully classical computational method
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to derive a quantum property of a system [18, 57]. Physically, it is derived from
the total power delivered by the optical emitter to the environment [27], Ptotal =
−ωIm{d0 · [Ed0

dip(r
′) + Ed0

sca(r
′)]}/2.

Now, let us now consider two basic orientations for the electric dipole moment in
spherical geometry:

d⊥
0 = d0êr , d||

0 = d0√
2

(
êθ + êϕ

)
, (19.38)

where d||
0 is chosen for convenience [16]. Without loss of generality, we set the

position of the dipole emitter along the positive z-axis, i.e., r ′ = z > b and θ ′ = ϕ′ =
0. As a result, since Pm

� (cos θ ′) ∝ sinm θ ′ as θ ′ → 0, only the terms withm = 0,±1
contribute to the sum in (19.31) and (19.34) [56]. Substituting (19.34) into (19.37)
for θ ′ = ϕ′ = 0, we obtain the total decay rates associated with a dipole moment
oriented orthogonal (d⊥

0 ) or tangential (d||
0) to the spherical surface, respectively:

�⊥
total(kr

′)
�0

= 1 − 3

2

∞∑

�=1

�(� + 1)(2� + 1)Re

⎧
⎨

⎩a�

[
h(1)

� (kr ′)
kr ′

]2
⎫
⎬

⎭ , (19.39)

�
||
total(kr

′)
�0

= 1 − 3

4

∞∑

�=1

(2� + 1)Re

{
a�

[
ξ ′
�(kr

′)
kr ′

]2

+ b�h
(1)
� (kr ′)2

}
.(19.40)

For an electric dipole moment with arbitrary orientation in relation to the spherical
surface, one can assume the spatial mean [63]: �total = (�⊥

total + 2�||
total)/3.

Equations (19.39) and (19.40) contain both radiative and non-radiative contribu-
tions to the spontaneous-emission rate [27]. It is convenient to investigate these two
contributions separately as they play different roles in near- and far-field interactions
[64]. Indeed, for plasmonic spheres, the non-radiative contribution is related to an
efficient coupling to surface plasmon modes in the near field. Conversely, the radia-
tive decay rate is associated with the excitation of Mie resonances in the far field.

In classical electrodynamics, the radiative decay rate �
d0
rad/�0 of a dipole emitter

at the position r′ is calculated via the total radiated power in the presence of the
sphere normalized to free space [59]. It can be calculated by integrating the radial
component of the Poynting vector at the far field (r → ∞): Prad = r2

∫
d�S · êr ∝

r2
∫ 1
−1 d(cos θ)

∫ 2π
0 dϕ|Ed0

dip(r) + Ed0
sca(r)|2, where Ed0

dip(r) and Ed0
sca(r) are defined in

(19.31) and (19.34), respectively. As a final result, we have

�⊥
rad(kr

′)
�0

= 3

2

∞∑

�=1

�(� + 1)(2� + 1)

∣∣∣∣∣
j�(kr ′) − a�h

(1)
� (kr ′)

kr ′

∣∣∣∣∣

2

, (19.41)

�
||
rad(kr

′)
�0

= 3

4

∞∑

�=1

(2� + 1)

[ ∣∣∣∣
ψ ′

�(kr
′) − a�ξ

′
�(kr

′)
kr ′

∣∣∣∣
2

+
∣∣∣ j�(kr ′) − b�h

(1)
� (kr ′)

∣∣∣
2
]
. (19.42)
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For a detailed calculation of these expressions by using the Poynting vector, the
interested reader is referred to [18]. A different approach is discussed by Arruda
et al. [16] using the Lorenz-Mie theory, in which the radiative decay rate is calcu-
lated straightforwardly from the intensity enhancement factor. Indeed, one can verify
that �

d0
rad(r

′)/�0 = 〈|d0 · [Ein(r′) + Esca(r′)]|2〉/〈|d0 · Ein(r′)|2〉, where Ein(r) and
Esca(r) are given by (19.1) and (19.2), respectively, and 〈· · · 〉 = (1/4π)

∫ 4π
0 �(· · · )

is the angle average [16]. Once again, assuming the dipole has no defined orientation
in space, one has from (19.41) and (19.42) the spatial mean �rad = (�⊥

rad + 2�||
rad)/3.

In addition, by subtracting (19.41) and (19.42) from (19.39) and (19.40), respectively,
we finally obtain the non-radiative decay rates

�⊥
nrad(kr

′)
�0

= 3

2

∞∑

�=1

�(� + 1)(2� + 1)

∣∣∣∣∣
h(1)

� (kr ′)
kr ′

∣∣∣∣∣

2

Re
(
a� − |a�|2

)
, (19.43)
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′)
kr ′
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)

+
∣∣∣h(1)

� (kr ′)
∣∣∣
2 (
b� − |b�|2

) }
. (19.44)

Although we have been discussing the case of an optical emitter with electric
dipole radiation in the vicinity of a sphere, analogous expressions can be readily
obtained for a magnetic dipole transition by interchanging a� with b� [18].

19.3.2 Decay Rates and Radiation Efficiency
Near a Plasmonic Nanoshell

The theory presented above is general and can be applied to arbitrary non-optically
active spheres and single dipole emitters (quantum dots, atoms or molecules) in
the weak coupling regime [63–65]. Here, we consider a realistic system for a dipole
emitter near a plasmonic core-shell sphere composed of a silicon (Si) core and a silver
(Ag) nanoshell.We are interested in a configurationwhere the presence of a dielectric
core strongly modifies the scattering response of a plasmonic nanoshell [14, 35, 66],
ultimately leading to unconventional Fano resonances [16, 36]. The optical and
geometric parameters are the same of Sect. 19.2: a dielectric (Si) core of refractive
index n1 = 3.5 and radius a = 60 nm coated with a plasmonic (Ag) nanoshell of
radius b = 90 nm.

Figure 19.6 shows the Purcell factor �/�0 related to a single dipole emitter near
a plasmonic shell as a function of the distance �r for two basic dipole moment
orientations: orthogonal (Fig. 19.6a) or parallel (Fig. 19.6b) to the spherical surface.
Based on the scattering cross section σsca plotted in Fig. 19.2, we investigate three
main frequencies for light emission: dipole scattering resonance (ω ≈ 0.170ωp),
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(a)

(b)

Fig. 19.6 Spontaneous decay rates � of an optical dipole emitter near a (Si) core-shell (Ag)
nanosphere in free space as a function of the distance�r between emitter and sphere. The dielectric
core has radius a = 60 nm and refractive index n1 = 3.5, and the Ag shell has radius b = 90 nm
and electric permittivity ε2 = εAg(ω) (19.22). The decay rates are normalized by the corresponding
decay rate�0 in vacuum.We consider threemain frequencies obtained fromFig. 19.2: dipole scatter-
ing resonance (ω ≈ 0.170ωp), Fano dip (ω ≈ 0.175ωp), and quadrupole resonance (ω ≈ 0.208ωp).
The plots show radiative (�rad) and non-radiative (�nrad) decay rates associated with a point dipole
oriented orthogonal a or parallel b to the spherical surface as a function of �r . The non-radiative
decay rates dominate for �r ≈ 0 (�rad � �nrad). The inset shows that �rad → �0 and �nrad → 0
for �r � b (far field). At the Fano dip, �rad ≈ �0 irrespective of �r and dipole orientation
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Fanodip (ω ≈ 0.175ωp), andquadrupole scattering resonance (ω ≈ 0.208ωp),where
ωp is the Ag plasmon frequency.

As can be observed, in the vicinity of the plasmonic nanoshell (�r → 0), non-
radiative channels always dominate over far-field radiative processes, leading to
�

⊥(||)
rad � �

⊥(||)
nrad . In the present system, this effect is mainly associated with ohmic

losses on the plasmonic surface. However, as the distance �r between emitter and
nanoshell increases, the non-radiative decay rate decreases faster than the radiative
one. At the far field (�r � b), this results in �

⊥(||)
rad → �0 and �

⊥(||)
nrad → 0.

There are some interesting features in Fig. 19.6 that can be explained by light
scattering theory. For instance, the non-radiative decay rate�

⊥(||)
nrad associated with the

quadrupole scattering resonance (|a2|2) is greater than that one related to the dipole
scattering resonance (|a1|2). This is an expected result, since the electric quadrupole
scattering channel (� = 2) ismainly associatedwith absorption, seeFig. 19.2. In addi-
tion, note that the light emission at the Fano dip frequency leads to �

⊥(||)
rad ≈ �0 irre-

spective of the distance�r between emitter and sphere. Indeed, for a non-dissipative
nanoshell, the net spontaneous-emission rate can be identically reduced to its vac-
uum value depending on the geometrical parameters of the plasmonic coating [25].
This effect is explained by the plasmonic cloaking of the dielectric sphere [32],
since σsca ≈ 0 at the Fano dip (ω ≈ 0.175ωp). However, observe that the plasmonic
cloaking is effective only from a certain finite distance �r of the nanoshell due to
unavoidable non-radiative contributions of higher order dark modes (� > 1) at the
near field.

To clarify the role of radiative and non-radiative contributions on the spontaneous-
emission rate of an optical emitter, it is convenient to define the radiation efficiency
of the light emission. The radiation efficiency Q of an emitter with negligible internal
losses is defined as [27]

Qd0(kr
′) = �

d0
rad(kr

′)
�
d0
rad(kr

′) + �
d0
nrad(kr

′)
, (19.45)

where the corresponding radiative and non-radiative decay rates are calculated in
Sect. 19.3.1. Using (19.45), we plot in Fig. 19.7 the competition between far-field
radiation and ohmic losses on the surface of the plasmonic nanoshell as a function
of �r . As expected, the radiation efficiency Q for both dipole moment orientations
vanishes at the plasmonic surface (�r ≈ 0). In particular, note that Q⊥ > Q|| in
general, which means a more efficient coupling between the electric dipole moment
d0 oriented orthogonal to the spherical surface than the parallel orientation. Among
the chosen light emission frequencies, the lowest values of efficiency at the near field
is obtained for the quadrupole scattering resonance frequency ω ≈ 0.208ωp.



464 T. J. Arruda et al.

Fig. 19.7 Radiation efficiency Q = �rad/�total associated with a dipole emitter in the vicinity of a
plasmonic nanoshell in free space. The system is composed of a (Si) core-shell (Ag) nanospherewith
inner radius a = 60 nm and outer radius b = 90 nm. The plots are calculated for an electric dipole
moment d0 oriented orthogonal (Q⊥) or tangential (Q||) to the nanoshell as a function of distance
�r for three frequencies obtained from Fig. 19.2: dipole scattering resonance (ω ≈ 0.170ωp, solid
and dash-dotted green lines), Fano dip (ω ≈ 0.175ωp, solid and dotted blue lines), and quadrupole
resonance (ω ≈ 0.208ωp, solid and dashed red lines). For �r ≈ 0 or �r � b, one has Q⊥(||) → 0
or Q⊥(||) → 1, respectively

19.3.3 The Purcell Effect and Fano Resonances
in Plasmonic Nanoshells

The influence of Fano resonances on the Purcell factor is revealed when one con-
siders �/�0 as a function of the light emission frequency ω [27]. Recently, it has
been analytically demonstrated that the fluorescence enhancement of dipole emitter
near a plasmonic nanoshell as a function of the excitation frequency also exhibits
an asymmetric Fano line shape [16]. Here, we use the same arguments applied in
[16] to describe the Fano effect on the Purcell factor of a dipole emitter in close
proximity of plasmonic nanoshells. We focus only on the radiative contribution
since we are interested in the dipole mode (� = 1) excited in the sphere, which
is related to the unconventional Fano resonance. For the non-radiative contribution
�

⊥(||)
nrad , the quadrupole mode (� = 2) excited in the particle dominates the spectrum

with a Lorentzian line shape, whereas higher order dark modes (� > 2) contribute to
�

⊥(||)
nrad in the near field, leading to a broad spectral line (Q → 0, see Fig. 19.7). This

influence of higher dark modes is the main reason why the dipole approximation
fails to describe near-field interactions between an optical emitter and a plasmonic
nanosphere [54]. Conversely, since �

⊥(||)
rad is related to the far-field radiation, we can

restrict our discussion to � = 1 for kb < 1 and k�r < 1 in the vicinity of the dipole
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scattering resonance (|a1|2). All the numerical calculations, however, are performed
with the exact expressions derived in Sect. 19.3.1.

In Fig. 19.8, we plot �⊥
rad and �

||
rad as a function of the light emission frequency ω,

and for several distances �r between emitter and plasmonic surface. By comparing
Fig. 19.8a and b, we see clearly that �⊥

rad is one order of magnitude greater than �
||
rad,

confirming that the coupling between emitter and plasmonic nanoshell is stronger for
the orthogonal orientation of the dipole moment. More importantly, on one hand, the
plots of �⊥

rad exhibit Fano resonances for both dipole (ω ≈ 0.170ωp) and quadrupole
(ω ≈ 0.208ωp)modes irrespective of�r . On the other hand, the plots of �||

rad exhibit
symmetric Lorentzian profiles for �r � b and, as �r increases, it develops to a
Fano line shape.

As discussed by Arruda et al. [16], the Lorentzian line shape observed in �
||
rad(ω)

in the near field, that changes into a Fano line shape in the far field, is a consequence
of the core-shell geometry. Physically, the electric dipole moment d||

0 associated with
the optical emitter induces an oppositely directed dipole moment on the plasmonic
nanoshell surface, with almost the same amplitude [58]. This interaction cancels
out the broad dipole mode excited in the plasmonic sphere, but does not cancel out
the narrow dipole mode (� = 1) at the plasmonic inner shell surface. According to
Refs. [15, 16], we can rewrite the electric Lorenz-Mie coefficient a�, (19.3), as

a� = aPEC� −
[
ψ ′

�(n2kb)g� − χ ′
�(n2kb)w�

]

n2ξ ′
�(kb)

, (19.46)

where g� and w� are the Lorenz-Mie coefficients of electromagnetic fields within the
plasmonic shell, (19.14) and (19.16), respectively.

The first term in (19.46) is the coefficient of a perfectly electric conducting (PEC)
sphere (n2 → ∞): a� → aPEC� ≡ ψ ′

�(kb)/ξ
′
�(kb) [28].Here, this coefficient is related

to the broad electric dipole mode (� = 1), while the second term accounts for the nar-
row electric dipole mode related to the plasmonic inner shell surface. By inspection
of (19.41) and (19.42), it is easily confirmed that the term aPEC1 in (19.46) is canceled
out for r ′ = b and � = 1 only in�

||
rad, leading to a Lorentzian line shape response as a

function of frequency. As the distance between the dipole and the nanoshell becomes
greater, the influence of the broad dipole mode in the Purcell factor increases, leading
to a Fano resonance.

In Fig. 19.9, we compare�⊥
rad and�

||
rad for�r = 40 nm.Both profiles present Fano

line shapes, with Fano asymmetry parameters q⊥
P and q⊥

P with opposite sign. These
Fano parameters are related to the unconventional Fano resonance in the scattering
cross section σsca, where qLM = χ ′

1(kb)/ψ
′
1(kb) for � = 1. In particular, observe in

Fig. 19.9 that the fitted Fano curves are better for low frequencies (largewavelengths).
Assuming the dipole approximation, i.e., kr � 1 and kb � 1, we obtain
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(a)

(b)

Fig. 19.8 Radiative decay rates �rad of a dipole emitter near a (Si) core-shell (Ag) nanoparticle
as a function of the light emission frequency ω. We consider several distances �r between emitter
and coated sphere, which has inner radius a = 60 nm and outer radius b = 90 nm. a The plot
shows the radiative decay rate �⊥

rad of a dipole emitter with orthogonal orientation in relation to
the spherical shell. For ω ≈ 0.170ωp (dipole scattering resonance) and ω ≈ 0.208ωp (quadrupole
scattering resonance), one has asymmetric Fano line shapes irrespective of the distance �r . b The
plot shows �

||
rad of a dipole emitter with tangential orientation in relation to the spherical surface.

For �r ≈ 0, one has symmetric Lorentzian line shapes. From �r > 10 nm, these Lorentzian line
shapes change to Fano line shapes
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Fig. 19.9 Radiative decay rates related to an optical emitter located at�r = 40 nm from a (Si) core-
shell (Ag) nanoparticle with inner radius a = 60 nm and outer radius b = 90 nm. Both orthogonal
(�⊥

rad) and parallel (�||
rad) orientations of the electric dipole moment d0 in relation to the spherical

surface present a Fano ressonance around ω ≈ 0.170ωp, where ωp is the Ag plasmon frequency.

The corresponding Fano asymmetry parameters of the Purcell factors are q⊥
P ≈ −1.2 and q ||

P ≈ 2.0

�
⊥(||)
rad (ω)

�0
≈ F⊥(||)

1

⎧
⎪⎪⎪⎨
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[
ζ ′(ω)

ζ ′′(ω) + 1
+ q⊥(||)

P

]2

+
[

ζ ′′(ω)

ζ ′′(ω) + 1

]2

[
ζ ′(ω)

ζ ′′(ω) + 1

]2

+ 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (19.47)

where the prefactors for the two electric dipole orientations are

F⊥
1 = 9

[
j1(kr ′)qLM + y1(kr ′)

]2

(kr ′)2(1 + q2
LM)

, (19.48)

F ||
1 = 9

[
ψ ′

1(kr
′)qLM − χ ′

1(kr
′)
]2

4(kr ′)2(1 + q2
LM)

; (19.49)

the corresponding Fano asymmetry parameters are

q⊥
P = 1

1 + ζ ′′(ω)

[
y1(kr ′)qLM − j1(kr ′)
j1(kr ′)qLM + y1(kr ′)

]
, (19.50)

q ||
P = − 1

1 + ζ ′′(ω)

[
χ ′
1(kr

′)qLM + ψ ′
1(kr

′)
ψ ′

1(kr
′)qLM − χ ′

1(kr
′)

]
, (19.51)

where ζ(ω) is defined in (19.26) and r ′ = b + �r .
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Fig. 19.10 Fano asymmetry parameters associated with the Purcell factor of an optical emitter
in the vicinity of a (Si) core-shell (Ag) nanoparticle with light emission frequency ω = 0.170ωp
(dipole scattering resonance). The coated sphere has inner radius a = 60 nm and outer radius
b = 90 nm. The Fano parameters q⊥

P and q ||
P are calculated from (19.50) and (19.51) as a function

of the distance�r between emitter and spherical surface. For the electric dipolemoment d0 oriented
tangential to the spherical surface, we have q ||

P → ∞ as �r → 0. The inset shows that q ||
P is finite

for �r > 20 nm and has opposite sign in relation to q⊥
P . These curves can be used to fit the plots

in Fig. 19.8

From (19.47)–(19.51), it becomes clear that only |q ||
P | → ∞when r ′ → b, which

leads to a Lorentzian line shape in the near field for �||
rad. This fact is shown explicitly

in Fig. 19.10, where we plot the corresponding Fano parameters that fit the plots in
Fig. 19.8 by using (19.50) and (19.51). In particular, it is worth mentioning that
(19.50) and (19.51) can be easily generalized to an arbitrary �, since they are not
approximate expressions.

19.4 Conclusion

Based on the complete Lorenz-Mie theory, we have investigated the role of Fano
resonances in plasmonic core-shell spheres and their influence on the spontaneous-
emission rate of optical emitters in close proximity of a nanoshell. We have briefly
discussed the appearance of conventional and unconventional Fano resonances in the
light scattering by single-layered spheres. Both resonances arise from the interference
between electromagnetic modes excited in the particle and can be associated with
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the off-resonance field enhancement and saddle points in the energy flow around
the particle. For an optical emitter with dipole moment oriented tangentially to a
plasmonic nanoshell,wehaveobtained a symmetricLorentzian line shape response in
the near field that changes into a Fano resonance in the far field, with Fano asymmetry
parameter of opposite sign compared to the dipole moment oriented normally to
the spherical surface. This effect has been explained by the different role played
by the induced electric dipole moment in the plasmonic nanoshell for both dipole
moment orientations. More importantly, we have unveiled the relation between Fano
resonances in light scattering and the Purcell effect. These analytical results shed light
on a fundamental problem of Fano-like resonances in nanoplasmonics, and they may
have interesting applications for enhancing and controlling the light emission and
absorption of optical dipole emitters near metal-based nanostructures.
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Chapter 20
Fano Resonances in Light Scattering
by Finite Obstacles

Andrey Miroshnichenko

Abstract Light scattering by finite obstacles, either a single particle or a number of
particles in arbitrary configuration, exhibits various resonant effects. It turns out that
almost any resonant response, either in directional or total light scattering, can be
efficiently described in terms of Fano resonance. One of the peculiar features of the
Fano resonance is complete destructive interference, which can be associated with
radiationless excitations, such as nontrivial anapole modes.

20.1 Introduction

Fano resonance is a universal phenomenon appearing inmany fields of physics where
wave interference is permitted. Originally, it was introduced to describe the quantum-
mechanical interaction between discrete and continuous states [1]. In atomic physics
it was used to describe the interference of discrete transitions degenerate with the
autoionization continuum. One of the essential features of the Fano resonance is
constructive and destructive interferences taking place in a narrow frequency range
resulting in asymmetric lineshape [2]. In nuclear physics, for example, the same
phenomenon is knownasBreit-Wigner or Feshbach resonances [3].Moreover, Bhatia
and Temkin unified the approaches by Fano and Feshbach and gave a derivation
of the Fano lineshape by means of Feshbach’s projection-operator formalism [4,
5]. In low dimensional semiconductors the degeneracy of discrete and continuum
states usually stems from bound excitons and scattering states and the quantum-
mechanical coupling is mediated by the Coulomb interaction, including quantum
wells and quantum wires [6], bulk semiconductors and superlattices in a magnetic
field [7–9]. Fano resonances have been found also in the transport properties of
time-periodic potentials [10].
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Although, the concept of the Fano resonance is quite simple and intuitive, it
remains a challenging task for both theoreticians and experimentalists. Despite the
existence of the elegant Fano formulae and possibility to fit of, virtually, arbitrary
spectra, the main difficulty is to explicitly identify two interfering states and show
their mutual coupling. In this Chapter we will study the appearance and origin of the
Fano resonance in light scattering by individual and aggregates of nanoparticles.

Light scattering by a finite obstacle can be unequally described in terms of partial
wave scattering coefficients, based on multipolar decomposition [11]. Various mul-
tipoles can interfere in a given direction either in phase or out-of-phase producing
asymmetric line shape, which can be associated with the Fano profile [12, 13]. Such
feature can be employed to design effective optical nanoantenans [14, 15].

Alternatively, due to partial waves orthogonality each scattering coefficient can be
analysed independently. It turns out that high index dielectric particles exhibit infinite
series of sharp asymmetric Fano resonance in any given partial wave scattering [16–
18], including complete suppression of scattering [19]. To explain their origin and
identify various contributions to destructive interference we analyze the properties
of induced field inside dielectric particle by using Cartesian multipoles. In particular,
the first zero of the electric dipole partial wave can be described in terms of excitation
of anapole state [20], which is a result of destructive interference electric and toroidal
dipole moments in the far-field due to their identical radiation profiles [21–24].

It can also be considered as an example of localized source excitation, which
produces no radiation in the far-field. It now suggests that higher-order zeros of any
partial wave scattering can be treated as nontrivial radiationless localised sources. To
describe them properly in terms of Fano resonances one needs to introduce higher-
order toroidal multipoles.

20.2 Analysis of the Scattered Field

In light scattering by a finite localised object the outside field can be considered
as a superposition of incident excitation and induced scattered field produce by the
object,Etotal = Einc + Esca (and similar for the magnetic field), due to linearity of the
Maxwell’s equations in the freespace. The incident excitationEinc can be of different
origin, including planewave, dipole source, or various vector beams.

20.2.1 Scattering Coefficients

To analyse the properties of the induced scattered field Esca, one can employ the
multipole decomposition methods. Taking into account that scattering objects are
of the order of the incident wavelength or smaller D ≤ λ, it is expected that only
lower order multipoles will be dominant, simplifying the analysis. One of the conve-
nient method is based on vector spherical harmonics due to their completeness and
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orthogonality properties, meaning that arbitrary field can by uniquely decomposed
into a series of partial waves. To do that, ones needs to record the scattered field on
a virtual sphere enclosing the scattering object and project it onto vector spherical
harmonics. For an arbitrary object one can evaluate electric al,m and magnetic bl,m
scattering coefficients by using the following expressions [25]

al,m = Cl

2π∫

0

π∫

0

Y ∗
l,m(θ,φ)r · Esca sin θdθdφ

bl,m = iηCl

2π∫

0

π∫

0

Y ∗
l,m(θ,φ)r · Hsca sin θdθdφ (20.1)

Cl = (−i)l+1k

h(1)
l (kr)E0

√
π(2l + 1)l(l + 1)

,

where Yl,m are the scalar spherical harmonics of order (l,m), h(1)
l (ρ) is spherical

Hankel function describing an outgoing sphericalwave, k = 2π/λ is thewavenumber
of the incident wave, E0 in the amplitude of the incident field, and η is freespace
impedance. It worthwhile to mention, that exactly the same scattering coefficients
can calculated via volumetric integrals of the induced currents inside the object.
Moreover, suchmethodwas implemented in commercial numerical solver COMSOL
Multiphysics and is available as an add-on [26].

In the case of planewave scattering by a spherical particle analytical expressions
for the scattering coefficients are known, based on the Mie solution [11]

aMie
l ≡ al,1 = −al,−1 = mψl(mx)ψ′

l(x) − ψl(x)ψ′
l(mx)

mψl(mx)ξ′
l(x) − ξl(x)ψ′

l(mx)
(20.2)

bMie
l ≡ bl,1 = bl,−1 = mψl(x)ψ′

l(mx) − ψl(mx)ψ′
l(x)

mξl(x)ψ′
l(mx) − ψl(mx)ξ′

l(x)
, (20.3)

where x = 2πR/λ is the size parameter of the sphere of radius R;m = √
ε is relative

refractive index, ψl(z), ξl(z) = ψl(z) − iχl(z), ψl(z) = z jl(z) and χl(z) = −zyl(z)
are theRiccati-Bessel functions; jl(z), yl(x) stand for the spherical Bessel functions;
′ ≡ ∂/∂z designates derivative with respect to the entire argument. All other scatter-
ing coefficients with |m| > 1 vanish identically. Despite the fact that Mie solution
was obtained more than 100 years ago, it serves as indispensable tool in analysing
and revealing key properties of light scattering till nowadays, including the Fano
resonance response, which will be discussed below.

By knowing the coefficients al,m and bl,m the scattered far-field can be recon-
structed as a superposition of partial waves [25]
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HFF
sca → eikr−iωt

kr

∑
l,m

il−1
√

π(2l + 1)
[
al,mXl,m + ibl,mn × Xl,m

]
(20.4)

EFF
sca → ηHFF

sca ×n ,

where n = r/r is a unit vector in the radial direction and

Xl,m = − m√
l(l + 1) sin θ

Yl,m θ̂ − i√
l(l + 1)

∂Yl,m
∂θ

φ̂ (20.5)

are vector spherical harmonics. The time-averaged power radiated per unit solid
angle is

dP

d�
= η

2k2

∣∣∣∣∣
∑
l,m

il−1
√

π(2l + 1)
[
al,mXl,m + ibl,mn × Xl,m

]∣∣∣∣∣
2

. (20.6)

It is also possible to introduce the scattering cross section, that describes the effi-
ciency with which the particle removes the energy from the incident field into the
scattered one, by integrating the radiated power over the full solid angle. Based
on orthogonality of vector spherical harmonics, the total scattering cross section
becomes

Csca = π

k2
∑
l,m

(2l + 1)
[|al,m |2 + |bl,m |2] . (20.7)

The energy conservation constrain implies that the scattering coefficients are bounded
from above with the absolute maximum value of unity, |al,m |, |bl,m | ≤ 1.

20.2.2 Parity and Mirror Symmetries of the Spherical
Harmonics

When the scattering object can generate more than one spherical harmonics, they can
interfere in the far-field zone. To get a better insight into this process, it is important
to understand some symmetry properties of the spherical harmonics. It is known that
both scalar and vector spherical harmonics obey the following relations [27]

Yl,−m = (−1)mY ∗
l,m , Xl,−m = (−1)mX∗

l,m (20.8)

which implies that real and imaginary parts of a spherical harmonic either symmetric
or anti-symmetric upon reflection in x − z plane, depending on number m. If, for
example, the object is symmetric with respect to x − z plane then the scattering
coefficients will exhibit the same relation due to (20.1).
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Fig. 20.1 Schematic illustration of the directional interference of differentmultipoleswith opposite
parity (top) electric dipole (ED) with magnetic dipole (MD); and (bottom) electric dipole with
electric quadrupole (EQ), showing various scenariowhen the backward scattering can be completely
suppressed

In addition to this, spherical harmonics have definite parity—under spacial inver-
sion (r → −r or (θ,φ) → (π − θ,π + φ)) they transform as

Yl,m(−r) = (−1)lYl,m(r) , Xl,m(−r) = (−1)lXl,m(r) (20.9)

It allows us to determine the parity of amultipole field. Thus, based on the expressions
(20.4), one can see that the parity of fields of an electric multipole of order (l,m)

is (−1)l . Specifically, the magnetic field has parity (−1)l , while the electric field
has parity (−1)l+1. On contrary, a magnetic multipole of order (l,m) has the parity
(−1)l+1. In this case, the parity of the magnetic field is changed to (−1)l+1, while
the electric field has the parity (−1)l .

It implies, that if there are two electric and magnetic multipoles of the same
order (l,m), the corresponding electric fields will have different parities (−1)l+1 and
(−1)l , respectively. Thus, if they interfere constructively in one direction at the same
time they interfere destructively in the opposite direction, resulting in unidirectional
scattering. The same effect can be achieved by using two electric (or magnetic)
multipoles of different orders (l,m) and (l + 1,m) (see Fig. 20.1).
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20.2.3 Forward and Backward Scattering

The scattered power in arbitrary direction is given by (20.6). Among all direc-
tions, forward and backward scattering are, usually, of crucial importance in var-
ious applications. Assuming that the direction of the incident wave propagation is
along ẑ axis, the forward scattering is characterised by θ = 0 and φ = 0, and back-
ward scattering by θ = π and φ = 0. Using the properties of the scalar spherical

harmonics Yl,m(0, 0) = δm,0

√
2l+1
4π and Yl,m(π, 0) = (−1)l

√
2l+1
4π δm,0, and similarly

for the derivatives ∂Yl,m
∂θ

(0, 0) = −m
√

l(l+1)(2l+1)
16π δ|m|,1 and ∂Yl,m

∂θ
(π, 0) = m(−1)l+1√

l(l+1)(2l+1)
16π δ|m|,1 together with the addition theorem the vector spherical harmonics

can be simplified to

Xl,m(0, 0) =
√
2l + 1

16π
δ|m|,1{θ̂ + imφ̂} (20.10)

n × Xl,m(0, 0) =
√
2l + 1

16π
δ|m|,1{−imθ̂ + φ̂} (20.11)

Xl,m(π, 0) =
√
2l + 1

16π
(−1)l+1δ|m|,1{θ̂ − imφ̂} (20.12)

n × Xl,m(π, 0) =
√
2l + 1

16π
(−1)l+1δ|m|,1{imθ̂ + φ̂} (20.13)

As a result, one can nowobtain the the expressions for the scattering in the forward

dPF

d�
= η

32k2

∣∣∣∣∣∣
∑

l,|m|=1

i l−1(2l + 1)
[
al,m + mbl,m

] {θ̂ + imφ̂}
∣∣∣∣∣∣
2

. (20.14)

and backward

dPB

d�
= η

32k2

∣∣∣∣∣∣
∑

l,|m|=1

i l−1(−1)l+1(2l + 1)
[
al,m − mbl,m

] {θ̂ − imφ̂}
∣∣∣∣∣∣
2

.(20.15)

directions. It it interesting to note, that only modes with |m| = 1 contribute to the
forward/backward scattering and lead to interference in these two directions. These
expressions can be further simplified in the case of the spherical particle [11]



20 Fano Resonances in Light Scattering by Finite Obstacles 479

CFS = π

k2

∣∣∣∣∣
∑
l

(2l + 1)(aMie
l + bMie

l )

∣∣∣∣∣
2

(20.16)

CBS = π

k2

∣∣∣∣∣
∑
l

(2l + 1)(−1)l(aMie
l − bMie

l )

∣∣∣∣∣
2

(20.17)

where the variation of the signs clearly demonstrates the role of the parity in opposite
directions for electric and magnetic multipoles discussed above (see Sect. 20.2.2).

20.3 Light Scattering by a Single Particle

Now we are in the position to analyse various resonant effects of light scattering by
an arbitrary object. First, let’s consider a subwavelength spherical particle made of
a conventional material. It known, that the dominant contribution to the scattering
will an electric dipole one, and the total scattering cross section will exhibit fourth
power dependence of frequency, also known as the Rayleigh scattering [11]. This
dependence, actually, can be altered if unconventionalmaterialswith properly chosen
permittivity and permeability are used [28]. This response work quite well below
any resonances and the scattering pattern is described by a doughnut-type shape.
Being the first non-negligible contribution (under planewave illumination), it is a
common understanding that the electric dipole response is always present for an
arbitrary scatterer. As we will see later, this is not always the case, and it is possible
to suppress it completely. By increasing the particle radius or changing the refractive
index various resonant effects can be observed.

20.3.1 Directional Fano Resonance

In the case of a plasmonic spherical particle by increasing the radius one can observe
a certain hierarchy of resonances, starting from dipole, quadrupole, etc. [29]. At
the dipole resonance all other contributions are still negligible, thus, the scattering
profile is symmetric in all directions and resembles doughnut shape profile. The
situation changes in the vicinity of the electric quadrupole resonance, where the
dipole contribution is important, and leads to highly asymmetric scattering profile,
due to interference of modes of different parities (see Sect. 20.2.2). Taking into
account the fact that quadrupole resonances usually have much higher Q-factor we
are dealing with resonant interference phenomenon, which can be associated with
the Fano resonance [30, 31]. Indeed, we are having all the essential ingredients
here: the quadrupole mode is a resonant state and the dipole mode provides with a
nonresonant background. By passing through the resonance, the quadrupole mode
exhibitsπ-phasemodulation leading to constructive and destructive interferencewith
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(a)

(b)

(c)

(d)

Fig. 20.2 Directional Fano resonance in the case of plasmonic (a) and dielectric (c) particle. The
plasmonic particle is described by the Drude model with γ = 10−3ωp and the size parameter is
equal to x = ωp R/c. The dielectric particle is described by the refractive index n = 4 and of radius
R = 65 nm. The corresponding scattering coefficients leading to the directional Fano resonance are
shown in panels (b) and (d), respectively

the dipole mode in certain directions. It can be easily observed, for example, in the
forward and backward directions, which both exhibit Fano-type asymmetric profiles
(see Fig. 20.2a)

Cplas
FS = 9π

k2

∣∣∣∣(aMie
1 + 5

3
aMie
2 )

∣∣∣∣
2

(20.18)

Cplas
BS = 9π

k2

∣∣∣∣(aMie
1 − 5

3
aMie
2 )

∣∣∣∣
2

(20.19)

The situation changes for high-index dielectric particles. Below any resonances
the electric dipole mode is still dominant, but the first resonance will be excited at the
magnetic dipole mode. Thus, one might expect the transformation of the scattering
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profile, since the parity of the electric and magnetic dipoles is different. Similar
expressions for the forward/backward scattering

Cdiel
FS = 9π

k2
∣∣(aMie

1 + bMie
1 )

∣∣2 (20.20)

Cdiel
BS = 9π

k2
∣∣(aMie

1 − bMie
1 )

∣∣2

exhibit asymmetric Fano-type lineshapes in the vicinity of the magnetic dipole res-
onance (see Fig. 20.2c), where the electric dipole contribution plays the role of non-
resonant background. Such variation of the scattering profile was recently observed
experimentally for silicon nanoparticles. Importantly, the backward scattering from
dielectric particles can completely vanish Cdiel

BS = 0, which is known as the first
Kerker’s condition. It happens when both electric and magnetic scattering are in-
phase and of the same strength aMie

1 = bMie
1 . It is analogous to the impedance match-

ing condition and makes high-index dielectric particles the best candidate for optical
nanoantennas, where even the simplest spherical particles can exhibit unidirectional
scattering. The relative strength of the electric and magnetic dipoles contribution can
be effectively controlled in core-shell structures. On contrary, the zero forward scat-
tering can not be achieved, which would imply total zero scattering due to the optical
theorem. Nevertheless, it is still possible to minimise it via destructive interference
of several modes.

20.3.2 Vanishing Partial Wave Scattering and Anapolemodes

It turns out, that high-index particles, in addition to magnetic modes, may support
other interesting excitations, such as nonradiating modes [32]. To understand the
possibility and conditions for such excitations, let’s revisit the electric dipole response
of a spherical particle by using Mie solution. When the particle is small compared to
the incident wavelength, the field inside is almost constant and the scattering cross
sections follows the Rayleigh dependency (see Fig. 20.3). But, when the particle
becomes comparable or larger then the wavelength, one can observe very interesting
(although quite strange at first glance) behaviour—vanishing of the electric dipole
scattering a1 = 0 [20]. If in the same time one calculates the internal energy it will
be nonzero, meaning, that there is some nontrivial excitation inside the particle. Due
to orthogonality of the spherical harmonics and the fact that we are dealing with
spherical particle there is no energy leakage to other multipoles, which implies that
such an excitation doesn’t radiate at all! Thus, we can not, for example, explain
vanishing electric dipole scattering as an interference with other multipoles, since
it will require scattering cancelation in all directions at once. But, the symmetry of
various spherical harmonics are all different and such compensation is not possible.
Unfortunately, we can not extract any further information on the properties of that
excitation based on the Mie theory. We do need to analyse now what is actually
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(a) (b)

(c)

Fig. 20.3 Example of vanishing of the total electric dipole scattering (a) and nontrivial contributions
of Cartesian electric and toroidal dipole contributions (b). Panel (c) schematically illustrates the
formation of the anapole state as the destructive interference of electric and toroidal dipoles in the
far-field

excited inside the particle. To do that we can employ alternative description based on
Cartesian multipoles. Usually, to describe the electric dipole response one calculates
so-called electric dipole moment [27]

P = i

ω

∫
JdV , (20.21)

which is, basically, the averaged induced displacement current J = −iωε0(n2 − 1)
Esph inside the particle. But, it turns out that for high-index particle it produces
overestimated scattering cross section

CP
sca = μ0ω

4

12π2R2c
|P|2 , (20.22)

which is larger than the total one. It implies, that there should be an additional contri-
bution. Recently, there were a lot interest in so-called toroidal dipole moments [33]

T = 1

10c

∫
(r · J)r − 2r2JdV , CT

sca = μ0ω
4k2

12π2R2c
|T|2 , (20.23)

which have the same symmetry of the scattered field as the electric dipole. Thus,
their mutual destructive interference in the far-field can lead to complete scattering
cancelation and vanishing of the total electric dipole contribution. It now suggests
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that the total scattered field should be written as a superposition of two contribu-
tionsEsca ≈ P + ikT, and zero scatteringEsca = 0 occurs when electric and toroidal
dipoles scatter light out-of-phase P = −ikT. Indeed, if we calculate both contribu-
tions for a single spherical particle, then zero electric dipole scattering will match
with the crossing of both contributions (see Fig. 20.3). Such nonradiating configu-
ration is also known as an anapole. It has a number of interesting features and can
be used to design near-field laser [34], high efficiency harmonic generation [35], or
to achieve pure magnetic dipole scattering without admixture of other components
under planewave illumination [36] and many other exciting applications [19].

20.3.3 Fano Profile of the Scattering Coefficients

By looking more closely at the total electric dipole scattering profile (see Fig. 20.3)
one might notice its quite familiar highly asymmetric shape accompanied by a reso-
nant suppression of the scattering, associated with the anapole mode discussed above
(see Sect. 20.3.2). Is is a coincidence or there is a dipper reasoning that any scatter-
ing coefficient exhibit Fano-type profile? If yes, how can one identify resonant and
nonresonant contributions, then? Below, using just a general form for an arbitrary
scattering coefficient, we will show that, indeed, it can be described exactly in terms
of the Fano profile [37]. To start with, due to energy conservation requirement, any
scattering coefficient can be written in the following form

S = (alm, blm) ≡ F

F + iG
, (20.24)

which implies that |S| ≤ 1 for arbitrary values of F and G. Then, let us introduce an
angle � according to the expression

tan� ≡ F

G
. (20.25)

In this case the scattering coefficient S can be written as

S = tan�

tan� + i
= −iei� sin� . (20.26)

It turns out, that in this form one can interpret the angle � and a phase shift, similar
to quantum mechanical approach.

The trick now is to decompose this phase shift onto two components, correspond-
ing to two scattering processes. The first one is the scattering by a PEC object of the
samegeometry,when the field does not penetrate inside and describes the background
nonresonant scattering. The second one is the resonant scattering due to excitation
of a resonant mode inside the particle. Thus, it permits us to write
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� ≡ �(PEC) + �(res), (20.27)

and use the simple math to obtain the relation between the total phase shift and each
contribution

tan� ≡ tan(�(res) + �(PEC)) = tan�(res) + tan�(PEC)

1 − tan�(res) tan�(PEC)
. (20.28)

If now we introduce the notations

ε ≡ − cot�(res), q ≡ − cot�(PEC), (20.29)

the expression for a generic scattering coefficient S may be rewritten as follows

S = ε + q

ε + q − i(εq − 1)
. (20.30)

or, alternatively, as

|S|2 = (ε + q)2(
1 + q2

) (
1 + ε2

) . (20.31)

which is the conventional Fano profile, normalized to its maximal value [2]. More-
over, one can assign a physical meaning to the introduced notations above (20.29)
where q is the asymmetry parameter and ε is the normalised resonant energy. What
is surprising here is that, in general, the resonant response of an arbitrary scattering
coefficient should be described in terms of the Fano resonance, where the background
contribution is associated with the scattering induced by a particle shape only (with-
out penetration) and resonant response originates from the excitation of the internal
mode of the particle. At the same time, it suggests an alternative description of the
scattering cancellation discussed above (see Sect. 20.3.2).

20.3.3.1 Case of a Spherical Particle

For a spherical particle one can obtain the expressions for the asymmetry parameter
q and normalised energy ε in a closed form. Let’s take, for example, electric dipole
component. It is usually derived from the boundary condition, which can be written
in the following form

aMie
1 = aPEC1 − g1, aPEC1 = ψ′

1(x)

ξ′
1(x)

, g1 = dMie
1

ψ′
1(mx)

nξ′
1(x)

(20.32)

where g1 is the normalized resonant internal electric dipole coefficient [11], and aPEC1
is the electric dipole scattering coefficient by a PEC sphere. Then, the background
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phase shift �(PEC) related to the asymmetric parameter q can be obtained as

tan�(PEC) ≡ F (PEC)

G(PEC)
= −ψ′

1(x)

χ′
1(x)

= − 1

q
, (20.33)

After some algebra based on (20.28) it also is possible to obtain the expression
for �(res)

tan�(res) = − ψ′
1(mx)

F (PEC)F (Mie) + G(PEC)G(Mie)
, (20.34)

F (Mie) = mψ′
1(x)ψ1(mx) − ψ1(x)ψ

′
1(mx) , (20.35)

G(Mie) = −mχ′
1(x)ψ1(mx) + χ1(x)ψ

′
1(mx) , (20.36)

By exploring the dependency of the electric dipole scattering coefficient aMie
1 on

the size parameter x , one can observe that is exhibits an infinite number of res-
onances, and each of them has an asymmetric profile. The analytically calculated

(a)

(b)

(c)

(d)

Fig. 20.4 a Illustration of the origin of two scattering contributions resulting in the Fano resonance
for any given partial wave. b Decomposition of the electric dipole scattering coefficient into back-
ground (PEC) and resonant contributions for size parameter x = 1. cVariation of the electric dipole
scattering coefficients versus size parameter for a spherical particle with the refractive index n = 4.
d Corresponding dependence of the asymmetric Fano parameter q (20.33)
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asymmetry parameter q describes the Fano lineshape in the vicinity each resonance
(see Fig. 20.4).

The presented approach is quite general and can be applied to any scattering
coefficient, revealing the origin and importance of the Fano resonance in all scattering
processes.

20.4 Fano Resonance in Oligomer nanostructures

So farwe have considered the Fano resonance supported by a single particle. Itmostly
manifests itself in the asymmetric directional scattering or resonant suppression
of a partial wave scattering, associated with nonradiating type sources. But, the
observed Q-factor was not so high, which limits the potential applications. Recently,
there were a lot of interest in so-called oligomers [38–40]—a finite configuration of
nanoparticles with rotational symmetry. It turns out that such structures can support
high-Q Fano resonances, which might be use for sensing and harmonic generation
due to strong near-field enhancement [41–51].

20.4.1 Linear Response

Initially, theFano resonancewas observed for plasmonic structures [52]. Theyusually
consist of an identical finite number of particles in a ring and an additional particle
at the centre of a different size. The origin of the Fano resonance depends on the
materials of the particles. In the case of plasmonic nanoparticles it is usually described
in terms of near-field hybridisation of so-called super- and sub-radiant modes, which
lead to the far-field destructive interference [53–57]. Resonant response of each
plasmonic particle is due to electric type localised surface plasmon resonances,which
strongly depend on the material of the nanoparticle. The near-field enhancement at
the resonance is located in the gap between the particles, which makes them very
sensitive to the environment. Thus, the position and spectral lineshape can be strongly
affected by the separation of the particles and optical properties of the outside media.
It makes them one of the best candidates for the sensing applications with relatively
high FOM. In addition to this, in some plasmonic oligomers strong magnetic dipole
excitation was observed [58] (Fig. 20.5).

In the case of high-index dielectric materials the origin of the Fano resonance
is a bit different. As it was mentioned above, the fundamental resonance of a sub-
wavelength dielectric particle is the magnetic dipole, which linearly depends on the
nanoparticle dimensions. When the size of the central particle is different to the
outer ring particles, their resonances are spectrally shifted. Thus, the Fano resonance
emerges as the destructive interference between the resonant response of the central
particle, while the particles on the outer ring provide with the nonresonant back-
ground scattering [48]. Since the field is mostly localised inside the particles, they
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Fig. 20.5 a Calculated dipole amplitudes of the bonding and antibonding collective dipolar plas-
monmodes in a gold nanoshell heptamer. b, cMeasured (b) and calculated (c) scattering spectra of a
gold nanoshell heptamer. d Transmission spectra showing the effects of coupling in lithographically
fabricated gold nanodisk heptamers. e Extinction spectra showing how the Fano resonance in silver
nanosphere hexamers and octumers depend on the size of the central particle. f Effect of a sur-
rounding dielectric medium on the extinction spectrum of a silver nanosphere heptamer. g Example
of a large-scale substrate consisting of lithographically fabricated gold nanodisk heptamers. Scale
bar: 1 µm. Reprinted from [13]

are less sensitive to the distance between them, in contrast to the plasmonic coun-
terpart. Nevertheless, it does exhibit strong sensitivity to the refractive index of the
environment [43, 44]. Another interesting example is a quadrumer, consisting of four
dielectric particles in a square. In such a structure one might observe the interaction
between the collective optically induced magnetic response of the quandrumer and
the individual magnetic responses of constituent dielectric nanoparticles, leading in
a sharp magnetic-magnetic Fano resonance [59] (Fig. 20.6).

It should be mentioned, that the optical response of oligomer type structures can
be effectively described by using coupled-dipoles approximation [48, 60]. In the case
of plasmonic particles it is usually enough to consider coupled electric dipoles only,
while in the case high-index nanoparticles both magnetic and electric dipoles should
be taken into account. Moreover, by employing the group theory analysis it can be
rigorously proven that oligomers with rotational symmetry should exhibit polarisa-
tion independent response under normal incidence [45], which makes them optically
isotropic. Interesting enough, all integral characteristics, including extinction, scat-
tering and absorption cross sections do not depend on the incident polarisation,
despite the fact that near-field distribution does vary with the polarisation [61]. It
was experimentally checked for both plasmonic structures in the visible range [51]
and dielectric ones in the MW range [62].
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Another related comment, is that the coupled-dipole approximation for many
particles can be considered in analogy with the discrete-dipole approximation of a
single object. From this perspective, a finite configuration of subwavelength particles
can be treated as an “effective” single particle. Then, it allows to interpret the resonant
suppression of the total scattering of oligomer-type structures in termsof nonradiating
excitations and anapole modes of a single scatterer. The peculiarity of high-index
dielectric oligomers is that we are dealing mostly with magnetic dipole response.
Thus, it suggests that such structures may support so-called magnetic anapoles,
which, actually, were recently discussed [24].

20.4.2 Chiral Structures and Optical Activity

So far, we have discussed optical response of linearly polarised incident light. It
was mentioned that if a structure possesses the rotational symmetry then it should
exhibit polarisation independent isotropic response for all cross sections. The sit-
uation changes if circular polarised light will be used. It is known, that extinction
cross section is a linear response function. Meaning that if we consider two inde-
pendent excitations of different polarisations, then the response under simultaneous
excitation will be a mere superposition of two independent responses. On another
hand, the circular polarised light can be considered as a superposition of two orthog-
onally linearly polarised excitations with a phase shift. Thus, one might expect that
extinction cross section should maintain its polarisation independency even for cir-
cularly polarised excitation for structures with the rotational symmetry. But, both
scattering and absorption cross sections exhibit nonlinear response, which implies
that superposition principle is not applicable, in general. As a result, the response for
circular polarisation will be different compared to the linear polarisation, or even left
and right polarisation. Indeed, it was suggested and recently demonstrated that plas-
monic oligomers with rotational but broken mirror symmetries exhibit strong optical
dichroism in the vicinity of the Fano resonance [63, 64] (see Fig. 20.7). Despite
the fact that the total extinction cross section is the same for both left and right
polarisations, both scattering and absorption cross section vary a lot, which can be
important in various nonlinear processes [50]. Thus, such planar structure exhibit
strong variation in the absorption depending on the incident polarisation, which is
related to so-called planar chiral response. It is interesting to note, that if instead of
lossy plasmonic structure we would consider lossless dielectric one there will be no
optical dichroism, since in this case the absorption cross section will be identically
zero and scattering cross section will be equal to extinction, which is polarisation
independent. But, the corresponding resonant mode still might be quite different for
both excitations, which require further analysis.
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(a) (d)

(b)

(c)

Fig. 20.7 Simulations demonstrating the role of interference for inducing circular dichroism in the
absorption cross section of a planar chiral heptamer. The significant circular dichroism in absorption
is observed in the vicinity of the Fano resonance. On the right hand side, the circular dichroism is
shown as the magnitude of the near-field chirality density at the Fano resonance [63]

20.4.3 Harmonic Generation

Most of high-index materials also possess strong nonlinear response. Thus, at the
resonances associated with the strong near-field enhancement inside the particle one
might expect various enhance nonlinear effects. Recently, there several demonstra-
tions of second and third harmonic generations in all-dielectric single particles [65],
oligomers [66], and metasurfaces [67]. The highest efficiency was observed in the
vicinity ofmagnetic dipole resonances, which exhibit largermode volume, compared
to electric ones. Despite the fact that bulk silicon has an inversion symmetry, finite
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Fig. 20.8 Third harmonic generation (THG) spectroscopy of dielectric quadrumers showing exper-
imental transmission (black line) and THG (blue dots) spectra under oblique incidence at the angle
θ = 45◦ [66]

structures still exhibit relatively strong second harmonic generation, which might be
associated not only with surface effects, but also with higher order nonlinear terms
due to near-field inhomogeneity. There are also some attempts to identify nonlinear
processes due to enhanced magnetic near-field, which might lead to a completely
new area of magnetic nonlinearity in the visible frequency range.

Another interesting aspect of high-index nanoparticles is that they can support
nonradiating anapole states, associated with the Fano resonance (see Sect. 20.3.2). In
this case, the scattering at the fundamental frequency can be completely suppressed,
resulting in ultra high efficiency of the harmonic generation, which was recently
demonstrated [35, 68]. Another typical examples is the magnetic-magnetic Fano
resonance in the silicon quadrumer, discussed above (see Sect. 20.4.1), where the
nontrivial wavelength and angular dependencies of the generated harmonic signal
featuring a multifold enhancement of the nonlinear response was observed [66]
(Fig. 20.8).

20.5 Conclusions

Fano resonance plays a key role in various wave type phenomena, and can be consid-
ered as a resonant interference effect. We have demonstrated that it naturally appears
in partial wave scattering, which can be used to describe the optical response of an
arbitrary finite scattering object or objects. The most generic profile of any scat-
tering coefficient can be described exactly in the terms of the Fano formulae (see
Sect. 20.3.3), which implies that even isolated partial wave scattering can be decom-
posed into more than one interfering components. This conclusion is very nontrivial
and in some sense even counter-intuitive, taking into account the completeness and
orthogonality vector spherical harmonics. We have tried to elucidate this point and
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provided at least several alternative descriptions, which allow to shed a light onto this
feature and explicitly identified various resonant and nonresonant contributions lead-
ing to the Fano type response. In its turn it leads to a number of interesting effects in
both linear and nonlinear regimes, including excitation nonradiating anapole modes
and high efficiency harmonic generation in the nonlinear materials.
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Chapter 21
Tuning of Fano Resonance by Waveguide
Rotation

Wave Faucet and Bound States in the Continuum

Almas Sadreev, Artem S. Pilipchuk and Alina A. Pilipchuk

Abstract We consider acoustic wave transmission in a non-axisymmetric waveg-
uide composed of a cylindrical resonator of radius R and length L and two cylindrical
waveguides of radius r < R. The center lines of the waveguides are shifted relative
to the center line of the resonator by a distance r0 and relative to each other by an
azimuthal angle �φ. Under variation of L and fixed �φ we find bound states in the
continuum (trapped modes) due to full destructive interference of resonant modes
leaking into waveguides. Rotation by the angle �φ brings complex phases into
the coupling strengths of the resonator eigenmodes with propagating modes of the
waveguides. As the result interference of neighboring resonances strongly depends
on rotation of the waveguide introducing novel way for tuning Fano resonances. In
turn rotation of the input waveguide strongly affect the acoustic transmission through
the resonator imitating a faucet inwave transmission.Under variation of�φ andfixed
L we find symmetry protected trappedmodes. For�φ �= 0 these trappedmodes con-
tribute to the scattering function supporting high vortical acoustic intensity spinning
inside the resonator.

21.1 Introduction

Bound states in the continuum (BIC) are localized solutions which correspond to
discrete eigenvalues coexisting with extended modes of continuous spectrum in
resonator-waveguide configurations. The existence of such modes was first reported
in [1] at the dawn of quantum mechanics. Since then bound state in the continuum
(BIC) has been universally used to designate an BIC in quantum mechanics [2]. In
the field of fluid mechanics, Parker [3, 4] is credited to be the first to encounter
resonances of pure acoustic nature in air flow over a cascade of flat parallel plates.
Nowadays, the BICs are known to exist in various waveguide structures [5–8]. The
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BICs are of immense interest, especially, in optics thanks to experimental opportu-
nity to confine light in optical microcavities despite that outgoing waves are allowed
in the surrounding medium [9–14].

Independently considerable attention has beenpaid to theBICs in perturbed acous-
tic waveguides. Many different geometrical configurations with Neumann boundary
conditions have been studied. These studies have shown that the existence of trapped
modes is very sensitive to choice of geometry. Up to now geometrical configurations
were chosen to reduce the effective dimension of the acoustic waveguide. Chrono-
logically, the following specific perturbed acoustic waveguides were considered. In
1951 Ursell [15, 16] considered a sphere placed on the axis of a cylindrical guide
and showed that a trapped mode exists for selected radius of the sphere. There is a
long history of trapped modes bound below the channel cut-off in two- and three-
dimensional nonuniformwaveguides due to curvature of thewaveguide or a localized
bulge [17–20]. However the bound states with isolated discrete eigenvalue embedded
in the continuous spectrum above the channel cut-off, BICs, are more unusual. Evans
and Porter first provided convincing numerical evidence for BICs of both Neumann
and Dirichlet type in the case of a rigid circular cylinder placed on the centre-plane
between parallel walls [21]. Linton and McIver [22] proved the existence of an infi-
nite number of trapped modes for the case of cylindrical waveguide containing an
axisymmetric obstacle, in particular a thin circular sleeve.

Similarly, the dimension is reduced in acoustical waveguides of rectangular cross-
section in y0z plane and directed along the x-axis with obstacle shaped only in the
x0y plane so that the thickness of the perturbed waveguide along the z-axis d is
constant. Then the scattering channels are given by the eigenmodes quantized along
the z-axis with corresponding Neumann boundary conditions at the walls positioned
at z = ±d/2. The utmost case of these structures is a two-dimensional acoustical
waveguide formed by two infinite parallel lines at distance d containing a circle of
radius R < d [23] or multiple circles [24, 25] positioned symmetrically between
them. The trapped modes are antisymmetric about the centreline of the guide to
determine them as the symmetry protected BICs. More sophisticated BICs of the
same symmetry as the symmetry of the continuum were demonstrated recently in
[26–30].

A different class is the fully three-dimensional systems. For example, in the case
of non-axisymmetric obstacle inside the cylindrical waveguide Hein and Coch [31]
numerically computed acoustic resonances and BICs by solving the eigenvalue prob-
lem. Here we consider similar non-axisymmetric waveguide but without an obstacle
inside as shown in Fig. 21.1. The axisymmetric case shown in Fig. 21.1a preserves
the orbital angular momentumm because of the rotational symmetry around the cen-
tral axis. That effectively reduces the dimension of the waveguide to two. The BICs
with m = 0 were shown to occur under variation of the length of the resonator [28]
due to full destructive interference of resonant states [32]. An equivalent explication
of the BICs is that under variation of the resonator length the eigenmodes ψ1,ψ2

of the same symmetry as the symmetry of propagating modes of the waveguides
become degenerate. Then the coupling of the superposed state a1ψ1 + a2ψ2 with
the continuum can be cancelled by a proper choice of the superposition coefficients
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Fig. 21.1 Cylindrical resonator of radius R and length L with two attached cylindrical waveguides
of radius r < R. The whole waveguide system is axisymmetric (a) and non-axisymmetric with
aligned waveguides but shifted relative to the center line of resonator by distance r0 = 1.5 (b) and
misaligned relative each other by azimuthal angle �φ

a1 and a2 [8]. In the present paper we choose similar strategy for the trapping of
acoustic waves by means of the variation of the resonator length by the use of piston-
like hollow-stemwaveguides tightly fit to the interior boundaries of a cylindric cavity
[28]. However this strategy is complemented by rotation of one of the waveguides by
the angle�φ as shown in Fig. 21.1b. Then one of the waveguides acquires azimuthal
difference relative to the other that crucially affects interference of resonances, i.e.,
Fano resonances and the wave transmission. We show that even tiny rotations result
in change of the transmittance from zero to unit qualifying the setup as a wave faucet.

21.2 Acoustic Coupled Mode Theory for Open Cylindrical
Resonators

Here we apply the method of effective non-Hermitian Hamiltonian [33–36] or equiv-
alently the coupled mode theory, a physically transparent approach to diagnose the
BICs. The theory is based on the Feshbach projection technique [33] of the total
space, resonator plus waveguides, onto the subspace of the resonator that results in
the effective non-Hermitian Hamiltonian. Each subsystem possesses the rotational
symmetry and obeys the stationary Helmholtz equation in the cylindrical system of
coordinates [

∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
+ ∂2

∂z2
+ ω2

]
ψ = 0, (21.1)

for the velocity potential ψ where all coordinates are dimensionless through the
waveguidewidth and the frequencyω ismeasured in terms of s/d where s is the sound
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Table 21.1 Cut-off frequencies and shapes of propagating modes

Channel Cut-off frequency Indices Mode shape

1 0 p = 0, q = 1

2 1.84118 p = ±1, q = 1

3 3.0542 p = ±2, q = 1

4 3.831706 p = 0, q = 2

velocity [27]. The propagating modes in the sound hard cylindrical waveguides with
Neumann boundary conditions are described by

ψpq(ρ,α, z) = ψpq(ρ)
1√

2πkpq
exp(ipα + ikpq z), (21.2)

ψpq(ρ) =
⎧⎨
⎩

√
2

J0(μ0q )
J0(μ0qρ), p = 0,√

2
μ2
pq−p2

μpq

Jp(μpq )
Jp(μpqρ), p = 1, 2, 3, . . . ,

where ρ,α are the polar coordinates in the x0y-plane, μpq is the q-th root of equation
d Jp(μpqρ)/dρ

∣∣
ρ=1 = 0 imposed by the Neumann boundary condition on the walls

of sound hard cylindrical waveguide.

k2pq = ω2 − μ2
pq (21.3)

The propagating bands degenerate with the respect to the sign of OAM are classified
by two indices, the OAM index p = 0,±1,±2, . . . and radial index q = 1, 2, 3, . . . .
Profiles of propagating functions ψpq(ρ) cos pα are depicted in Table21.1.

The Hilbert space of the closed cylindrical resonator is given by the following
eigenmodes

Ψmnl(r,φ, z) = ψmn(r)

√
1

2π
exp(imφ)ψl(z), (21.4)

where

ψmn(r) =
⎧⎨
⎩

√
2

RJ0(μ0n R)
J0(

μ0nr
R ),m = 0√

2
μ2
mn−m2

μmn

RJm (μmn R)
Jm(

μmnr
R ),m = 1, 2, 3, . . . ,

(21.5)

ψl(z) =
√
2 − δl,1

L
cos[π(l − 1)z/L],
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l = 1, 2, 3, . . . and z ismeasured in terms of thewaveguide radius. The corresponding
eigenfrequencies are

ω2
mnl =

[
μ2
mn

R2
+ π2(l − 1)2

L2

]
(21.6)

where μmn is the n-th root of the equation
d Jm (μmnr)

dr

∣∣∣
r=R

= 0 which follows from the

Neumann BC on the walls of a sound hard cylindrical resonator.
Then the Feshbach projection of the total space of the waveguide shown in

Fig. 21.1 onto the subspace of the eigenmodes of the closed cylindrical resonator
(21.4) gives us the following effective Hamiltonian [37]

Heff = HB − i
∑

C=L,R

∑
pq

kpqWC,pqW
†
C,pq , (21.7)

where WBC, WCB stand for the coupling matrix elements between the eigenmodes
(21.4) and the eigenmodes of the scattering channels (21.2) with the frequency ω.
The full Hamiltonian of an open system is Hermitian only in the total Hilbert space,
which is spanned by the bound states and the scattering continuum states. The effec-
tive Hamiltonian (21.7) is however non-Hermitian because of the leakage of the
eigenmodes (21.4) into the open channels of the waveguides through the holes. That
is why the eigenvalues of the non-Hermitian effective Hamiltonian

Heffψr (r,φ, z) = zrψr (r,φ, z) (21.8)

are complex which determine the positions and resonant widths of the resonant states
as Re(zλ), and −2Im(zλ) correspondingly [34, 35]. The matrix elements of W are
given by overlapping integrals [37, 38]

WC
mnl;pq = ∫

�C

ρdρdαψpq(ρ,α)Ψ ∗
mnl(r,φ, z = zC)

=
2π∫
0
dα

1∫
0

ρdρψpq(ρ,α)Ψ ∗
mnl(r(ρ,α),φ(ρ,α), zC)

= ψl(zC)
2π∫
0
dα

1∫
0

ρdρψpq(ρ,α)ψ∗
mn(r(ρ,α),φ(ρ,α)), (21.9)

where �C,C=L,R are interfaces positioned at zC = 0, L where the waveguides are
attached to the resonator as shown in Fig. 21.2. Integration is performed over circular
cross section of the attached waveguides as shown in Fig. 21.2. One can link the polar
coordinates of the resonator with that of the immovable waveguide

r sin φ = ρ sinα, r cosφ = r0 + ρ cosα



502 A. Sadreev et al.

Fig. 21.2 Integration area in
the coupling matrix (21.9)
shown by filled areas.eps

where r0 is the distance between the axes of the waveguide and resonator. According
to (21.4) we have

ψl(z = 0) =
√
2 − δl,1

L
,ψl(z = L) = ψl(0)(−1)l−1. (21.10)

Although the waveguides are identical they are attached to the resonator at differ-
ent azimuthal angles as shown in Fig. 21.2 to give rise to an exact relation between
the coupling matrix elements

WL
mnl;pq = (−1)l−1ei(p−m)�φWmnl;pq . (21.11)

Here Wmnl;pq = WR
mnl;pq are the coupling matrix elements of the resonator modes

specified by integers m, n, l with p, q propagating modes of the left waveguide (see
Fig. 21.1). Then the matrix of the effective Hamiltonian takes the following form

〈mnl|Heff |m ′n′l ′〉 = ω2
mnlδmm ′δnn′δll ′

− i
∑
pq

kpq [1 + (−1)l+l ′ei(m
′−m)�φ]Wmnl;pqW ∗

m ′n′l ′;pq . (21.12)

The transmittance of sound waves in the p, q propagating channel through the res-
onator is given by equation [37]

Tpq;pq = 2ikpq
∑
mnl

∑
m ′n′l ′

Wmnl;pqe−im ′�φGmnl;m ′n′l ′W
∗
m ′n′l ′;p′q ′ (21.13)
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where

G = 1

ω2 − Heff
, (21.14)

that is propagation of waves through the resonator is described by the Green function
which is inverse of the matrix ω2 − Heff and coupling matrices of the resonator
with the input (left) waveguide and the output (right) waveguide. However the most
remarkable feature in (21.13) is complex phases of the coupling matrix elements
which contribute into interference of different states mnl. As we show below that
drastically affects Fano resonances.

21.3 Trapping in Non Coaxial Waveguide Under Variation
of the Resonator Length L

In what follows we take both waveguides with unit radius shifted relative to the
central axis of the resonator with radius R = 3 by a distance r0 = 1.5. We consider
transmission in the first channel p = 0, q = 1 in the frequency domain 0 < ω <

1.8412 (see Table21.1). The transmittance versus the squared frequency and the
resonator length L is shown in Fig. 21.3 for �φ = 0 and �φ = π/4. Irrespectively

Fig. 21.3 Transmittance of a cylindrical resonator versus frequency and length of the resonator L
at a �φ = 0 and b �φ = π/4. c and d zoomed transmittance in the domains isolated by rectangles
in b. Dash lines show eigenlevels of closed resonator with corresponding indices mnl. Solid lines
show eigenlevels of the resonator shifted by evanescent modes given by the modified Hamiltonian
(21.16). The positions of the BICs are shown by closed circles
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Fig. 21.4 The transmittance
vs frequency for two values
of R at �φ = 0 and L = 2

to the choice of the rotation angle the transmittance has resonant behavior which is
due to that the resonator is three-dimensional. Indeed, the coupling matrix elements
(21.9) can be estimated as 1

RL1/2 due to the normalization of the eigenmodes of
the resonator (21.5). The resonant widths are proportional to the squared coupling
matrix elements, i.e., proportional to 1

R2L , while the distance between the eigenlevels
�E is proportional to R−2 irrespective to dimension according to (21.6). Hence
we obtain an inequality R � L to have the regime of weak coupling [39]. This
observation is illustrated in Fig. 21.4. One of the advantages of the effective non-
HermitianHamiltonian approach is that theBIC can be easily found as the eigenmode
of the effective Hamiltonian (see (21.8)) with zero resonant width, i.e., with real
eigenvalue zr [8, 28]. EachBICpoint is searched for by solving the fix point equations
[34]

ωc = Re(z(ωc, Lc,�φc)), Im(z(ωc, Lc,�φc)) = 0.

After the fix point equation is solvedwe can determine the eigenmodes of the effective
Hamiltonian with real eigenvalues [8, 28]. As it is seen from (21.13), the above
equation corresponds to the case when one of the poles of the S-matrix reaches real
axis as was considered byHein et al. [31]. Then the Green function becomes singular.
In order to avoid this singularity in the transmittance the coupling strength becomes
zero. Rigorous consideration of these subtle features is given in [8, 40].

The case of waveguides coaxial each other and resonator (Fig. 21.1a) was consid-
ered in [28] to showmultiple events of BICs due to the mechanism of full destructive
interference of leakage modes for crossing of eigenfrequencies for variation of the
length L . Here we consider two distinctive case of non coaxial waveguides: (a) the
waveguides are coaxial each other �φ = 0 but their center lines are shifted relative
to the center line of the resonator by a distance r0 (Fig. 21.1b), and (b) the center
lines of the waveguides are shifted relative each other by the azimuthal angle �φ
(Fig. 21.1c).
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Fig. 21.5 Evolution of
resonant widths under
variation of the resonator
length at �φ = 0 a and
�φ = π/4 b. Circles mark
BICs listed in Tables21.2
and 21.3

21.3.1 �φ = 0

Figure21.5 shows numerous events of the resonant widths turning to zero with vari-
ation of the resonator length L which evidence BICs. Inside the resonator the BIC
trapped mode can be expanded over the eigenmodes of the closed resonator (21.4)

ψBIC(r,φ, z) =
∑
mnl

amnlΨmnl(r,φ, z). (21.15)

The expansion coefficients of the BICs amnl are shown in Fig. 21.6 and listed in
Table21.2 where we present only those BICs whose frequencies fit into the fre-
quency window shown in Fig. 21.3a. They are marked by open circles in Fig. 21.5a.
One can see that only a few eigenmodes of the resonator participate in the BIC expan-
sion (21.15). The expansion coefficients are real and equal for ±m. All BICs listed
in Table21.2 are result of the Friedrich-Wintgen mechanism of destructive interfer-
ence [8, 32] when the eigenmode mln with the azimuthal part cosmφ crosses the
eigenmode m ′l ′n′ with the azimuthal part cosm ′φ. In Fig. 21.7 we show BICs 1 and
2 listed in Table21.2 on the surface of the waveguide similar to those shown by Hein
et al. [31]. We leave aside here the trivial symmetry protected BICs whose azimuthal
dependence is given by sinmφ. One can see that for the waveguides with no phase
difference these BICs have zero overlapping with the first channel p = 0, q = 1
shown in Table21.1.
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Fig. 21.6 (Color online) Modal expansion coefficients |amnl | of BSCs shown in Fig. 21.6 for the
case �φ = 0
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Fig. 21.7 Patterns of BIC 1 a and BIC 2 b from Table21.2 (real parts of modes on the surface of
the waveguide) at �φ = 0

Table 21.2 BICs at �φ = 0

BIC ω2 L mnl amnl

1 1.6617 4.8743 021 0.9276

013 0.3665

2 1.9571 4.9371 ±113 0.6015

±121 0.5563

21.3.2 �φ = π/4

Above we considered the BICs for the case when both waveguides were attached to
the cylindrical resonator in a non-axisymmetric way for �φ = 0. That makes both
waveguides identical and summation over C = L , R in the effective Hamiltonian
(21.7) simply gives rise to a factor of 2. Let us now shift the axis of the left waveguide
by an azimuthal angle �φ compared to the axis of the right waveguide as shown in
Fig. 21.1b. To be specific we consider the case �φ = π/4. Although the continua
of the waveguides remain the same the rotation of the left waveguide brings the
complex phases in the coupling matrix elements of the resonator eigenmodes with
the continua as given by (21.11). That does not affects the transmittance except the
points of crossing of the eigenlevels as shown in Fig. 21.3c, d.

As before the BIC points were detected by finding zero resonant width as shown
in Fig. 21.5b. However, upon closer inspection in Fig. 21.3c, d we see that these BICs
are not exactly in the positions of the degeneracy of the eigenmodes of the closed
resonator. The corresponding BICs are listed in Table21.3 and shown in Fig. 21.8.
Here we outline only the most important results. (i) The evanescent modes with
imaginary kpq , p > 0 contribute into the Hamiltonian of the closed resonatorHR to
modify it as follows

H̃R = HR +
∑

C=L,R

∑
p>0,q

kpqWC,pqW+
C,pq (21.16)
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Table 21.3 BICs at
�φ = π/4

BIC ω2 L mnl amnl |amnl |
1 0.385 5.065 012 −0.113 + 0.272i 0.294

111 −0.478(1−i) 0.675

−111 0.675 0.675

2 1.055 3.051 012 −0.261(1−i) 0.369

211 0.656i 0.656

−211 0.656 0.656

3 1.0535 3.833 211 0.658i 0.658

−211 0.658 0.658

112 −0.237 − 0.098i 0.256

−112 −0.098 − 0.237i 0.256

4 1.065 3.869 211 −0.505 0.505

−211 0.505 0.505

112 −0.455 − 0.189i 0.493

−112 0.189 + 0.455i 0.493

As the result the BICs occur in the points of degeneracy of the eigenlevels of this
Hamiltonian that explains positions of the BICs shown in Fig. 21.3c. Numerical data
of BICs at �φ = π/4 are collected in Table21.3.

(ii) If the waveguides were coaxial with the resonator the eigenmodes of H̃B

given by the azimuthal parts cosmφ and sinmφ (or equivalently eimφ and e−imφ) of
the cylindrical resonator would be degenerate. However, as soon as the waveguides
are attached non-coaxially this degeneracy with respect to the sign of m is lifted
as shown in Fig. 21.3c by solid lines. That leads to the important consequence that
the BICs of the non-coaxial waveguide can not support currents of acoustic intensity
[30] in contrast to the case of coaxial waveguides [26]. Figure21.8 clearly shows that
BICs at �φ �= 0 are decoupled from the first channel. Assume that the BIC mode
is decoupled from the right waveguide owing to degeneracy. In order the BIC mode
to be decoupled from the rotated left waveguide the BIC mode has to be twisted
to compensate this rotation [30, 41]. Figure21.8 evidently illustrates the effect of
twisting of the BIC by the rotation angle �φ.

21.4 Wave Faucet

Equation (21.13) shows that the phase factors in the coupling matrix elements
due to the rotation of the input waveguide brings an important contribution into
interference between resonances. Figure21.9 vividly illustrates high sensitivity
of the transmittance to the rotation angle �φ. Figures21.10 and 21.11 demon-
strate that the most strong effect of waveguide rotation occurs at the vicinity of
BICs, i.e., in the vicinity of crossing of eigenfrequencies. As seen from Fig. 21.4a
the eigenmode 012 crosses the eigenmode ±111 around L = 5. Respectively the
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Fig. 21.8 Patterns of BIC 3 (a, b) and BIC 4 (c, d) shown from the left and right (d) sides of
resonator on the surface of the waveguide at �φ = π/4

Fig. 21.9 (Color online) Transmittance of a cylindrical resonator a versus frequency and rotation
angle �φ at L = 4 and b versus length and rotation angle at ω2 = 2. The positions of the BICs are
shown by open circles

transmittance is basically given by the interference of these resonances. Accord-
ing to (21.11) we have WL

012;01 = −WR
012;01,W

L
±111;01 = WR

±111;01e
∓i�φ. Therefore

for the output waves interfering constructively we have to take �φ = ±π, while
the full destructive interference takes place at �φ = 0. This simple consideration
is in excellent agreement with numerics presented in Fig. 21.11a. Along the same
line for channels 012 and ±211 in the vicinity of L = 3 we have from (21.11)
WL

012;01 = −WR
012;01,W

L
±211;01 = WR

±111;01e
∓2i�φ to open wave flux through the res-

onator at �φ = π/2, 3π/2 that is illustrated in Fig. 21.11b. At last, in the vicinity
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Fig. 21.10 Transmittance versus frequency and rotation angle �φ at L = 4 in frequency domains
shown in Fig. 21.9a by rectangles. The positions of the BICs are shown by closed circles. a The
first frequency domain from 0.36 till 0.42, b the second frequency domain from 0.98 till 1.08, c the
third frequency domain from 1.65 till 1.72, and (4) the fourth frequency domain from 1.97 till 2.02

Fig. 21.11 Transmittance versus the frequency and rotation angle in the vicinity of crossing of the
modes a 012 and ±111 at L = 5, b 012 and ±211 at L = 3, and c ±112 and ±211, L = 4

of L = 4 the eigenmodes ±112 cross the eigenmodes ±211. Respectively we have
WL

±211;01 = WR
±211;01e

∓2i�φ,WL
±112;01 = −WR

±112;01e
∓2i�φ to give rise to constructive

interference only at �φ = π that agrees with Fig. 21.11c. Thus, the rotation of the
input waveguide strongly tunes Fano resonance [41]. In particular there can be a col-
lapse of Fano resonance when the transmission zero approaches to the transmission
maximum that is a signature of wave trapping [6]. These events are shown by open
circles in Figs. 21.10 and 21.11 and confirmed by the behavior of the resonant widths
vs the rotation angle as shown in Fig. 21.12. Among themwe select four BICs shown
in Fig. 21.13.
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Fig. 21.12 Evolution of resonant widths under waveguide rotation at L = 4

Fig. 21.13 Patterns of BICs marked by open circles in Fig. 21.12 and listed in Table21.4 on the
surface of the resonator at L = 4. a BIC 1, b BIC 3, c BIC 2, and d BIC 4. Open circles show where
the left and right waveguides are attached to the resonator

For�φ �= 0BICs canonlybe symmetryprotected except the cases of a degeneracy
of the resonator eigenmodes shown in Fig. 21.3. Indeed, let us consider the first BIC
from Table21.4 whose azimuthal dependence is given by cos[3(φ − �φ/2)]. In
order to decouple this BIC from the right waveguide at �φ = 0 the nodal line of
the BIC mode has to be positioned at φ = 0 that gives us the equation 3

2�φ = π
2 ,

i.e., �φ = π
3 . Therefore the BIC mode is cos[3(φ − π/6)] which equals zero at

φ = 0. The left waveguide is rotated by the angle π/3 for which the BIC mode is
decoupled from the left waveguide too. Numerically according to Table21.4 we have
�φ = 0.308π which is close to π/3. The small difference is due to the evanescent
modes. Similarly for the second BIC we obtain cos[4(φ − �φ/2)] that gives us
�φ = π/4 which is close to numerical result �φ = 0.235π given in Table21.4. For
the fourth BIC we obtain that �φ = π/2 that well agrees with Table21.4. The most
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Table 21.4 BICs at L = 4 BIC �φ/π ω2 mnl amnl

1 0.308 1.9868 311 0.7056

−311 0.7056e−3i�φ

2 0.2351 3.17304 411 0.705

−411 0.705e4i�φ

3 0.4171 1.05688 211 0.6898

−211 −0.6898e−2i�φ

121 0.0933 + 0.1215i

−121 a121ei�φ

4 0.5055 1.68872 211 0.7043

−211 0.7043e−2i�φ

Fig. 21.14 Real parts of scattering function for the parameters close to the BIC point 4 given in
Table21.4. a ω = ωc and b ω = ωc + 0.01

interesting is the third BIC which is superposed of two modes cos[2(φ − �φ/2)]
and cos[(φ + �φ/2)]. As the result the BIC mode is twisted as shown in Fig. 21.13.

Although all of the BICs can not support the flows of acoustic intensity, the
scattering wave function calculated through the equation [36, 37]

ψ(r ′,φ′, z) = 1√
4πk01

[eik01zφ10 + ∑
pq S01L;pqLe−ikpq zφpq(r ′,φ′)], z < 0,

ψmnl(r,φ, z) = −i
∑

m ′n′l ′ Gmnl;m ′n′l ′

√
kp
π
WL

m ′n′l ′;01, 0 < z < L , (21.17)

ψR(r ′,φ′, z) = 1√
4πk01

∑
pq S01L;pqReikpq zφpq(r ′,φ′)z > L .

is a complex superposition of the BIC and a particular solution of the scattering
problem [8]. An example of the scattering function in the vicinity of the BIC 4
from Table21.4 is shown in Fig. 21.14. One can see that a small deviation from the
BIC frequency results in large change of the scattering function. This phenomenon
constitutes the important effect of enhancement of the injected wave within the
resonator [8, 42, 43].

More interesting is that the scattering function supports vortical acoustic intensity
as demonstrated in Fig. 21.15. The mean intensity vector j follows minus ∇arg(ψ)

according to the equation for the acoustic intensity vector [44–46]
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Fig. 21.15 Current flows at different slices at the vicinity of the BIC 4: a z = 0, b z = L/2, and
c z = L . Phase of the scattering function shown in gray

j = −ωIm(ψ∗∇ψ) = −ω|ψ|2∇arg(ψ), (21.18)

where ω is the frequency defined below (21.1). The phase of the scattering function
arg(ψ)/π is shown in Fig. 21.15 for selected slices across z. Figure21.14 shows the
scattering function (21.17) that demonstrates the effect of twisted acoustic pressure
field given by real part ofψ. This figure is complementedwith theflowsof the acoustic
intensity vector (21.18) in Fig. 21.15. Figure21.15 demonstrates complicated vortical
behavior of the flows.

21.5 BSCs in Two Continua Different in Phase

Displacement of the waveguide relative to the resonator does not change its contin-
uous spectrum. However the coupling matrix elements of the resonator eigenmodes
with the continua are subject to alternation to affect the transmission. In particular
under rotation of one of the waveguides the matrix elements acquire phase shift
(21.11). Therefore in the framework of the effective non-Hermitian Hamiltonian
one can say that two continua become different by phase. First, the problem of the
BSC residing in a finite number of continua was considered by Pavlov-Verevkin and
coauthors [50]. Rigorous statement about the BSCs was formulated as follows. The
interference among N degenerate states which decay into K non-interacting con-
tinua generally leads to the formation of N − K BSCs. The equivalent point of view
[8, 51] is that the linear superposition of the N degenerate eigenstates

∑N
n=1 anψn

can be adjusted to have zero coupling with K different continua in N − K ways by
variation of the N superposition coefficients an . Respectively, these coefficients an
define an expansion of the BSC over the eigenstates of the closed resonator. The
number of continua can grow due to a number of reasons, for example, non- sym-
metrically attached waveguides, multiple propagation subbands in the waveguides,
or two polarizations of the radiation continuum in case of electromagnetic BSCs.
Each case puts the problem of constructing BSCs in the case of many continua on
the line of art [13, 51].
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In the present case of waveguide rotation the number of continua has been doubled
for the frequency of sound waves below the second propagation threshold ω < μ11

(see Table21.1). Therefore we could expect BSCs only at the points of threefold
degeneracy in compliance with the generic statement [50]. There are indeed numer-
ous points where the eigenlevels ω2

mnl double degenerate in±m cross the eigenlevels
ω2
0nl with BSCs marked by closed circles in Fig. 21.3b, c. However the zoomed pic-

ture of transmission in Fig. 21.3d shows that this conclusion is only approximate.
Thus, the case needs in special consideration. As shown in Table21.4 the BSCs
are superposed from only a few eigenmodes. Hence we can truncate the effective
Hamiltonian to the relevant eigenmodes similar to that in [8, 32].

21.5.1 The Mode with m = 0 Crosses the Modes with ±M

Let us consider the crossing of the eigenlevel ω2
012 = π2/L2 with the degenerate

eigenlevel ω2
111 = μ2

11/R
2 shown in Fig. 21.16 by dash lines. The coupling matrix

elements of the eigenmodes with the first propagating channel p = 0, q = 1 (see
Table21.1) of the right waveguide according to (21.2), (21.5) and (21.9) equal

Wmnl;01 = (w0 w1 w1), w0 = W012;01 = 1
3

√
2
L ,

w1 = W±111;01 = 0.269
√

1
L (21.19)

for the given radius of the resonator. We also take into account the coupling with the
first evanescent modes p = ±1, q = 1 of the waveguide (see Table21.1)

Fig. 21.16 (Color online). The eigenvalues of the closed resonator (dash lines) and the eigenlevels
(21.25) (solid lines) shifted by evanescent modes versus a the resonator length at φ = π/3 and b
rotation angle at L = 5.0512
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Wmnl;11 = (0 v1 v2), Wmnl;−11 = (0 v2 v1), (21.20)

v1 = WL
012;11 = 0.1141

√
1
L , v2 = W±111;11 = −0.0141

√
1
L .

Because of the phase difference between the coupling matrix elements for left and
right waveguides we immediately obtain

WR
mnl;01 = (−w0 w1ei�φ w1e−i�φ),

WR
mnl;11 = (0 v2ei�φ v1e−i�φ),

WR
mnl;−11 = (0 v1ei�φ v2e−i�φ). (21.21)

The contribution of the higher evanescent modes shown in Table21.1 is negligible.
For open channel p = 0, q = 1 the wave number q01 = ω while for the next closed

channel p = ±1, q = 1 thewave number k11 = iq11, q11 =
√

μ2
11 − ω2 is imaginary.

Then the truncated effective Hamiltonian (21.7) can be rewritten as follows

Ĥe f f = ĤR + q11
∑

C=L ,R

∑
p=±1

ŴC
p=±1,1{ŴC

p=±1,1}† − iω
∑

C=L ,R

ŴC
01{ŴC

01}† = ̂̃HR − iω�̂,

(21.22)
where the Hermitian term

̂̃HR =
⎛
⎝ω2

012 0 0
0 ω2

111 + 2q11(v2
1 + v2

2) 2q11v1v2(1 + e−2i�φ)

0 2q11v1v2(1 + e2i�φ) ω2
111 + 2q11(v2

1 + v2
2)

⎞
⎠ (21.23)

is the Hamiltonian of the resonator coupled to the evanescent modes. The anti-
Hermitian part takes the following form

�̂ =
⎛
⎝ 2w2

0 w0w1(1 − ei�φ) w0w1(1 − e−i�φ)

w0w1(1 − e−i�φ) 2w2
1 w2

1(1 + e−2i�φ)

w0w1(1 − ei�φ) w2
1(1 + e2i�φ) 2w2

1

⎞
⎠ . (21.24)

The eigenvalues of the Hamiltonian (21.23) can be easily found as

E1 = ω2
012, E2,3 = ω2

111 + 2q11[v2
1 + v2

2 ± 2v1v2 cos�φ]. (21.25)

Thus the evanescent modes of the waveguides non-coaxially attached to the cylin-
drical resonator lift the degeneracy of eigenmodes ±111 as shown in Fig. 21.16 by
solid lines. The only case when the degeneracy is restored is the case �φ = π/2.
The corresponding eigenmodes of the Hamiltonian (21.23) are the following

X1 =
⎛
⎝ 1
0
0

⎞
⎠ ,X2 = 1√

2

⎛
⎝ 0

−e−i�φ

1

⎞
⎠ ,X3 = 1√

2

⎛
⎝ 0
e−i�φ

1

⎞
⎠ . (21.26)
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Fig. 21.17 (Color online). The resonant width versus a the resonator length at �φ = π/3 and
b rotation angle at L = 5.0512. Circles show the BSC points

Next, let us consider theBSC in the truncated version (21.22). Thepoint of theBSC
can be easily diagnosed by zero resonantwidth as shown in Fig. 21.17. For�φ = π/4
the BSC occurs at L = Lc = 5.0512 marked by closed green circle in Fig. 21.17a.
Respectively at L = Lc the BSC occurs at �φ = π/4 and �φ = 2π − π/4. These
points are seen in zoomed insert in Fig. 21.17b.

For �φ = 0 both continua of left and right waveguides coincide to result in
the symmetry protected BSC superposed of degenerate eigenmodes of the closed
resonator ψ111 and ψ−111 to be in the following form

ψBSC (r,φ, z) = AJ1(μ11r) sin(πz/L) sin φ (21.27)

which always has zero coupling with the propagation mode ψ01(ρ,α, z) shown in
Table21.1. As seen from (21.27) this conclusion also holds true for �φ = π. This
BSC is symmetry protected for arbitrary resonator length as shown in Figs. 21.17,
21.9, and 21.10.

As soon as �φ �= 0 the continua become different to destroy the symmetry pro-
tected BSCs. It could be expected that in the case of two waveguides the point of
threefold degeneracy where the ω012 crosses the double degenerate ω111 as shown in
Fig. 21.16a is a BSC point in accordance with the above consideration. However the
BSC point where the resonant width turns to zero (see Fig. 21.17) does not coincide
with this point. The computation on the basis of full basis effective Hamiltonian
gives the same result. In fact, the evanescent modes split the eigenvalues (21.25).
Respectively the point of threefold degeneracy ω2

111 = ω2
012(L) splits into two dou-

ble degenerate points E1(L) = E2(L ,�φ) and E1(L) = E3(L ,�φ). As shown in
Fig. 21.16a the first case exactly corresponds to the BSC point but not the second.

In the first case we can superpose the eigenmodes (21.26) as aX1 + bX2 and
require zero coupling of this superposed mode with the left waveguide

aw0 + b√
2
w1(1 − e−i�φ) = 0 (21.28)
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according to (21.19) and (21.26). It is easy to show that the coupling with the phase
shifted continuum of the left waveguide takes the same form as (21.28). Thus, the
BSC has the following form

ψBSC = w1(1 − e−i�φ)ψ012 + w0(e
−i�φψ111 − ψ−111). (21.29)

Substituting eigenmodes (21.5) we obtain

ψBSC = 2ie−i�φ/2[w1 sin(�φ/2)ψ01(r)ψ2(z) + w0 sin(φ − �φ/2)ψ11(r)ψ1(z)].
(21.30)

One can see that this BSC does not support spinning currents of acoustic intensity−→
j = ψ∗∇ψ in contrast to coaxial waveguides [26]. This is due to evanescent modes
of the non-coaxial waveguides which lift the degeneracy of the eigenmodes Ψmnl

with respect to the sign m.
The BSC point is given by the equation E1(L) = E2(L ,�φ) which gives rise to

a line of the BSC in the parametric space L and �φ shown in Fig. 21.18. Thus, the
only phase difference between the continua allow the BSCs in the point of twofold
degeneracy. This is necessary for existence of BSC but not sufficient. Indeed let us
consider the another point of degeneracy E1 = E3 (see Fig. 21.16a). At this point
we adjust the superposition aX1 + bX3 for cancellation of the coupling with both
continua. The analogue of (21.28) takes the following form

± aw0 + b√
2
w1(1 + ei�φ)w1 = 0. (21.31)

These equations can not be fulfilled simultaneously to forbid this degeneracy point
as the BSC point.

By the use of (21.13) and truncated effective Hamiltonian (21.22) we calculated
the transmittance with the results presented in Fig. 21.19. Comparison to Fig. 21.3a,
b shows that all features of the transmittance can be well reproduced in the vicinity
of the BSCs by the use of truncated basis. One can also see from Fig. 21.19 that the

Fig. 21.18 (Color online)
Line of the BSCs in the
parametric space of the
resonator length and rotation
angle �φ
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Fig. 21.19 (Color online) a Transmittance versus frequency and resonator length at four fixed
rotation angles. Solid green lines show the resonances definedby real part of the complex eigenvalues
of the effective Hamiltonian (21.22). Closed circles mark the BSCs which exactly correspond to
points of degeneracy of the eigenlevels (21.25)

Fig. 21.20 (Color online) a Transmittance vs the resonator length and rotation angle for the fre-
quency tuned onto the frequency of the BSC ω2

c = 0.388. b Transmittance versus the frequency
and rotation angle for the length tuned onto the BSC length Lc = 5.048. Closed circles mark BSC
1 resulted by crossing of eigenlevels (21.25) E1 and E2, open circles mark the symmetry protected
BSCs (21.27)

resonant features follow the real parts of the complex eigenvalues of the effective
non-Hermitian Hamiltonian (21.22) when �φ �= 0.

Figure21.20 shows fine features of the transmittance vs two parameters for the
third parameter exactly tuned to the BSC. Figure21.20a demonstrates a Fano res-
onance collapse in the parametric space of length and rotation angle at the BSC
point Lc = 5.048 and �φc = π/4 with the frequency exactly tuned to the BSC



518 A. Sadreev et al.

Fig. 21.21 (Color online)
Transmittance versus the
frequency and rotation angle
for the length detuned from
the BSC length Lc

Fig. 21.22 (Color online) Transmittance versus the frequency and rotation angle in the vicinity of
crossing of the modes a 012 and 211 at L =? and b 013 and 211, L = 4

ωc = 0.3873. Figure21.20b shows the transmittance versus the frequency and the
rotation angle for the length of the resonator tuned to the BSC length Lc = 5.0584.
Figure21.20a, b show that the resonator is blocked when �φ = 0 and open when
�φ = π. Figure21.21 demonstrates as the transmittance is sensitive to small devia-
tions from the BSC length Lc.

One can see from (21.19) and (21.21) that at �φ = 0 the channels 012 and ±111
interfere destructively at the right output to block the wave transmission through
the resonator. In contrast for �φ = π the channels interfere constructively at the
right output to maximize the transmittance. Along the same line for the channels
012 and ±211 the wave faucet will open at �φ = π/2, 3π/2 because of the phase
factor e±2i�φ in the coupling matrix elements (21.21). Respectively, interference of
channels of 013 and ±211 will realize the wave faucet which opens at �φ = 0,π.
Figure21.22 completely confirms the above predictions.

21.5.2 The Modes ±112 Cross the Modes ±211

The coupling matrix elements of the eigenmodes with the first propagating channel
p = 0, q = 1 (see Table21.1) of the right waveguide according to (21.2), (21.5), and
(21.9) equal
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WR
mnl;01 =(w1 w1 w2 w2), w1 = WR

211;01 = 0.1737

√
1

L
,

w2 = WR
±112;01 = 0.2849

√
2

L
. (21.32)

The coupling matrix elements with the first evanescent modes p = 1, n = 1 of the
left waveguide (see Table21.1) equal

WL
mnl;−11 = (v1 v2 v3 v4), WL

mnl;11 = (v2 v1 v4 v3), , (21.33)

v1 = WL
−211;11 = 0.2197

√
1

L
, v2 = WL

211;11 = −0.0187

√
1

L
,

v3 = WL
−112;11 = 0.1709

√
2

L
, v4 = WR

112;11 = −0.0157

√
2

L
.

Respectively according to (21.11) we have for the phase shifted coupling matrix ele-
ments WR

mnl;pq = VmnlW L
mnl;pq . The resulting effective non-Hermitian Hamiltonian

(21.7)
Ĥe f f = Ĥ − iω�̂

consists of

̂̃H = q11

⎛
⎜⎜⎝

ω2
211/q11 + 2v21 v1v2(1 + e4i�φ) v1v3(1 − e−i�φ) v1v4(1 − e−3i�φ)

v1v2(1 + e−4i�φ) ω2
211/q11 + 2v22 v2v3(1 − e3i�φ) v1v4(1 − ei�φ)

v1v3(1 − ei�φ) v2v3(1 − e−3i�φ) ω2
112/q11 + 2v23 v3v4(1 + e−2i�φ)

v1v4(1 − e3i�φ) v2v4(1 − e−4i�φ) v3v4(1 + e2i�φ) ω2
112/q11 + 2v24

⎞
⎟⎟⎠

(21.34)
and

�̂ =

⎛
⎜⎜⎝

2|w1|2 w2
1(1 + e4i�φ) w1w2(1 − e−i�φ) w1w2(1 − e−3i�φ)

w2
1(1 + e−4i�φ) 2w2

1 w1w2(1 − e3i�φ) w1w2(1 − ei�φ)

w1w2(1 − ei�φ) w1w2(1 − e−3i�φ) 2w2
2 w2

2(1 + e−2i�φ)

w1w2(1 − e3i�φ) w1w2(1 − e−i�φ) w2
2(1 + e2i�φ) 2w2

2

⎞
⎟⎟⎠ .

(21.35)

In contrast to the previous case of crossing of eigenlevels 112 and 012 (the BSC
1), the present case of full matrices impedes analytical consideration of the BSCs.
Nevertheless the small size of matrices (21.34) and (21.35) facilitates numerical
treatment of theBSCs. Figure21.23 shows the eigenlevels of theHamiltonian (21.34)

̂̃HX j = E jX j (21.36)

as dependent on the length and rotation angle.One can see that the presence of evanes-
cent modes lifts the degeneracy relative to the sign ofm. Below in Fig. 21.23we show
the resonant widths that demonstrates twoBSCs at the points: (1) Lc = 3.7947,ω2

c =
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Fig. 21.23 (Color online)
The eigenlevels (21.23)
(solid lines) as dependent on
a length of resonator at
φ = π/41 and b rotation
angle at L = 3.7947 (blue)
and L = 3.9312 (green)
compared to the
eigenfrequencies of the
closed resonator (dash lines).
c and d Corresponding
behavior of the resonant
widths defined by imaginary
parts of the effective
non-Hermitian Hamiltonian
(21.34) and (21.35). Closed
circles mark the BSCs. Open
circles mark the symmetry
protected BSCs

1.0756,φc = π/4 and (2) Lc = 3.9312,ω2
c = 1.0946,φ = π/4. Respectively, in

Fig. 21.23b we show the eigenvalues for these BSC lengths.
However in contrast to the former BSCs occurring at the crossing of eigenlevels

(21.25) the present BSCs are allocated neither at the crossing of neither the eigen-
frequencies ω112 and ω211 nor the eigenlevels modified by the evanescent modes as
seen from Fig. 21.23. Such phenomenon is generic in open chaotic billiards where
the eigenlevels of the closed billiard undergo avoided crossing [52] similar to that
shown in Fig. 21.23a. In that case some of the eigenmodes of the Hamiltonian (21.34)
can decouple under the evolution of the parameters of the resonator. In the truncated
description of the BSCs we obtain the following solutions for the BSCs presented in
Table21.5. Comparison with numerical results in full basis (Table21.2) shows good
agreement with the BSCs (2) and (3). Anyway as seen from Fig. 21.5 the BSCs are
expanded over all four eigenmodes±211 and±112 of the closed resonator. Remark-
ably, in the description of the eigenmodes (21.36) X j we obtain that the numerical
amplitudes of the BSC mode ψBSC = ∑4

j=1 b jX j are the following

(3) ψBSC = X2, Lc = 3.7947, ω2
c = 1.0756, �φc = π/4,

(4) ψBSC = X1, Lc = 3.9312, ω2
c = 1.0966, �φc = π/4. (21.37)

Thus, in this descriptionwe have an important result that the BSC is simply one of the
eigenmodes of the resonator coupled to the evanescent modes. For this eigenmode
to be decoupled from the propagating channel of both waveguides the overlapping
integrals
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Table 21.5 BSC solutions 3 and 4 resulted by crossing of modes ±112 and ±211

BSC number ω2 L �φ mnl amnl

3 1.0756 3.7947 π/4 211 0.6715i

−211 0.6715

112 −0.2047−
0.0848i

−112 −0.0848−
0.2047i

4 1.0966 3.9312 π/4 211 −0.553i

−211 0.553

112 −0.407−0.168i

−112 0.168 + 0.407i

WC
j;01 = ψ01(z = zC)ψl(zC)

∫ 2π

0
dα

∫ 1

0
ρdρ

−→
X j (r(ρ,α),φ(ρ,α)),C = L , R

(21.38)

have to be zero for selected j = 1 or j = 2. Figure21.24 demonstrates that the
overlapping integral vanishes at the BSC points. Such BSCs form new class of the

Fig. 21.24 (Color online)The real parts of the eigenmodes (21.36) ofmodifiedHamiltonian (21.34).
a and b X2 at the BSC point (3) (21.37) with side of input and output respectively. c and d the same
for the X1 at the BSC point (4)
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Fig. 21.25 (Color online)
Lines of the BSCs in the
parametric space of the
resonator length and rotation
angle �φ

accidental BSCs [13, 52]. Figure21.24 demonstrates that the BSC modes
−→
X j are

twisted to have zero coupling on both interfaces. Again the BSCs occur on lines in
the parametric space L and �φ as shown in Fig. 21.25 by open circles. However
there is the second line in which the BSC length Lc diverges when �φ → π/2. Also
it is important to note that the BSCmodes (21.37) do not support currents of acoustic
intensity similar to the BSC 1 and 2.

21.6 Conclusions

Weconsidered trappedmodes or bound states in the continuum in anon-axisymmetric
duct-cavity structure which consists of a cylindrical resonator and two cylindrical
waveguides whose axes are shifted relative to the axis of the resonator by a dis-
tance r0. Moreover the axes of the waveguides can be shifted relative to each other
by an azimuthal angle �φ as shown in Figs. 21.1b and 21.2. The configuration of
attachment does not change the eigenfrequencies of the closed resonator but changes
the coupling strengths of the propagating modes of attached waveguides with the
resonator. Remarkably, that rotation of, say, the input waveguide provides complex
phases in the coupling strength that drastically affect the wave transmission because
of interference of resonances giving rise to the effect of wave faucet. The effect can
be arranged in a realistic acoustic experiment by the use of piston-like hollow-stem
waveguides tightly fit to the interior boundaries of a cylindric cavity [28].

Assume, that the eigenmodes of the same symmetry undergo degeneracy, say,
under variation of the resonator length L as shown by dash lines in Fig. 21.3. After
the waveguides are attached to the resonator these modes become resonances which
undergo avoided crossings, i.e., the resonant frequencies are repelled from each
other and the degeneracy is lifted. Then in the Friedrich-Wintgen scenario [8, 32]
one of resonance can acquire zero resonant width giving rise to the BIC. Although
the events of degeneracy are the same in the closed cylindrical resonator, the types
of BICs cardinally depend on a way opening the resonator. For r0 = 0 (the case of
axisymmetric waveguide) the OAMm is an integral of motion to give rise to the BICs
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with definiteOAMdegeneratewith respect to the sign ofm. Sound transmission takes
place independently in each sector given by the m, i.e., there is no mode conversion
between different the channels with different OAM. That scenario of the BICs and
sound transmission in axisymmetric cylindrical waveguide was considered in our
first paper [28]. Similar sectorial BICs with preserved OAMwere considered in [27,
29, 31].

As soon as r0 �= 0 even in the simplest case �φ = 0 the OAM is not preserved
because of the absence of rotational symmetry. In that case we found multiple BICs
with nonzero OAM under variation of the resonator length L which differ from the
BICs with zero OAM found in the axisymmetric cylindrical waveguide [28]. Irre-
spectively to the choice of r0 the BICs occur at the points of degeneracy of two
eigenmodes of the same symmetry of the closed cylindrical resonator. That mech-
anism of wave localization was first described in [32] and has been experimentally
realized in microwave set-ups [47].

For�φ �= 0 andfixed arbitrary length of the resonator there aremultiple symmetry
protected BICs whose azimuthal dependence is given by cos[m(φ − �φ/2)]. They
are degenerate relative to the sign ofm and provide zero overlappingwith propagating
mode p = 0, q = 1 (see Table 21.1) which is independent of φ. Irrespectively of the
choice of �φ or r0 the injected wave with zero orbital angular momentum m = 0
transmits and reflects with same OAM when only the first channel is opened for the
frequency ω < 1.841. However, the case �φ �= 0 is of special interest because of
twisted flows of the acoustic intensity inside the resonator. In this case the non-axial
attachment of the waveguides with the resonator lifts the degeneracy of the resonant
modes with respect to the sign of orbital angular momentum. These effects can be
controlled by simultaneous variation of the length of the resonator and rotation of
one of the waveguides. That results in a high acoustic intensity spinning inside the
resonator which can be important for the axial radiation torque [49].

Summing up, the rotation of waveguide relative to the cylindrical resonator results
in a complex phase of the coupling strength between the waveguide and resonator.
Different setups can be proposed for the coupling strengths to acquire a specific phase
difference. However, irrespectively to the choice of the setup the opportunity to vary
the phase opens a new instrument to control Fano resonances and the transmittance
creating a wave faucet.
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Chapter 22
Interaction of MDM Ferrite Particles
with a Microwave-Field Continuum

Eugene Kamenetskii

Abstract Magnetic-dipolar modes (MDMs) in a quasi-2D ferrite disk are
microwave energy-eigenstate oscillations with topologically distinct structures of
rotating fields and unidirectional power-flow circulations. Quantized vortices in
MDM oscillations manifest the long-range phase coherence of magnetic dipole-
dipole interaction which are described by a complex-valued order parameter
field—the magnetostatic-potential (MS-potential) scalar wave function. Because of
strong spin–orbit interaction in magnetization dynamics, the MDMs in a quasi-2D
ferrite disk are helical resonances. The magnon-photon interaction can be indicated
as helical bound states in a microwave continuum.We analyze quasistatic eigenvalue
problems formagnon oscillations in subwavelength particles and consider interaction
of these particles with a microwave-field continuum.

22.1 Introduction

The dual symmetry between electric and magnetic fields underlies the conservation
of energy and momentum for electromagnetic fields [1]. It can be connected also
with conservation of polarization of the electromagnetic field. In particular, this
symmetry underlies the conservation of optical (electromagnetic) helicity [2–4]. It
is stated [4] that the dual electromagnetic theory inherently contains straightforward
and physicallymeaningful descriptions of the helicity, spin and orbital characteristics
of light.

What kind of the source-free time-varying field structure one can expect to
see when an electric or magnetic displacements currents are neglected and so the
electromagnetic-field symmetry (dual symmetry) of Maxwell equations is broken?
As one of examples of such a symmetry breaking, we can refer to the field struc-
tures studied in non-conductive artificial electromagnetic materials that exhibit zero
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(or near-zero) permittivity [5, 6]. For these materials, no Maxwell correction (no
electric displacement current) exists and the fields are described by three differen-
tial equations (instead of the four-Maxwell-equation description of electromagnetic
fields). In an assumption that a zero-permittivity medium is magnetically isotropic,
one has the static-like fields. Light passing through such a material experiences no
phase shift. Evidently, no unified-field retardation effects are observed in structures
created by these materials.

For a case of plasmonic (electrostatic) resonances in small metallic samples, one
can neglect a magnetic displacement current and consider quasistationary electric
fields, which are described by electrostatic-potential functions. In this description,
subwavelength sizes of the particles eliminates any effects of the internal electro-
magnetic retardation processes. Corrections to electrostatic resonance modes due to
electromagnetic retardation can be found by using series expansions of the solutions
to time harmonic Maxwell equations with respect to the small ratio of the object
size to the free-space wavelength. This electromagnetic- retardation process gives
coupling between the electric and magnetic fields [7].

Magnetic-dipolar-mode (MDM) oscillations (or magnetostatic-wave oscillations)
in small ferrite samples can be considered as an approximation toMaxwell equations
when a displacement electric current is negligibly small. The physical justification
for such an approximation arises from the fact that in a small (with sizes much less
than a free-space electromagnetic wavelength) sample of a magnetic material with
strong temporal dispersion (due to the ferromagnetic resonance) one neglects a time
variation of electric energy in comparison with a time variation of magnetic energy
[8–10]. Subwavelength sizes of such a ferrite particle eliminate any electromagnetic-
retardation phenomena and to describe the retardation effects of MDM oscillations
one uses theWalker equation for MS-potential scalar wave function ψ(�r, t) [11]. The
solutions show the existence of non-Maxwellian propagation-wave behaviors for the
magnetostatic resonances.

Long-range magnetic-dipolar interactions in confined magnetic structures are not
in the scope of classical electromagnetic problems and, at the same time, have prop-
erties essentially different from the effects of exchange ferromagnetism. The MDM
spectral properties in confined magnetic structures are based on postulates about
physical meaning of the magnetostatic (MS) potential function ψ(�r, t) as a complex
scalar wave function, which presumes long-range phase coherence. MDM oscilla-
tions in ferrite spheres excited by external microwave fields were experimentally
observed, for the first time, byWhite and Solt in 1956 [12]. Afterwards, experiments
with disk-form ferrite specimens revealed unique spectra of oscillations. While in
a case of a ferrite sphere one observed only a few wide absorption peaks of MDM
oscillations, for a ferrite disk there was amultiresonance (atomic-like) spectrumwith
very sharp resonance peaks [13–15]. Analytically, it was shown [16–18] that, con-
trary to spherical geometry of a ferrite particle analyzed in [11], the Walker equation
(together with the homogeneous boundary conditions for function ψ and its deriva-
tives) for quasi-2D geometry of a ferrite disk gives the Hilbert-space energy-state
selection rules for MDM spectra [16–18]. The near fields originated from small
ferrite-disk particles with MDM oscillations are the fields with the electric and
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magnetic components, but with broken dual (electric–magnetic) symmetry. These
fields—called magnetoelectric (ME) fields—have topological properties different
from such properties of electromagnetic fields. The ME fields are characterize by
power-flow vortices, nonzero helicity, and a torsion degree of freedom [19].

In this chapter we study eigenvalue problems for MDM oscillations in subwave-
length ferrite-disk particles, consider the near fields originated from such particles
(the ME fields), and analyze interaction of these particles with a microwave-field
continuum.

22.2 Quasistatic Eigenvalue Problems for Plasmon
and Magnon Oscillations in Subwavelength Particles

Magnetic-dipolar resonances in ferrite samples with dimensions much smaller than
the wavelength of microwave radiation has its origin in magnetic-potential theory,
which describes systems of magnetic dipoles and the magnetostatic potentials pro-
duced by these dipoles. To a certain extent, this can be considered as a situation dual
to the electrostatic theory describing the localized surface plasmons in nanoparticles
with dimensions much smaller than the wavelength of light, which describes systems
of electric dipoles and the electrostatic potentials they produce.

Localized surface plasmons excited by light on metal nanoparticle surfaces are
observed experimentally by strong scattering at a particular frequency. When the
material linear response is described by a bulk dielectric scalar function ε(ω), the
electrostatic resonances can be found as solutions of the equation for an electrostatic
potential φ [20]:

−→∇ ·
(
ε(�r,ω)

−→∇ φ
)

� 0, (22.1)

Here an electrostatic potential is found as
−→
E � −−→∇ φ. For homogeneous neg-

ative permittivity particles
(
εp < 0

)
in a uniform transparent immersion medium

(εs > 0) and with use of conventional Dirichlet-Neumann boundary conditions for
electrostatic-potential function, this equation acquires a form of a linear generalized
eigenvalue problem:

−→∇ ·
(
θ(�r)−→∇ φ

)
� s∇2φ, (22.2)

where θ(�r) equals 1 inside the particle and zero outside the particle, and s �
1/
(
1 − εp/εs

)
. The eigenmodes (surface plasmons) are orthogonal and are assumed

to be normalized as [20, 21]
∫

φ∗
q(�r)∇2φq′(�r)d3r � δq,q′ (22.3)
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It was pointed out that for electrostatic resonances in nanoparticles one has a non-
Hermitian eigenvalue problem with bi-orthogonal (instead of regular-orthogonal)
eigenfunctions [22, 23]. Such an orthonormal set of scalar functions differs from
the orthonormal set of scalar functions used in quantum mechanics as derived from
the Schrödinger equation. The difference is that the quantum wave equation is Her-
mitian so that its adjoint is equal to the complex conjugate resulting in complex
eigenfunctions that are orthonormal [7].

The spectral solutions for eigenvalue problem for magnetic-dipolar resonances in
a small ferrite sample can be obtained based on Walker equation for magnetostatic
wave function [11]

−→∇ ·
(

↔
μ · −→∇ ψ

)
� 0 (22.4)

Here ψ is a magnetostatic (MS) potential defined as
−→
H � −−→∇ ψ. The equation

is obtained based on a constitutive relation for a ferrite,

−→
B � ↔

μ(ω,
−→
H 0) · −→

H , (22.5)

where ↔
μ(ω,

−→
H 0) is a tensor of ferrite permeability at the ferromagnetic-resonance

frequency range,
−→
H 0 is a bias magnetic field. Outside the ferrite one has the Laplace

equation ∇2ψ � 0. To obtain the MDM spectral solutions, the boundary conditions
for the MS-potential scalar wave function ψ(�r, t) and its space derivatives should be
imposed.

In the description of quasistatic oscillations in small particles, one uses a clas-
sical formalism where the material linear response at frequency ω is described by
a local bulk dielectric function the permittivity tensor ↔

ε(ω) or by a local bulk mag-
netic function the permeability tensor ↔

μ(ω). For a case of plasmonic (electrostatic)
resonances in small metallic samples, one neglects a magnetic displacement cur-
rent and has quasistationary electric fields. A dual situation is demonstrated for
magnetic-dipolar (magnetostatic) resonances in small ferrite samples, where one
neglects an electric displacement current. It is evident that these potentials do not
have the same physical meaning as in the problems of “pure” (non-time-varying)
electrostatic and magnetostatic fields [1, 10]. Because of the resonant behaviors of
small dielectric/metallic or small magnetic objects (confinement phenomena plus
temporal-dispersion conditions of tensors ↔

ε(ω) or ↔
μ(ω)], one has scalar wave func-

tions: an electrostatic-potential wave function φ(�r, t) and a magnetostatic-potential
wave function, ψ(�r, t), respectively. The main note is that since in the eigenvalue
problem, we are on a level of the continuum description of media (based on ten-
sors ↔

ε(ω) or ↔
μ(ω)), the boundary conditions for quasistatic oscillations should be

imposed on scalar wave functions φ(�r, t) or ψ(�r, t) and their derivatives, but not on
the RF functions of polarization (plasmons) or magnetization (magnons). One has to
keep in mind that in phenomenological models based on the effective-medium (the
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↔
ε(ω)- or ↔

μ(ω)–continuum) description, no electron-motion equations and boundary
conditions corresponding to these equations are used.

Fundamentally, subwavelength sizes should eliminate any effects of the elec-
tromagnetic retardation. When one neglects the displacement currents (magnetic
or electric) and considers scalar functions φ(�r, t) or ψ(�r, t) as the wave functions,
one becomes faced with important questions, whether there could be the propagation
behaviors inherent for the quasistatic wave processes and, if any, what is the nature of
these retardation effects. In a case of electrostatic resonances, the Ampere-Maxwell
law gives the presence of a curl magnetic field.With this magnetic field, however, one
cannot define the power-flow density of propagating electrostatic-resonance waves.
Certainly, from a classical electrodynamics point of view [1], one does not have a
physical mechanism describing the effects of transformation of a curl magnetic field
to a potential electric field. In like manner, one can see that in a case of magneto-
static resonances, the Faraday law gives the presence of a curl electric field. With this
electric field one cannot define the power-flow density of propagating magnetostatic-
resonance waves since, from a classical electrodynamics point of view, one does not
have a physical mechanism describing the effects of transformation of a curl electric
field to a potential magnetic field [1]. So, from Maxwell equations it follows that in
a case of electrostatic resonances, characterizing by a scalar wave function φ(�r, t),
the time-varying electric fields cannot be accompanied at all with the RF magnetic
fields and, similarly, in a case of magnetostatic resonances, characterizing by scalar
wave function ψ(�r, t), the time-varying magnetic fields cannot be accompanied at
all with the RF electric field. This fact is perceived, in particular, from the following
remarks by McDonald [24, 25].

In frames of the quasielectrostatic approximation, we introduce electrostatic-
potential function φ(�r, t) excluding completely the magnetic displacement current:
∂
−→
B

∂t � 0. At the same time, from the Maxwell equation (the Ampere-Maxwell law),
−→∇ × −→

H � ∂
−→
D

∂t , we write that
−→∇ × ∂

−→
H
∂t � ∂2−→D

∂t2 . If a sample does not posses

any magnetic anisotropy, we have ∂2−→D
∂t2 � 0. Similarly, in frames of the quasi-

magnetostatic approximation, we introduce magnetostatic-potential function ψ(�r, t)
excluding completely the electric displacement current: ∂

−→
D

∂t � 0. From Maxwell

equation (the Faraday law),
−→∇ × −→

E � − ∂
−→
B

∂t , we obtain that
−→∇ × ∂

−→
E

∂t � − ∂2−→B
∂t2 .

If a sample does not posses any dielectric anisotropy, we have ∂2−→B
∂t2 � 0. From the

above equations on the second derivatives of the fields ( ∂2−→D
∂t2 � 0 and ∂2−→B

∂t2 � 0), it
follows that the electric field in small resonant dielectric/metallic objects as well as
the magnetic field in small resonant magnetic objects vary linearly with time. This
leads, however, to arbitrary large fields at early and late times, and is excluded on
physical grounds. An evident conclusion suggests itself at once: the electric field (for
electrostatic resonances) and the magnetic field (for magnetostatic resonances) are
constant quantities. Such a conclusion contradicts the fact of temporally dispersive
media and thus any resonant conditions. The above analysis definitely means that,
from classical electrodynamics, the eigenvalue problem formulated exceptionally for
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the electrostatic-potential wave function φ(�r, t) do not presume an involvement of
alternativemagnetic fields in a resonance process and, similarly, the eigenvalue prob-
lem formulated exceptionally for the magnetostatic-potential function wave ψ(�r, t)
do not presume an involvement of alternative electric fields in magnetic-dipolar
resonances. The curl magnetic field appearing in plasmonic oscillations due to the
Ampere-Maxwell law, does not affect the electrostatic result. Similarly, the curl elec-
tric field appearing in magnonic oscillations due to the Faraday law does not affect
the magnetostatic result.

A role of the magnetic field in plasmonic oscillations in metal nanoparticle
becomes appreciable only when in an eigenvalue problem one deviates from the
electrostatic approximation to the full-Maxwell-equation description. Corrections to
electrostatic resonance modes due to electromagnetic retardation can be found by
using series expansions of the solutions to time harmonic Maxwell equations with
respect to the small ratio of the object size to the free-space wavelength [7, 26]. It was
shown that anomalous light scattering with quite unusual scattering diagrams and
enhanced scattering cross sections near plasmon (polariton) resonance frequencies
is non-Rayleigh scattering. The observed power-flow patterns cannot be understood
within the frame of a dipole approximation and the terms of higher orderswith respect
to size parameter q � 2πa/λ should be taken into account [27–29]. The analogous
situation takes place when one considers a role of the electric field in magnetic-
dipolar resonances in ferrite samples. In a similar way, corrections to magnetostatic
resonance modes due to electromagnetic retardation can be found by using series
expansions of the solutions to time harmonic Maxwell equations with respect to the
small ratio of the object size to the free-space wavelength [8].

The fact that the retardation effects in the plasmonic or magnonic oscillations
appear only when the particle sizes are comparable with the free-space electro-
magnetic wavelength raises the question on the possibility of existence of non-
Maxwellian propagation-wave behaviors for the quasistatic-resonance processes.
In electromagnetically subwavelength particles, there can be, for example, space-
charge waves in semiconductors [30] and waves of magnetization (spin waves) in
ferrites [8]. The latter is the subject of our analysis in the present paper.

Solutions of the spectral problem for magnetostatic-potential wave function give
evidence for two distinctive features on MDMs in a ferrite samples. Firstly, there
is the existence of non-Maxwellian propagation-wave behaviors for the magneto-
static resonances. Secondly, we show that a case of a quasi-2D ferrite-disk particle,
the problem for magnetostatic-potential wave function ψ(�r, t) can be considered as
Hermitian. In such a ferrite particle, the function ψ(�r, t) appears as an orthonormal
complex eigenfunction. The adjoint of this function is equal to its complex conjugate
quantity. This differs from the resonances in metal nanoparticles where one has a
non-Hermitian eigenvalue problem for electrostatic-potential wave function φ(�r, t)
[7, 22, 23].
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22.3 The Spectral Problem for Magnetostatic-Potential
Wave Function

22.3.1 MDMs in a Ferrite Rod

To show the existence of non-Maxwellian propagation-wave behaviors for the mag-
netostatic resonances we consider initially propagation ofMDMs in a longitudinally-
magnetized ferrite rod. MDMs in a ferrite sample are described by two differential
equations:

−→
H � −−→∇ ψ and ∇ ·−→B � 0. Taking the constitutive relation for a ferrite,−→

B � ↔
μ · −→

H , we present the problem in following operator-equation form [16, 17]:

L
∧

V � 0, (22.6)

where

L
∧

≡
⎛
⎝
(

↔
μ
)−1 ∇

∇· 0

⎞
⎠ (22.7)

and

V ≡
(−→

B
ψ

)
. (22.8)

The spectral problem for MDMs in a cylindrical ferrite rod is described by a
differential-matrix-operator equation [16, 17]

L
∧

⊥Ṽ � iβzR
∧

Ṽ , (22.9)

where L
∧

⊥ ≡
⎛
⎜⎝
(

↔
μ
)−1 −→∇ ⊥

−→∇ ⊥· 0

⎞
⎟⎠ is the differential-matrix operator, βz is the MS-wave

propagation constant along the z-axis, Ṽ ≡
⎛
⎝ −̃→

B

ϕ̃

⎞
⎠ is the membrane vector function

(ψ ∝ ϕ̃ e−iβ z,
−→
B ∝ −̃→

B e−iβ z), R
∧

≡
(

0 �ez
−�ez 0

)
, and �ez is the unit vector along

z axis. Subscript ⊥ means differentiation over the in-plane, r, θ, coordinates of a
waveguide cross section.
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Integration by parts on S—a square of an open MS-wave cylindrical waveg-

uide—of the integral
∫
S

⎡
⎣L
∧

⊥

⎛
⎝

−̃→
B

ψ̃

⎞
⎠
⎤
⎦
⎛
⎝

−̃→
B

ψ̃

⎞
⎠

∗

dS gives the contour integral in a form

∮
C

(
B̃rψ̃

∗ − B̃∗
r ψ̃
)
dC, whereC is a contour surrounding a cylindrical ferrite core and

B̃r is a radial component of a membrane function of the magnetic flux density. Oper-
ator L

∧

⊥ becomes self-adjoint for homogeneous boundary conditions (continuity of ϕ̃
and B̃r) on contour C. Based on the homogeneous boundary conditions one obtains
the orthogonality relation for MDMs propagating in a ferrite rod:

(βm − βn)
∫

S

(
R
∧

Ṽm

) (
Ṽn
)∗
dS � 0. (22.10)

The norm of mode n is determined as

Nn �
∫

S

(
ϕ̃nB̃

∗
n − ϕ̃∗

nB̃n
) · �ezdS. (22.11)

It is easy to show that norm Nn, being multiplied by a proper dimensional coeffi-
cient, corresponds to the power flow of the waveguide mode n through a waveguide
cross section. For monochromatic fields with time variation ∼ eiωt we have for the
power flow:

(pn)z � − iω

4
Nn � iω

4

∫

S

(
ϕ̃∗
nB̃n − ϕ̃nB̃

∗
n

) · �ezdS. (22.12)

To show clearly, why this equation characterizes the power flow density, let us
consider a general case of propagation of MS waves in a ferrite medium with small
losses. The energy balance equation for monochromatic MS waves in such a lossy
magnetic media is:

− iω

4
−→∇ ·

(
ψ

−→
B

∗ − ψ∗−→B
)

� − iω

4

[−→
B ·

(
↔
μ

∗
(ω)

)−1 · −→
B

∗ − �B∗ ·
(

↔
μ(ω)

)−1 · −→
B

]
.

(22.13)

On the right-hand side of this equation,wehave the average density ofmagnetic losses
taken with an opposite sign. Thus, the term on the left-hand side is the divergence of
the power flow density. Really, in a region of a FMR, the average density of magnetic
energy absorption can be expressed as

〈
∂w

∂t

〉

abs

� iω

2
−→
H

∗ · ↔
μ
ah
(ω) · −→

H , (22.14)
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where
−→
H is an internal radio-frequency magnetic field; superscript ah means “anti-

Hermitian”. Since
−→
B ·

(
↔
μ

∗
(ω)
)−1 · −→B ∗ − �B∗ ·

(
↔
μ(ω)

)−1 · −→B � 2
−→
H

∗ · ↔
μ
ah
(ω) · −→H ,

the right-hand side of (22.13) describes the density of magnetic losses taken with an
opposite sign [8, 31].

For a bias magnetic field directed along z axis, the permeability tensor has a form:

↔
μ � μ0

⎛
⎜⎝

μ iμa 0

−iμa μ 0

0 0 1

⎞
⎟⎠, (22.15)

whereμ andμa are real quantities dependent on both frequencyω and a biasmagnetic
field H0 [8]. In a general form, we present the solution for the mode n as

ψn � Cnξn(z)ϕ̃n(r, θ), (22.16)

where ξn(z) is an amplitude factor, Cn is a dimensional coefficient and ϕ̃n(r, θ) is a
dimensionless membrane function. In a particular case of MS waves propagating in
a ferrite waveguide, we have ξn(z) � e−iβnz, where βn is the propagation constant of
mode n.

For magnetic flux density
(−→
B n � −↔

μ · −→∇ ψn

)
, we can write

−→
B n �

(−→
B n

)
z
�ez + B̃n�e⊥, (22.17)

where

(−→
B n

)
z
� −Cn

∂ξn(z)

∂z
ϕ̃n(r, θ) (22.18)

and

B̃n � −Cnξn(z)
[

↔
μ⊥ · −→∇ ⊥ϕ̃n(r, θ)

]
· �e⊥. (22.19)

Here �ez and �e⊥ are unit vectors, directed, respectively, along the rod axis and the
cross-section coordinates.

We consider a cylindrical ferrite rod. In this case, the functions ϕ̃n(r, θ) are the
Bessel functions. Let anorder of theBessel function,ν, is given and, so, themembrane
function ϕ̃n(r, θ) is determined only by r variations. For self-adjointness of operator
L
∧

⊥, the homogeneous boundary condition should be [16, 17]

μ

(
∂ϕ̃n

∂r

)

r�R−
−
(

∂ϕ̃n

∂r

)

r�R+

� −μa

R ν(ϕ̃n)r�R− . (22.20)
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His boundary conditions can be represented as [16, 17]

(−μ)
1
2
J ′
ν

Jν
+
K ′

ν

Kν
− μaν

βnR
� 0. (22.21)

Here Jν, J ′
ν, Kν , and K ′

ν are the values of the Bessel functions of order ν and their
derivatives (with respect to the argument) on a lateral cylindrical surface (r � R).
From boundary condition (22.20) (or (22.21)) it evidently follows that, for an integer
azimuth number ν and a given direction of a bias magnetic field (the given sign of
parameter μa [8]), there are different functions, ϕ̃+ and ϕ̃−, for positive and negative
directions of an angle coordinate when 0 ≤ θ ≤ 2π.

For MDMs propagating in a waveguide, there is the z component of the power-
flow. On a waveguide cross section, the r component of the power-flow density is
equal to zero. There is, however, a non-zero real azimuth component of the power-
flow density:

(pn)θ � iω

4
C2
n (ξ(z))

2

[
−μ

1

r

(
ϕ̃∗
n

∂ϕ̃n

∂θ
− ϕ̃n

∂ϕ̃∗
n

∂θ

)
+ iμa

(
ϕ̃∗
n

∂ϕ̃n

∂r
+ ϕ̃n

∂ϕ̃∗
n

∂r

)]
.

(22.22)

With the use of representation ϕ̃ � ϕ̃(r)ϕ̃(θ), where ϕ̃(θ) ∝ e−iνθ, one has

(pn)θ � ϕ̃n(r)

2
ωC2

n (ξ(z))
2

[
−μ

r
ϕ̃n(r)ν − μa

∂ϕ̃n(r)

∂r

]
. (22.23)

This is a non-zero circulation quantity around a circle 2πr.We can see that for a given
direction of bias magnetic field there are different power-flow densities (pn(r, z)θ for
different signs of the azimuth number ν.

The fact that there are different functions, ϕ̃+ and ϕ̃−, for positive and negative
directions of an angle coordinate when 0 ≤ θ ≤ 2π and non-zero circulation of the
power-flow density show that operator L

∧

⊥ is a self-adjoint, but non-Hermitian oper-

ator. The adjoint of the function Ṽ �
⎛
⎝ −̃→

B

ϕ̃

⎞
⎠ is not equal to its complex conjugate

quantity. FormonochromaticMSwaves propagating in an endless ferrite rod, the fact
that function ϕ̃n is not a single-valued function (resulting to having the azimuthally
rotating-wave solutions), does not bear a real physical meaning. These are not the
eigenmodes akin to the well known twisted-wave modes [32, 33] (or, in other words,
vortex modes [34]).
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22.3.2 MDMs in a Ferrite-Disk Particle

In a ferrite disk, considered as a section of a ferrite rod, power flows along the disk
axis z and along the azimuthal coordinate θ, becomes coupled. The proper solutions
are found based on an analysis of magnetostatic-wave propagation in a helical coor-
dinate system with the pitch defined by a disk thickness [35]. Such an analysis in
an endless MS-wave waveguide bears a formal character, but acquires real physi-
cal meaning in a case of restricted waveguide sections. We make a supposition that
for magnetic-dipolar modes in helical coordinates diagonal and off-diagonal com-
ponents of the permeability tensor remain the same as in the cylindrical coordinate
system. This supposition is clearly acceptable since the long-range magnetic-dipolar
field variations have no influence on the character of local spin precession.

The solutions are obtained in Waldron’s helical coordinate system (r,φ, ζ) [36].
Following Overfelt’s approach [37], the solutions of the Laplace and Walker equa-
tions are found as

ψ(r,φ, ζ) � R(r)P(φ)Z(ζ), (2.24)

where

P(φ) ∼ exp(±iwφ),

Z(ζ) ∼ exp(±iβζ). (22.25)

Here the quantitiesw and β are assumed to be real and positive. Inside and outside
a ferrite rod one has the following four solutions for the MS-potential wave function:

ψ(1) ∼ e−iwφe−iβζ ,

ψ(2) ∼ e+iwφe−iβζ ,

ψ(3) ∼ e+iwφe+iβζ ,

ψ(4) ∼ e−iwφe+iβζ . (22.26)

We consider the ψ(1) wave as the forward (propagating in a ferrite rod along +z
axis) right-hand-helix (FR) MS wave. The wave ψ(2) is the forward left-hand (FL)
wave, the wave ψ(3) is the backward right-hand (BR) wave, and the wave ψ(4) is the
backward left-hand (BL)wave. Functionsψ(r) are described by the Bessel equations.
For a ferrite rod with radius �, we have

∂2ψ(r)

∂r2
+
1

r

∂ψ(r)

∂r
−
[
β2

μ
+

1

r2
(w − p̄β)2

]
ψ(r) � 0 (22.27)

inside a ferrite rod (r ≤ �) and

∂2ψ(r)

∂r2
+
1

r

∂ψ(r)

∂r
−
[
β2 +

1

r2
(w − p̄β)2

]
ψ(r) � 0 (22.28)
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outside a ferrite rod (r ≥ �). Based on the above Bessel equations and boundary
conditions one obtains a characteristic equation for helical MS waves. For helical
modes ψ(1) and ψ(4) there is a characteristic equation in a form:

(−μ)1/2
J ′
(w−p̄β)

J(w−p̄β)

+
K ′

(w−p̄β)

K(w−p̄β)

− μa(w − p̄β)

β� � 0, (22.29)

and for helical modes ψ(2) and ψ(3) one has:

(−μ)1/2
J ′
(w−p̄β)

J(w−p̄β)

+
K ′

(w−p̄β)

K(w−p̄β)

+
μa(w − p̄β)

β� � 0, (22.30)

where p̄ � p/2π, p is the helical pitch. In these equations, the prime denotes differen-
tiationwith respect to the argument. There is amutual transformation of double-helix
resonances ψ(1) ↔ ψ(4) and ψ(2) ↔ ψ(3) for oppositely directed bias magnetic fields.
It means that for time reversal one has mutual transformations between the for-
ward right-hand-helix MS wave ψ(1) and backward right-hand-helix MS wave ψ(3),
from one side, and between the backward left-hand-helix MS wave ψ(4) and forward
left-hand-helix MS wave ψ(2), from the other side. In fact, this is evidence for the
PT -invariance in a lossless ferrite resonator. Because of such PT invariance, one
can obtain an expansion of the fields by the helical MS modes. For helical-mode
resonances, one has a non-Hermitian eigenvalue problem. At the same time, there is
a PT -symmetric eigenvalue problem.

When we consider a quasi-2D ferrite disk, we have the possibility to reduce a
problem from helical coordinates to a cylindrical coordinate system. With a formal
procedure of separation of variables [16], we have MDMs with standing MS waves
in the z direction (the direction of a bias magnetic field) and rotating MS waves in
the azimuthal direction. Such a transition, however, has a definite physical meaning:
there are two different solutions related to two different directions of bias magnetic
field (that is, for a two different signs of the quantity μa).

In solving an eigenvalue problem for a quasi-2D ferrite disk in cylindrical
coordinate system we use the same non-Hermitian L

∧

⊥ and a membrane functions

Ṽ �
⎛
⎝ −̃→

B

ϕ̃

⎞
⎠. The solutions for function ψ are described by (22.16). Inside a fer-

rite disk, ξ(z) is expressed by trigonometric functions. The boundary-value-problem
solution for (22.9) is written as [18, 19]

ψ(r, θ, z, t) � CνJν

(
β r√−μ

)(
cosβ z +

1√−μ
sin β z

)
e−iνθeiωt . (22.31)

Here β is a wave number of a MS wave propagating in a ferrite along the z axis, ν
is a positive integer azimuth number (related to a bias magnetic field directed along
a positive z axis), and Jν is the Bessel function of order ν for a real argument. One-
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component eigenmodes propagating in a certain direction of an azimuth coordinate
result in appearance on an orbital angular momentum directed along normal bias
magnetic field.

22.4 Magnetoelectric Fields and Helical Bound States
in a Microwave-Field Continuum

Analyzing interaction of MDM ferrite particles with a microwave-field continuum,
we have to take into consideration unique properties of the near fields. MDMs
strongly confine energy in subwavelength scales ofmicrowave radiation. In a vacuum
subwavelength region abutting to a MDM ferrite disk, one observes the quantized
state of power-flow vortices. Moreover, in such a vacuum subwavelength region,
the time-varying electric and magnetic fields can be not mutually perpendicular.
Such specific near fields—so-called magnetoelectric (ME) fields—give evidence for
spontaneous symmetry breakings at the resonance states of MDM oscillations [19,
38].

When, using (22.31), the spectral problem for the MS-potential scalar wave func-
tion ψ(�r, t) is solved, distribution of magnetization in a ferrite disk is found as
�m � −↔

χ · −→∇ ψ, where ↔
χ is the susceptibility tensor of a ferrite [8]. The solution

for generating scalar wave function ψ(�r, t) presumes the presence of orbital angular
momenta for the fields. So, magnetization has both the spin and orbital rotation.
There is the spin-orbit interaction between these angular momenta. Based on the
known magnetization �m inside a ferrite, one can find also the electric and magnetic
fields distribution at any point outside a ferrite disk. The electric field is defined as
[19, 38]

−→
E (�x) � − 1

4π

∫

V

�j(m)(�x′)× (�x − �x′)

|�x − �x′|3 dV ′, (22.32)

For the magnetic field outside a ferrite, we have

−→
H (�x) � 1

4π

⎛
⎝
∫

V

(−→∇ ′ · �m(x′))(�x − �x′)

|�x − �x′|3 dV ′ −
∫

S

(�n′ · �m(x′))(�x − �x′)

|�x − �x′|3 dS ′
⎞
⎠.

(22.33)

In these expressions,�j(m) � iωμ0 �m is the density of a magnetic current, frequency
ω is a discrete quantity of the MDM-resonance frequency; V and S are a volume and
a surface of a ferrite sample, respectively.

Outside the ferrite disk the electric and magnetic fields defined by (22.32) and
(22.33) are potential fields [19, 38]. At the same time, one observes also the curl
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component of the electric field. This curl component in a near-field region outside
the disk appears due to the time derivative of the local potential magnetic field via
the Faraday law. For more clarity, in some places of a further consideration, we will
designate potential electric and magnetic fields (expressed by (22.32) and (22.33)),
respectively, as

−→
E p and

−→
H p, and a curl component of the electric field (due to the

Faraday law in the near-field region) as
−→
E c.

Mutually perpendicular curl electric field and potential magnetic field constitute
power-flow density. The near-field regions with mutually parallel potential electric
and potential magnetic fields form so-called helicity density. With these two parame-
ters (power-flowsdensity andhelicity density), the near fields originated fromaMDM
ferrite disk—the ME fields—are distinguished with unique topological properties.
These twisted evanescent fields are neither virtual nor “real” (free-space propagating)
EM photons in vacuum.

For mode n, the real power flow density is expressed as

�pn � Re
(
iωψn

−→
B n

)
� Re

[(−→
E c

)
n
×
(−→
H

∗
p

)
n

]
. (22.34)

In (22.34) we used the identity:

−→
E c × −→

H
∗
p � iωψ∗−→B . (22.35)

This identity can be proven by a simple manipulation with taking into account that−→∇ · −→
B � 0 and

−→
H � −−→∇ ψ:

−→∇ · (−→E c × −→
H

∗
p) � −→

H
∗
p · −→∇ × −→

E c � iω �∇ψ∗ · −→
B � iω

−→∇ ·
(
ψ∗−→B

)
. (22.36)

Importantly, despite the fact that the expressionRe
(−→
E × −→

H
∗)

looks like the real and

imaginary Poynting vectors, the MS-wave power flow densities cannot be basically
related to the EM-wave power flow densities. The Poynting vector is obtained for
EM radiation which is described by the two curl operator Maxwell equations for the
electric and magnetic fields [1]. This is not the case described by (22.34), where, for
the MS waves, we have potential magnetic and curl electric fields.

The ME-field helicity density is expressed as [19, 38, 39]

F � ε0

2
−→
E · ∇ × −→

E . (22.37)

The product
−→
E ·

(−→∇ × −→
E
)
is a measure of the screwness of the electric field. It is

equal to the electric field
−→
E on the points lying in the screw axis times the vorticity−→∇ × −→

E . As the curl of a vector measures its rotation around a point, the product−→
E ·

(−→∇ × −→
E
)
gives howmuch

−→
E rotates around itself times its ownmodulus. This

product evaluates to what degree vector
−→
E resembles a helix. For time-harmonic
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fields
(∝ eiωt

)
, the time-averaged helicity density parameter was calculated in a

vacuum near-field region as:

F � ε0

4
Im
{−→
E ·

(−→∇ × −→
E
)∗}

. (22.38)

The ME-field helicity density is nonzero only at the resonance frequencies of
MDMs. At the MDM frequency ω � ωMDM, we have for magnetic induction

−→
B �

i
ωMDM

(−→∇ × −→
E
)
. So, (22.38) can be rewritten as

F � ωMDMε0

4
Im
{
i
−→
E · −→

B
∗} � ωMDMε0

4
Re
{−→
E · −→

B
∗} � ωMDM

4c2
Re
{−→
E · −→

H
∗}

,

(22.39)

where c � 1/
√

ε0μ0. From this equation, one can see that the helicity densityF trans-
forms as a pseudo-scalar under space reflectionP and it is odd under time reversal T .
This is a time-odd, parity-odd pseudoscalar parameter. At the MDM resonances, one
observes macroscopically coherent vacuum states near a ferrite disk. These vacuum
states of the field experience broken mirror symmetry and also broken time-reversal

symmetry. Evidently, for regular electromagnetic fields Re
{−→
E · −→

B
∗} ≡ 0,

We represent now the potential electric field as
−→
E p � −−→∇ ϑ, where ϑ is an

arbitrary electrostatic-potential function. With this representation, we can write:

F � ωMDMε0

4
Re
{−→
E · −→

B
∗} � −ωMDMε0

4
Re
{−→∇ ϑ · −→

B
∗} � −ωMDMε0

4

{−→∇ · Re
(
ϑ
−→
B

∗)}
.

(22.40)

Here we took into account that∇ ·−→B � 0. Based on this equation, one can introduce
a quantity of the time-averaged ME-energy density:

−→∇ · Re
(
ϑ
−→
B

∗) ≡ −τ . (22.41)

The quantity ϑ
−→
B

∗
can be considered as the time-averaged ME-energy flow. For the

helicity density we can write:

F � ωMDMε0

4
τ . (22.42)

The regions of the positive and negative helicity density [19, 38, 39] can be
described, respectively, as the regions with positive and negative ME-energy density
τ . Since the helicity factor F shows what is degree of a twist between the

−→
E and

−→
H

vectors compared to a regular EM-field configuration (with mutually perpendicular−→
E and

−→
H vectors), theME energy can be considered as energy of a torsion degree of

freedom. Because of time-reversal symmetry breaking, all the regions with positive
helicity become the regionswith negative helicity (and vice versa), when one changes
a direction of a bias magnetic field:
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F
−→
H 0↑ � −F

−→
H 0↓. (22.43)

This equation can be written also as

τ (−−→
H 0) � −τ (

−→
H 0). (22.44)

Let us define the helicity as an integral of the ME-field helicity density over the
entire near-field vacuum region of volume V ′ (which excludes a region of a ferrite
disk):

H �
∫

V ′

FdV � ωMDMε0

4

∫

V ′

Re
{−→
E · −→

B
∗}
dV � ωMDMε0

4

∫

V ′

τdV . (22.45)

The question arises: Whether do we have the “helicity neutrality”, i.e. H �
ωMDMε0

4

∫
V ′ τdV � 0? To answer this question we can rely on the following sim-

ple analysis. With use of the transformation

H � −ωMDMε0

4

∫

V ′

Re
{−→∇ ·

(
ϑ
−→
B

∗)}
dV � −ωMDMε0

4

∮

S ′

Re
{
ϑ
−→
B

∗ · �n
}
dS,

(22.46)

we can conclude that when the normal component of
−→
B vanishes at some boundary

insidewhich the fields
−→
B and

−→
E p are confined (i.e. when

−→
B ·�n � 0 at the boundary),

the quantityH is equal to zero. The quantityH is also equal to zero when the fields

are with finite energy and the quantity ϑ
−→
B

∗
decreases sufficiently fast at infinity.

The problem of electromagnetic-wave scattering by a small ferrite particle with
MDM resonances appears as a rather complicated problem. Because of symmetry
breakings of the fields, a standard technique of expansion by spherical or cylindrical
harmonics is not applicable in such a case. It is evident that for small (quasistatic)
MDM ferrite particles one cannot use the classical theory of Rayleigh scattering.
While for an incident wave there is no difference between left and right, in the
fields scattered by a MDM ferrite particle one should distinguish left from right. To
analyze the scattering problem, one should use expansion of the fields by eigenmodes
of MS oscillations in a ferrite particle. As we showed above, these oscillations are
characterized by the helical-mode resonances.

The ferrite disk is an opened resonator with high-qualityMDMoscillations. Sharp
MDM resonances can appear as bound states in amicrowave-field continuum. Bound
states in the continuum (BICs), also known as embedded trappedmodes, are localized
solutions which correspond to discrete eigenvalues coexisting with extended modes
of a continuous spectrum. The BICs are solutions having an infinitely long lifetime.
Recent developments show that in a large variety of electromagnetic structures there
can be different mechanisms that lead to BICs (see [40] and references therein). One
of the main reasons for appearance of the MDM BICs is a symmetry mismatch.
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Modes of different symmetry classes (such as reflection or rotation) are completely
decoupled. MDM oscillations do not exhibit a rotational symmetry, while a regular
waveguide structure is rotationally symmetric. With such a condition, the MDM
bound states observed in microwave structures can be classified as the symmetry-
protected BICs.

The MDM bound states are embedded in the microwave continuum but not cou-
pled to it. Certainly, if a bound state of one symmetry class is embedded in the
continuous spectrum of another symmetry class their coupling is forbidden. More-
over, the ME fields, originated from a MDM ferrite disk, and the EM fields in a
microwave structure are described by different types of equations. At any stable
state, MDMs cannot radiate EM waves because there is no way to assign a far-field
EM-wave polarization that is consistent with vortex ME fields near a MDM ferrite
disk. In a short-range interaction, an important aspect concerns the topological nature
of the MDM BICs. These topological properties can be understood through eigen
power-flow vortices with corresponding topological charges [19, 38, 39, 41]. Quan-
tized topological charges cannot suddenly disappear. They are protected by special
boundary conditions in a quasi-2D ferrite disk. The MDM BICs cannot be removed
unless MDM topological charges are cancelled with another structure carrying the
opposite topological charges. Such opposite topological charges appear on metal
walls of a microwave waveguide [41].

The region where a MDM ferrite disk is localized, is small compared to the
characteristic length scale of waveguide modes. The ME near fields originated from
a quasi-2D ferrite disk, are characterized by the fields rotating in a plane parallel to the
disk plane and decaying along the disk axis. The fields in these contact regions have a
torsion structure of rotating power-flow vortices [41–43]. Interaction of MDMs with
metal walls of a microwave waveguide results in appearance of topological surface
electric currents. The lines of the currents are the right-handed and left-handed flat
spirals. Coupling of these spiral surface electric currents with the waveguide fields
appears as a non-trivial question. What is a continuum of these waveguide fields?
Evidently, there should be a complex-wave microwave continuum with helical-wave
topological structure of the fields [41–43]. In a section of a closed lossless hollow
waveguide one can obverse a continuum of evanescent modes [44]. In addition,
in a section of a closed lossless waveguide with anisotropic inclusions, there can
be an infinite number of complex conjugate pairs of eigenvalues [45, 46]. Could
these complex conjugate pairs of eigenvalues constitute a complex-wave microwave
continuum with helical-wave topological structure of the fields? In a view of unique
topological properties of ME near fields, we presume existence of such a complex-
wave microwave continuum with helical-wave topological structure of the fields.
The total system is Hermitian. In our case, it is decomposed into two non-Hermitian
sub-systems: (a) PT -symmetric bi-orthogonal MDM discrete states and (b) PT -
symmetric bi-orthogonal complex-wave microwave continuum.

From a number of features attributed to the BICs there is strong resonance field
enhancement at discrete resonances. In the case ofMDMoscillations in amicrowave-
field continuum, such a strong field enhancement is shown in numerous numerical
studies [19, 42, 47–49]. Another characteristic features inherent in the BICs is a
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Fano resonance collapse. For the MDM resonances the effect of Fano resonance
collapse was clearly demonstrated in [50]. Thanks to the tenability of the ferrite-disk
resonator by an external parameter—the bias magnetic field—the MDM oscillations
can become close interactingmodes. The structure used in [50] is a microwave cavity
with an embedded thin-film ferrite disk. As is shown that as we approach the top of
the cavity resonance curve, the minimum of the microwave transmission approaches
the maximum of the transmission. At the top of the cavity resonance curve, the levels
of the minimum and maximum transmission are in contact. The Fano line shape is
completely damped and one observes a single Lorentzian peak. The scattering cross
section corresponds to a pure dark mode.

Recently, the MDM BIC phenomena, found further development in a novel tech-
nique based on the combination of the microwave perturbation method and the Fano
resonance effects observed in microwave structures with embedded small ferrite
disks [50, 51]. When the frequency of the MDM resonance is not equal to the cavity
resonance frequency, one gets Fano transmission intensity. If the MDM resonance
frequency is tuned, by a bias magnetic field, to the cavity resonance frequency, one
observes a Lorentzian line shape. The effect of Fano resonance collapse has no
relations to the quality factor of a microwave cavity. Use of an extremely narrow
Lorentzian peak allows exact probing of the resonant frequency of a cavity loaded
by a high lossy material sample. With variation of a bias magnetic field, one can see
different frequencies of Lorentzian peaks for different kinds ofmaterial samples. This
gives a picture of precise spectroscopic characterization of high absorption matter
in microwaves, including biological liquids. Importantly, there is no influence of the
dissipation effects in the microwave cavity on the quality of the MDM resonances.
The poles in the transmission amplitudes are connected with the bound states and
their lifetimes.

22.5 G- and L-Magnetic Dipolar Modes

The operator-form (22.6–22.8), gave us possibility to analyze unique topological
properties of the fields. We showed that operator L

∧

⊥ is a self-adjoint, but non-

Hermitian operator. The adjoint of the function Ṽ �
⎛
⎝ −̃→

B

ϕ̃

⎞
⎠ is not equal to its

complex conjugate quantity. TheMDMs described by operator L
∧

are called L-modes
[17, 18, 35, 49, 52]. The solution of the spectral problem for theL-modes are based on
two first-order differential equations:

−→
H � −−→∇ ψ and ∇ · −→

B � 0 with the presen-
tation of MS-potential wave function in a form of (22.16) and with the homogeneous
boundary conditions (22.20). It appears, however, that the solutions based on one
second-order differential equation (22.4), may lead to physically different results.
In this case, the self-adjoint solutions for quasi-2D ferrite-disk particle are obtained
with use of another type of membrane functions and with the boundary conditions
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different from (22.20). For magnetostatic-potential wave function ψ(�r, t), this gives
the possibility to reduce the spectral problem to the Hermitian problem.

For a normally magnetized ferrite disk, the Walker (22.4) is represented as

μ∇2
⊥ψ + ∇2

‖ψ � 0, (22.47)

where μ is a diagonal component of the permeability tensor (22.15), subscript ⊥
means differentiation over the in-plane, r, θ, coordinates and subscript || means dif-
ferentiation along the disk axis z.We present the solution for the mode n as

ψn � Anξn(z)η̃n(r, θ), (22.48)

where An is a dimensional coefficient and η̃n(r, θ) is a dimensionless membrane
function. The amplitude factor ξn(z) is the same as in (22.16).

For the disk geometry, the energy eigenvalue problem is defined by the differential
equation [16–19, 52]

G
∧

⊥η̃n � Enη̃n, (22.49)

whereG
∧

⊥ is a two-dimensional (with respect to in-plane coordinates of a ferrite disk)
differential operator and En is density of accumulated magnetic energy of mode n.
The operator G

∧

⊥ and energy En are defined as

G
∧

⊥ � gn
16π

μn∇2
⊥, (22.50)

En � gn
16π

(
βzn

)2
. (22.51)

Here gn is a dimensional normalization coefficient for mode n, ∇2
⊥ is the two-

dimensional Laplace operator, andβzn is the propagation constant ofmode n along the
disk axis z. The parameter μn is to be regarded as an eigenvalue, while the subscript
n labels the available solutions. Outside a ferrite μn � 1. For self-adjointness of
operator G

∧

⊥, the homogeneous boundary condition should be [16–19, 52]

μ

(
∂η̃n

∂r

)

r�R−
−
(

∂η̃n

∂r

)

r�R+

� 0. (22.52)

This boundary conditions is different from (22.20). The MDMs described by
operator G

∧

are called G-modes [17, 18, 35, 49, 52].
The normalized scalar-wave membrane function η̃ can be represented as

η̃ �
∑
n

anη̃n. (22.53)
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The probability to find a system in a certain state n is defined as

|an|2 �
∣∣∣∣∣∣

∫

Sc

η̃η̃∗
n dS

∣∣∣∣∣∣

2

, (22.54)

where Sc is a circular cross section of a ferrite disk.MDMoscillations in a ferrite disk

are described by real eigenfunctions:
(
η̃−β

)
n �

(
η̃∗

β

)
n
. The orthogonality conditions

are expressed as
∫

Sc

(
η̃β

)
n

(
η̃−β

)
n′dS �

∫

Sc

η̃nη̃
∗
n′dS � δnn′ . (22.55)

The spectral problem gives the energy orthogonality relation for MDMs:

(En − En′)

∫

Sc

η̃nη̃
∗
n′ dS � 0. (22.56)

The functions η̃n are eigenfunctions of a Hermitian differential operator.
Based on (22.50) one can rewrite (22.47) as

G
∧

‖ψn � −Enψn, (22.57)

where

G
∧

‖ � gn
16π

∇2
‖ . (22.58)

For a given mode n, (22.57) looks like the time independent one-dimensional
Schrödinger equation for a free particle. For two modes, n and n′, one obtains:

(En − En′)ψnψ
∗
n′ � −→∇ ‖ ·

(
ψn

−→∇ ‖ψ∗
n′ − ψ∗

n′
−→∇ ‖ψn

)
. (22.59)

The spectral problems for the L andGmodes are mutually correlated. On a lateral
surface of a quasi-2D ferrite disk of radius �, a MS-potential membrane wave func-
tion is expressed as: (ϕ̃±)r��− � δ±(η̃)r��− , η̃ is a singlevalued membrane function
and δ± is a double-valued edge wave function on contour L � 2π�. Function δ±
changes its sign when the regular-coordinate angle θ is rotated by 2π. As a result, one
has the eigenstate spectrum of MDM oscillations with topological phases accumu-
lated by the edge wave function δ. On a lateral surface of a quasi-2D ferrite disk, one
can distinguish two different functions δ±, which are the counterclockwise and clock-
wise rotating-wave edge functionswith respect to amembrane function η̃. A line inte-

gral around a singular contour L : 1
�
∮
L
(
i ∂δ±

∂θ

)
(δ±)∗ dL � ∫ 2π

0

[(
i ∂δ±

∂θ

)
(δ±)∗

]
r��

dθ

is an observable quantity. Because of the existing the geometrical phase factor
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on a lateral boundary of a ferrite disk, MDMs are characterized by a pseudo-

electric field (the gauge field)
−→
e . The pseudo-electric field

−→
e can be found

as
−→
e ± � −−→∇ ×

(−→
�

(m)

e

)

±
. The field

−→
e is the Berry curvature. The corre-

sponding flux of the gauge field
−→
e through a circle of radius � is obtained as:

K
∫
S

(−→
e
)

±
· d�S � K

∮
L

(−→
�

(m)

e

)

±
· d−→L � K

(
�(e)

)
± � 2πq±, where

(
�(e)

)
± are

quantized fluxes of pseudo-electric fields, K is the normalization coefficient. Each
MDM is quantized to a quantum of an emergent electric flux. There are the posi-
tive and negative eigenfluxes. These different-sign fluxes should be nonequivalent
to avoid the cancellation. It is evident that while integration of the Berry curvature
over the regular-coordinate angle θ is quantized in units of 2π, integration over the
spin-coordinate angle θ′(θ′ � 1

2θ
)
is quantized in units of π. The physical meaning

of coefficient K concerns the property of a flux of a pseudo-electric field. The Berry
mechanism provides amicroscopic basis for the surfacemagnetic current at the inter-
face between gyrotropic and nongyrotropic media. Following the spectrum analysis
of MDMs in a quasi-2D ferrite disk one obtains pseudo-scalar axion-like fields and
edge chiral magnetic currents. Topological properties ofME fields (non-zero helicity
factor) arise from the presence of geometric phases on a border circle of a MDM
ferrite disk [17–19, 35, 49, 52].

22.6 Conclusion

Magnetic-dipolar resonances in ferrite samples with dimensions much smaller than
the wavelength of microwave radiation are well described by the magnetostatic-
potential wave functions. To a certain extent, this spectral problem is dual to the
electrostatic theory describing the localized surface plasmons in nanoparticles with
dimensions much smaller than the wavelength of light. For a case of plasmonic
(electrostatic) resonances in small metallic samples, one can neglect a magnetic dis-
placement current and consider quasistationary electric fields, which are described
by electrostatic-potential functions. In this description, subwavelength sizes of the
particles eliminates any effects of the internal electromagnetic retardation processes.
Magnetic-dipolar-mode (MDM) oscillations (or magnetostatic-wave oscillations) in
small ferrite samples can be considered as an approximation to Maxwell equations
when a displacement electric current is negligibly small. The physical justification for
such an approximation arises from the fact that in a small (with sizes much less than
a free-space electromagnetic wavelength) sample of a magnetic material with strong
temporal dispersion (due to the ferromagnetic resonance) one neglects a time varia-
tion of electric energy in comparison with a time variation of magnetic energy. Sub-
wavelength sizes of such a ferrite particle eliminate any electromagnetic-retardation
phenomena. The main distinguishing feature of the magnetostatic resonances is the
existence of non-Maxwellian propagation-wave behaviors.



548 E. Kamenetskii

The near fields originated from small ferrite-disk particles withMDMoscillations
are the fields with the electric and magnetic components, but with broken dual (elec-
tric–magnetic) symmetry. These fields—called magnetoelectric (ME) fields—have
topological properties different from such properties of electromagnetic fields. The
ME fields are characterize by power-flow vortices, nonzero helicity, and a torsion
degree of freedom.

Interaction of MDMs with metal walls of a microwave waveguide results in
appearance of topological surface electric currents. The lines of the currents are the
right-handed and left-handed flat spirals. Coupling of these spiral surface electric cur-
rents with the waveguide fields appears as a non-trivial question. In a view of unique
topological properties of ME near fields, we presume existence of a complex-wave
microwave continuumwith helical-wave topological structure of the fields. The total
microwave system with an embedded ferrite disk resonator is decomposed into two
non-Hermitian sub-systems: (a) PT -symmetric bi-orthogonal MDM discrete states
and (b) PT -symmetric bi-orthogonal complex-wave microwave continuum.

In a case of a quasi-2D ferrite-disk particle, the problem for magnetostatic-
potential wave function ψ(�r, t) can be reduced the Hermitian problem. In such a
ferrite particle, the function ψ(�r, t) appear as orthonormal complex eigenfunction.
The adjoint of this function is equal to its complex conjugate quantity. This differs
from the resonances in metal nanoparticles where one has a non-Hermitian eigen-
value problem for electrostatic-potential wave function.
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Chapter 23
Weak Coupling, Strong Coupling,
Critical Coupling and Fano Resonances:
A Unifying Vision

Simone Zanotto

Abstract The transversal concepts of weak, strong and critical coupling, and of
Fano resonances, are analyzed within a unified framework which relies on a simple
classical model of driven-dissipative coupled oscillators. A careful exploration of the
system’s parameter space has led to the emergence of certain intriguing phenomena,
which we named lineshape inheritance, universal absorption lineshape, and strong
critical coupling. These concepts may be of relevance when attempting to understand
the response of a diversity of systems, especially in the fields of (quantum) light-
matter coupling, and of solid-state nanophysics, where the basic scheme of multi-
oscillator dissipative resonances is often encountered.

23.1 Introduction

The concepts of weak, strong and critical coupling are among the most basic in
the physics of resonant systems. They arise from the interplay between the resonator
internal losses, the coupling between resonators, and the presence of scattering chan-
nels where energy flows into, or from, the system.Weak and strong coupling are con-
cepts also widely explored in the framework of light-matter interaction, in particular
with reference to the Purcell effect and to the physics of dressed states, or polaritons
[1, 2]. In parallel, the physics of resonances hosts another key concept, that of Fano
resonances [3–5]: they emerge from the co-presence of a direct and of an indirect
pathway for the scattering process. Otherwise, this can be viewed as the effect of the
competition between a resonant and a non-resonant scattering process.

In this chapter we elucidate the connection between the aforementioned concepts,
relying on a simple classical model which nonetheless can grasp several key features
occurring in complex systems. For instance, it can be applied to a large class of
problems in nanoplasmonics, as the underlying quantum nature of the excitations
is often washed out by the still large number of electrons involved and/or by the
finite temperature at which the experiments are performed and devices are operated.
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Even if smaller objects—such as quantum dots—are considered, i.e. in the so-called
plexcitonic systems, a semiclassical approximation can still remain a good approach
provided that the small object, which is in principle a genuinely quantum two-level
system, is excited by a sufficiently small intensity [6–16]. Another frameworkswhere
the present model can be applied is polaritonics, either based on intersubband, on
exciton, or on phononic resonances [17–25]. In parallel, it can be applied to purely
electromagnetic problems,where the complexity arises from the non-trivial geometry
of the resonator, as for instance in coupled photonic cavities [26, 27], in multiplas-
mon resonators [28] or in disordered systems [29] where it may be computationally
prohibitive to numerically model the full devices, making it useful to have at disposal
a more comprehensive, high-level model.

However the concepts introduced above are not limited to photonics research,
as they only rely on the ideas of oscillation, radiation and dissipation. Hence they
can be fruitfully applied to a wealth of physical frameworks, such as acoustics (both
macroscopical and microsopical, i.e., nanomechanics) [30], lumped element circuits
and networks [31], cavity-controlled chemistry [32], and—most importantly—to all
the situations where mixed, hybrid excitations which originate from the interaction
of diverse systems occur: nano-opto-mechanical objects [33, 34], hybrid systems
[35, 36], etc.

23.2 Model System, Parametrization, and Linear Response

The model under consideration is schematized in Fig. 23.1. It is a coupled-mode
model, inspired by several works available in the literature [27, 37–42]. A first
resonator, here depicted as a two-mirror cavity, is coupled to a second resonant
degree of freedom, here represented as a spring-mass resonator. The resonators have
(angular) frequencies ωA and ωB , and are coupled through a coupling coefficient
�. The cavity resonator radiates into, and is excited from, two radiative scattering
channels through two ports, with couplings κ1,2. In parallel with the resonator A,
a non-resonant scattering channel, here depicted by a semi-transparent mirror, is
included in the conceptual diagram. It is parametrized by frequency-independent
reflection and transmission coefficients r and t (r2 + t2 = 1 and 0 ≤ r, t ≤ 1; see
below for the phases). Internal losses of the resonators are represented by the rates
γA,i and γB,i. In a light-matter coupling framework, where A labels the photonic
(or plasmonic) resonator, and B a two-level system (i.e. an atom, a quantum dot,
a quantum well, or an assembly of them), γA,i represents losses such as roughness
scattering (i.e., radiative scattering in undesired scattering channels) or dissipation
(for instance, in metallic mirrors or plasmonic elements). Instead, γB,i represents the
non-radiative recombination rate of the two-level systems.

Labeling a and b, respectively, the amplitudes of the resonators at frequencies ωA

and ωB , one gets
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Fig. 23.1 Schematic representation of the model under analysis. Two resonators (A and B) are
coupled each other, and the first (resonator A) is coupled with two scattering channels (ports). The
scattering channels are also directly coupled each other through a non-resonant mechanism, repre-
sented by a semitransparent mirror, responsible for Fano interference. Resonator A is represented as
a two-mirror cavity, and resonator B as a mass-spring system, since one of the possible applications
of this model are light-matter coupled systems. The model is classical, but it can be applied also to
quantum systems provided that adequate approximations are made (see text for details)

db

dt
= (iωB − γB)b + i�a

da

dt
= (iωA − γA)a + i�b + (〈κ|∗)|s+〉

|s−〉 = C |s+〉 + a|κ〉 (23.1)

where |s±〉 = (s±
1 , s±

2 )T are column vectors describing ingoing and outgoing scatter-
ing amplitudes. The coupling constants are also arranged in vectors, |κ〉 = (κ1, κ2)

T .
In this notation, the transformation |v〉 → 〈v| means transposition and complex
conjugation, while |κ〉 → |κ〉∗ means only complex conjugation. C is the scat-
tering matrix of the non-resonant process. A constraint stems from the require-
ment of instantaneous energy conservation of the global process, that is, fulfilment

of
d

dt

(|a(t)|2 + |b(t)|2) = |s+
1 (t)|2 + |s+

2 (t)|2 − |s−
1 (t)|2 − |s−

2 (t)|2. This is guaran-
teed by the conditions

〈κ|κ〉 = 2γA,e

C |κ〉∗ = −|κ〉. (23.2)

The quantityγA,e is the external damping rate for the cavity, i.e., the radiative damping
rate. Combined with the internal damping rate it builds up the total damping rate for
resonator A: γA = γA,i + γA,e. Since, instead, resonator B has no other loss channels
than the internal one, γB = γB,i.

By searching for the steady-state solution of (23.1), one gets that the outgo-
ing amplitudes are linearly dependent from the ingoing amplitudes by means of a
frequency-dependent scattering matrix: |s−〉 = S(ω)|s+〉, where
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S(ω) = C − i(ω − ωB) + γB

(ω − ω+)(ω − ω−)
D (23.3)

and D = |κ〉 (〈κ|∗). The explicit expression of the poles ω± will be given in the
following, while, implementing the constraints introduced above,1 matrices C and
D can be written in terms of a minimal set of parameters which evidence the key
“ingredients” of the theory:

C = eiφ
(
reiψ i t
i t re−iψ

)

D = −eiφγA,e

(
d11 d12
d12 d22

)

where

d11 =
(
r + ξ ± i t

√
1 − ξ 2

)
eiψ

d22 =
(
r − ξ ± i t

√
1 − ξ 2

)
e−iψ

d12 = ±r
√
1 − ξ 2 + i t (23.4)

The non-resonant process is basically described by the constant reflectance and
transmittance r and t ; φ and ψ are a global and a relative phase. The resonant pro-
cess, described bymatrix D, involves an additional parameter ξ , which quantifies the
asymmetry of the decay into the scattering channels. This parameter, constrained in
the interval [−1, 1], is connected with the coupling coefficients through the relation
rξ = (|κ1|2 − |κ2|2)/(|κ1|2 + |κ2|2). This link between κ1,2 and r , already outlined
for single-mode optical resonators [39], is here generalized to the two-oscillator
model. If the physical system under analysis possesses a spatial symmetry that
exchanges the scattering channels 1 and 2, one must have ξ = 0 and ψ = 0 or π .
Furthermore, the arbitrary sign which appears in (23.4) can be chosen at will, and
it is connected to the symmetry of the resonant mode. As a limiting case, note that
the positions r = 1 and ξ = ±1 imply that the two-port system factorizes into two
one-port systems, with either port 1 or 2 in interaction with the resonance.

In the scattering matrix (23.3) a resonant denominator with two poles is found.
The explicit expression of the poles is

ω± = ωA + ωB

2
+ i

γA,e + γA,i + γB,i

2

± 1

2

√[
(ωA − ωB) − i

(−γA,e − γA,i + γB,i
)]2 + 4�2

(23.5)

1The following expressions are the most general ones that fulfill the constraints given in (23.2), and
generalize both [27] and [43].
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We alsowrite the expression for the zeroes, ω̄±, whichwill be useful in the following:

ω̄± = ωA + ωB

2
+ i

−γA,e + γA,i + γB,i

2

± 1

2

√[
(ωA − ωB) − i

(+γA,e − γA,i + γB,i
)]2 + 4�2.

(23.6)

23.3 Lineshape Inheritance to the Strong Coupling Regime

In this section we will discuss what spectral fingerprints should be expected from
a two-oscillator system that does not almost present losses other than the radiative
ones, but where the coupling between the two oscillator is either vanishing or strong
enough to overcome the radiative coupling.

The case of a very weak coupling between the oscillators is essentially that of
a single oscillator (oscillator A), radiatively coupled with the scattering channels
and embedded in the non-resonant scattering process. This situation describes very
well the response of several photonic systems such as dielectric nanoparticles (where
the Mie resonances coexist with the background wave transmission) or as dielectric
photonic crystal slabs (i.e., guided mode resonators) where the guided mode reso-
nances are embedded in a quasi-flat Fabry-Pérot background. These systems are well
known sources of Fano resonances, which, within our formalism, are governed by
the parameters t (or, analogously, r ), ξ , γA,e and γA,i.

The upper panels (a–c) in Fig. 23.2 represent this behaviour. The off-resonance
transmittance equals t2, while on-resonance the lineshape passes from an ordinary
to a reversed Lorentzian through the characteristic asymmetric Fano shape. This
is true when the system is symmetric (ξ = 0); where instead a finite asymmetry
is included, it leads to warped lineshapes with smaller contrasts. The contrast is
also reduced by the presence of an internal damping γA,i, while the external damping
γA,e only determines the linewidth. It can be shown that when γA,i = 0 and ξ = 0 the
transmittance lineshapes are fully contrasted; given the absence of losses other than
the external (radiative) ones, unity contrast is also observed in reflectance. It should
be noticed that here we employed the upper sign in (23.4); the other choice would
have exchanged (ω − ωA) → (ωA − ω) hence reversing the t = 1/

√
2 spectrum.

The onset of a large enough coupling � between the oscillators (Fig. 23.2, panels
(d–f)) induces a splitting of the single spectral feature in two separate spectral fea-
tures, as expected from the physics of strongly coupled oscillators. What is remark-
able here is the spectrum resulting when t = 1/

√
2: a double Fano resonance occurs,

whose shape depends only on the shape of the original, bare, radiatively coupled
resonator, i.e., on the sole value of the parameter t . This phenomenon, which we
name lineshape inheritance, is robust and manifests itself also in conjunction with
another key phenomenon related to strong coupling: resonance anticrossing. In panel
(g) of Fig. 23.2 we report the transmittance lineshapes which occur to the strongly
coupled Fano resonators when the frequency of one of them (here, resonator B) is
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Fig. 23.2 Lineshape inheritance at the onset of strong coupling. The model system consisting of a
resonator coupled with a non-resonant background is responsible for well-known Fano resonances
(panels a–c). When a second resonator is coupled to the first one, the spectral feature splits in two,
as a consequence of the onset of strong coupling between the oscillators (panels d–f). Interestingly,
the resulting lineshapes inherit from the “parent” system the lineshape, which is only dictated by
the value of the off-resonant scattering parameter t . The lineshape inheritance coexists with the
other fingerprint of strong coupling: resonance anticrossing, observed when the frequency of a
resonator—here, resonator B—is swept across the frequency of the other (panel g). Parameters are:
γA,e = 0.1 ωA, γA,i = 0, γB,i = 0, � = 0 for panels (a-c) and � = 0.2 ωA for panels (d–g). In
panels (d–f) the resonators are matched: ωA = ωB

swept across the frequency of the other, which is instead kept fixed. It clearly appears
that the two splitted resonance maintain their Fano nature, also when they are quite
distant on the frequency scale. In this sense, the lineshape inheritance phenomenon
is “nonlocal”, as its effects are felt also on spectrally far anomalous features.

To conclude this section we report an experimental observation of the lineshape
inheritance phenomenon. This has been observed in a strongly coupled system well
known in the community of mid- and far-infrared photonics: intersubband polari-
tons [22, 44]. They arise when a semiconductor quantum well (or, more usually, a
stack of multiple quantum wells) is embedded in a photonic resonator, typically a
patch antenna, an LC resonator, or a photonic crystal slab. The device under analysis
belongs to the latter category, and its schematic is reported in Fig. 23.3a. A semi-
conductor waveguide embedding several tens of quantum wells is patterned with an
array of metal stripes; the stripe array has a pitch that matches the wavelength of
the guided mode, such as to excite the guided mode resonance at a frequency that
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Fig. 23.3 An experimental situation where lineshape inheritance has been observed. A semicon-
ductor film is patternedwithmetal stripes, thus implementing a guidedmode resonance (also known
as leaky mode resonance in photonic crystal slab; the inset shows the internal field at resonance).
The photonic resonance is tuned to match the intersubband transition of an ensemble of quantum
wells embedded in the membrane itself. When the device is operated below diffraction thresholds,
it is a genuine two-port optical system (a). Lineshapes observed when the quantum well transition
is switched off (b) and when it is switched on (c). The curves are dips or peaks depending on the
geometrical parameters of the metal stripes, and are inherited from the uncoupled to the coupled
regime

ultimately matches that of the electron transition between the two confined levels in
the quantum well. In such system, the guided mode resonance (i.e., photonic crystal
slab resonance) is coupled radiatively with the far-field through plane-wave scatter-
ing channels, and meanwhile it is coupled with the electrical dipole transition of the
quantum well. As long as the dipole transition can be treated semiclassically as a
mechanical oscillator, the model introduced in Sect. 23.2 can be applied. Here, the
bare photonic resonance lineshape is dictated by the metallization ratio: at fixed pat-
tern period, narrow stripes are responsible for a dip, while large stripes lead to a peak.



558 S. Zanotto

Appropriate tuning of the pattern period allows for tuning the resonance frequency,
and eventually to match the quantum well intersubband transition frequency. The
transmittance curves recorded from two samples are reported in Fig. 23.3b: here, the
quantum wells are inactive and the bare photonic response is observed. When the
quantumwell transition is instead switched on, the curves of Fig. 23.3c are observed:
a strong coupling doublet is observed, preserving the dip or peak character of the
uncoupled photonic resonance. This is a clear evidence of the lineshape inheritance
phenomenon.

23.4 Absorption Properties

23.4.1 Universal Absorption Lineshapes

In the previous Section we showed that strong coupling between oscillators, one
of which originally behaves as a Fano resonator, induces a splitting of the original
spectral feature in two well distinct Fano lines which inherit the shape from the
former resonance. However, we based our analysis on transmittance spectra,2 mostly
pushed by the need to compare the model data with experimental results, where
transmittance experiments are often the most simple. Nonetheless, transmittance
or reflectance experiments alone do not grasp the complete physical picture of a
two-port system: rather, absorption spectra provide a complementary picture, more
deeply connected with the internal behavior of the system under analysis. Indeed,
a resonant, dissipative system absorbs energy mostly when the driving frequency
matches its eigenfrequencies. At resonance, the energy is stored within the resonator
and dissipated through the internal dissipation mechanisms—for instance, ohmic or
dipolar losses in the case of metals or dielectrics, respectively.

In the case of a two-oscillator Fano system under strong coupling, the absorption
lineshape always present a double-peaked structure, independently from the specific
Fano shape observed in transmission or in reflection. This behavior is represented
in Fig. 23.4, where a lossy coupled system is analyzed. Here, overall losses are
smaller than the coupling constant �, which guarantees that the overall system is
still in the strong coupling regime. On the transmittance traces, these finite losses
are responsible for a reduction of the contrast, which is no more of 100% as it was
observed in Fig. 23.2d–f. Notice that now the cases of transmittance peaks or of
transmittance dips deserve different contrast levels for the transmittance traces: this
inequality is balanced for by the reflectance traces (not shown here), which exactly
compensate in order to guarantee that the absorption curves are always the same.

We name this behavior universal lineshape, since within this model the details
of Fano resonances are completely washed out when an appropriate spectroscopic
quantity is looked for. More interestingly, the absorption lineshape can be expressed

2Reflectance behaves similarly.
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Fig. 23.4 Universal absorption lineshape occurring for a two-oscillator system displaying Fano
doublet in transmittance. The absorption lineshape does not depend on the transmittance lineshape,
rather it has always a double-peaked structure. No lineshape inheritance phenomenon takes place
here. Parameters are: γA,e = 0.1 ωA, γA,i = 0, γB,i = 0.05, � = 0.2 ωA

by means of a very simple formula, which stems from appropriate algebraic manip-
ulation of (23.3). Indeed, it can be shown that

A(ω) = 1 − | det S(ω)|2
2

= 1

2

(

1 −
∣∣∣∣
(ω − ω̄+)(ω − ω̄−)

(ω − ω+)(ω − ω−)

∣∣∣∣

2
)

(23.7)

where the explicit expressions of poles and zeros are given in (23.5) and (23.6). Two
interesting points are direct consequence of this expression:

• The absorption can never be larger than 1/2. This is because in a lossy system the
S-matrix determinant is always restricted to the interval [0, 1].

• The absorption reaches its extremum A = 0.5 if and only if det S = 0, i.e., if and
only if ω = ω̄±. This point will be elucidated in the following Section, as it is
connected with a deep physical insight.

It should be noticed that in the above discussion we assumed the system to be
symmetric, i.e., that ξ = 0. The role of system asymmetry is that of unbalancing the
two scattering channels,3 and to allow for different behaviours for what concerns
the amount of energy that can be absorbed in a two-port system; this topic will be
clarified in Sect. 23.4.3. However, to get a wider understanding of the absorption
phenomena in these systems, which are evidently two-port systems, it is useful to
introduce another concept, that of coherent absorption, and the closely related one
of coherent perfect absorption.

3We anticipate that the parameter ξ does not affect the line shapes.
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23.4.2 A Detour on Coherent (Perfect) Absorption

When dealing with multi-port systems, speaking of absorption may lead to imprecise
pictures, or even be misleading: the amount of energy absorbed in such a systemmay
depend strongly upon theway it is excited. For instance, a two-port optical component
may be strongly absorptive when illuminated from one side, and highly reflective
(hence not absorptive) when illuminated from the other side [45]. In general, two-
and multiport linear optical systems exhibit the phenomenon of coherent absorption.
Coherent absorption generalizes the concept of ordinary absorption to multiport
systems [46, 47]. Here, to appropriately define the absorbance, i.e. “the amount of
energy subtracted from the incident field”, it is imperative to define the actual state
of the input field. For instance, in a two-port system both ports can be excited by
coherent fields; here, an interesting interplay between interference and absorption can
be observed. The framework is illustrated in Fig. 23.5a: the most general scattering
configuration consists in two input fields s+

1,2 and two output fields s
−
1,2. Applying the

2 × 2 S-matrix formalism it can be shown that the output intensities |s−
1,2|2 depend

sinusoidally on the input beam dephasing. Moreover, also the total output intensity
depends sinusoidally on the input dephasing, with minima and maxima that identify
the extremal values of energy absorption froma two-port system.This allows to define
a joint absorption Aj, i.e., the energy absorbed from the system normalized with
respect to the input energy: Aj = 1 − (|s−

1 |2 + |s−
2 |2)/(|s+

1 |2 + |s+
2 |2). This quantity

is connected with the S-matrix coefficients through the following formula:

Aj = 1 + x

2
A1 + 1 − x

2
A2 −

√
1 − x2 Amod sin(
φ + δ) (23.8)

where

x = |s+
1 |2 − |s+

2 |2
|s+
1 |2 + |s+

2 |2

φ = arg(s+

1 /s+
2 )

Amod =
√

(1 − A1)(1 − A2) − | det S |2
A1 = 1 − |s11|2 − |s21|2
A2 = 1 − |s22|2 − |s12|2. (23.9)

The angle δ is a quite involved function4 of the S-matrix amplitudes and phases.
If x = ±1, there is only one input beam active at a time, and the single-beam

absorbances A1,2 are recovered. In general, at fixed x , a sweep of 
φ allows for Aj

to span an interval, which has extremes

4Specifically it holds tan δ = (ρ2 sinψ2 + ρ1 sinψ1) / (ρ2 cosψ2 − ρ1 cosψ1), where ρ1,2 and
ψ1,2 are the amplitudes and phases of the reflection coefficients s11 and s22, respectively.
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Fig. 23.5 Coherent absorption in a linear two-port lossy system. a Schematic of the system. b
schematic representing the coherent absorption phenomenon. The energy absorbed when both input
are switched on (joint absorption, A j ), depends sinusoidally on the input dephasing 
φ. The
set of points accessible by A j describes an ellipse when x is varied (x measures the imbalance
between the input beam intensities, see text). c–f Special cases for the coherent absorption ellipse.
Coherent perfect absorption (CPA) and coherent perfect transparency (CPT) can be achieved, also
simultaneously

Aj,± = 1 + x

2
A1 + 1 − x

2
A2 ±

√
1 − x2 Amod. (23.10)

Notably, spanning the beam imbalance x allows for Aj,± to define an ellipse: the
coherent absorption ellipse, which is depicted in Fig. 23.5b. It has a minimum and a
maximum, labeled Amin and Amax, which occur respectively for input beam imbal-
ances xmin and xmax = −xmin. These values are strictly connected with the singular
value representation of matrix S [48, 49].

The coherent absorption ellipse has several special cases. One of them occurs
when Amax = 1. Upon this condition, perfect absorption is attained; if xmax �= ±1
the phenomenon is called coherent perfect absorption (CPA, Fig. 23.5c). Indeed,
CPA is the result of a precise balance between interference and absorption: the sys-
tem completely absorbs the incident radiation as the consequence of an appropriate
choice of the input fields, which must match the requirements of phase and ampli-
tude dictated by the S-matrix. Not only: in order to have CPA, the S-matrix itself
must fulfill det S = 0. In other words, a system exhibits CPA when one of its eigen-
values is zero, and when the input fields constitute the corresponding eigenvector.
Another special case occurs when Amin = 0. Here, none of the incident radiation
is absorbed, even though the system itself may be absorptive for some other con-
figuration of the input field. This situation is usually referred to as coherent perfect
transparency (CPT, Fig. 23.5d). The diagrams represented in Fig. 23.5c–d depict the
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coherent absorption ellipse for an asymmetric device. If the device is symmetric,
i.e., if its S-matrix is invariant for the exchange of the two ports, the ellipse must be
symmetric, as depicted in Fig. 23.5e. In the case such a symmetric device exhibits
CPA and CPT, both of them occur at x = 0, i.e., for equal amplitude input beams
(Fig. 23.5f); here, the switch between CPA and CPT state can be driven by a sole
phase sweep of either one of the two input beams.

It should be noticed that the analysis given so far works one frequency at a time:
in general, the S-matrix is ω-dependent, and the coherent absorption ellipse depends
upon the frequency accordingly.

23.4.3 Universal Coherent Absorption Lineshapes

Armed with the toolbox of coherent absorption theory, we may now drive towards a
complete picture of the absorption phenomenology in themost general Fano-resonant
two-port two-oscillator model with asymmetry, as depicted in Fig. 23.1.

All the properties we are looking for stem from the expression of the extremal
joint absorbance, (23.10), obtained when employing the S-matrix of (23.3). Quite
lengthy calculations result in the expression

Aj,±(ω, x) = Auni(ω)

2

(
1 + rξ x ±

√
(1 − r2ξ 2)(1 − x2)

)
= Auni(ω) f±(rξ, x)

(23.11)
where Auni(ω) = 1 − | det S(ω)|2.

First, it can be noticed that (23.7) is correctly accounted for by (23.11): the single-
beam absorptions for the symmetric system described in Sect. 23.4.1 is here retrieved
setting ξ = 0 and x = ±1. What is now relevant is that the function 1 − | det S(ω)|2
truly plays a role of universal absorption lineshape, also when coherent absorption is
examined. It follows clearly from (23.11) that the coherent absorption ellipse depends
upon the frequency only through the factor Auni(ω), which stretches it without mod-
ifying its shape. The ellipse shape is instead described by the function f±(rξ, x).
In other words, for all the configurations of the input field x and of the system’s
lineshape- and asymmetry-governing parameters r and ξ , the absorption spectral
properties are completely dictated by the sole resonance parameters ωA,B , γA,B , and
�, which enter Auni(ω).

The form of the function f±(rξ, x) implies two interesting facts. First, CPT can
always be achieved in the present model: indeed, for x = −rξ one has f− = 0, hence
the minimum joint absorption is spectrally flat and equals zero. Second, CPA can be
achieved provided that peculiar yet simple conditions are met. One is that f+ = 1,
i.e., x = rξ , which is a matching condition between the (external) excitation beam
imbalance and the (internal) asymmetry properties of the resonator. Another is that
Auni(ω) = 1, or alternatively | det S(ω)|2 = 0, which we already encountered before
when analyzing the single-beam absorption of the symmetric system. As anticipated,
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Fig. 23.6 Universal coherent absorption lineshapes and the role of asymmetry. Rows (a–c) depict
three cases with increasing degrees of asymmetry: row (a), symmetric system; row (b), partially
asymmetric system, row (c), fully asymmetric system. In case (a) the coherent absorption ellipse
is horizontal and the joint absorption spectrum has maximum contrast. For increasing degrees of
asymmetry the ellipse becomesmore tilted and narrow, and themaximum/minimum joint absorption
spectra become closer and closer. Nonetheless, for appropriate choice of the parameters, joint
absorption can reach unity at two energy points (strong critical coupling, see Fig. 23.7)

this condition has a profound physical meaning and will be analyzed in depth in the
following Section.

To graphically clarify the content of (23.11), let’s focus on a special case that
will be further clarified in the following, i.e., the case where Auni(ω) has a double-
peak structure with the peaks reaching unity. The frequency-dependent coherent
absorption ellipses may assume several shapes depending on the parameters r and
ξ , or, better, on their product5 rξ . To further fix the ideas, suppose that r = 1 (i.e.,
t = 0, with the transmittance lineshapes being peaks, see Fig. 23.2d). Three peculiar
cases are reported in Fig. 23.6: in (a) we consider a symmetric system, where the
resonator has the same coupling with the two scattering channels. In (b) we consider

5This fact is interesting since the product rξ is directly connected with the cavity-exterior coupling
coefficients κ (see Sect. 23.2).
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a systemwhichpreferentially decays towards port 1, butwhich still has somecoupling
towards port 2. Finally, in (c), the extreme case of a system that only couples with
port 1 is represented. Clearly, this system is equivalent to a single-port system, as
port 2 only sees a constant and unity reflection dictated by the non-resonant channel.
In the middle column of Fig. 23.6 the coherent absorption ellipses are reported: in the
symmetric case, the ellipses are clearly symmetrical, always exhibit CPT at x = 0
and show CPA at x = 0, but only for the frequencies such that Auni = 1. In the
intermediate case, the ellipse is tilted, always exhibits CPT at x = −rξ and has its
maximum at x = rξ , reaching CPA at the appropriate frequencies. In the extreme
case where ξ = 1 the ellipse degenerates in a segment: no more coherent modulation
of the absorption is possible. This is a clear consequence of the fact that the system
communicates with the exterior with a single port, from which a double-peaked
absorption spectrum can however still be observed.

23.5 Weak, Strong, and Critical Coupling

The aim of this last Section is to draw a connection between the concepts of weak,
strong and critical coupling; to check whether they are compatible or not, and what
happens when they indeed coexist. While the transition between weak and strong
coupling has been studied since two decades ago [50], the interplay with critical
coupling has not been explored until the past few years [51, 52]. We provide here a
brief introduction to these concepts.

Weak and strong coupling are concepts mostly employed in the field of quantum
light-matter interaction, and refer to the cases where the light-matter coupling can, or
cannot, be treated in a perturbative way. In other words, in the weak coupling regime,
an ideal two-level system decays radiatively with a rate dictated by the Fermi golden
rule. This process is irreversible, as the internal energy of the two-level system is
lost towards the radiation bath. On the opposite side stands the strong coupling
regime: this occurs under conditions such that the photon emitted by the two-level
system could bounce back into the two-level system itself, being reabsorbed, and so
on in a loop long enough with respect to the time scales of other competing decay
mechanisms. In order to reach the strong coupling regime, the two-level systemmust
be embedded in a resonant cavity such that the characteristic ringing time (i.e., the
inverse of the Rabi frequency, eventually dictated by the modal volume of the cavity)
is small enough compared to the other decay rates.

Critical coupling—and the related undercoupling and overcoupling concepts—
are of key relevance when analyzing driven resonators in general; more closely con-
nected with our aims are the fields of radiofrequency and of photonics, where criti-
cal coupling is instrumental to optimize the operation of several resonant-enhanced
devices (like filters and detectors). Critical coupling occurs when the external decay
rate matches the internal one: in other words, when the time scale needed for a
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wavepacket to escape/enter the cavity is equal to the time needed for the wavepacket
to be absorbed within the cavity itself. Under this condition, all the energy which is
fed into the resonator is absorbedwithin the resonator itself (and eventually converted
into other forms of energy, if required by the application).

In light of these definitions, the two-peak CPA curves presented in Sect. 23.4.1
acquire a clear meaning: strong and critical coupling can occur simultaneously.
Indeed, CPA is nothing else than critical coupling observed in a two-port system,
and the double-peaked spectra are the fingerprint of strong coupling. This observation
may be, at a first glance, quite counterintuitive, as it is common knowledge that strong
coupling requires low losses to be observed. While this is true in general, a more
detailed look at the theory clarifies when and how strong and critical coupling may
coexist, and which are the key parameters ruling the phenomenology.

At the basis stands the condition for CPA: det S(ω) = 0. CPA occurs when it
exists a real ω such that the S-matrix determinant vanishes, i.e., when either one
or both zeroes ω̄± given in (23.6) are purely real. Here we consider the case of
tuned oscillators, while the more general case of detuned resonators is described in
[53]. Depending on the argument of the square root of (23.6) two situations can be
identified:

• Two real zeroes: strong critical coupling.
The zeroes occur at

ω0 ±
√

�2 − γ 2
B,i

when {
γA,e = γA,i + γB,i

γB,i < �
(23.12)

• One real zero: weak critical coupling.
The zero occurs at

ω0

when
γB,i(γA,e − γA,i) = �2. (23.13)

The first case is indeed strong critical coupling (SCC) because of the co-presence
of spectral feature splitting and (coherent) perfect absorption. In this situation, all
the incoming energy is absorbed into the internal dissipation mechanisms of both
oscillators A and B. Notice that the SCC occurs on a segment of the parameter space:
it is not a single and isolated condition on the parameters, and it can be easily met
provided that one is able to tune the damping rate of either resonator A or B, and
that the coupling � is sufficiently large with respect to the accessible values of the
damping rates.

In the second case we applied the nomenclature weak critical coupling (WCC),
which can at a first glance be motivated as being simply the counterpart of strong
critical coupling. However, the WCC condition is somewhat subtle and its full com-
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prehension requires further clarification. We will explore these details after analyz-
ing a “phase diagram” which summarizes the phenomenology of SCC and WCC.
Figure23.7 reports such a phase diagram. The solid lines identify the SCC andWCC
conditions following from (23.12) and (23.13), on a suitable cartesian plane. We also
reported as a dashed line the boundary between the regions where | det S(ω)|2 (or
equivalently Auni) is single- or double-peaked, which can be regarded as a definition
of weak and strong coupling, respectively.6 A set of spectra, corresponding to the
points reported in the chart on the left, are given in the right panels, which evidence
the crossing of strong and weak critical coupling conditions. We remind here that
these curves, which do not resemble at all the Fano lineshapes, are indeed observed in
systems which do exhibit Fano lineshapes: however, Fano shapes may only be found
in transmission and reflection, while (coherent) absorption curves always show the
universal curves Auni(ω) ∝ 1 − | det S(ω)|2 reported in Fig. 23.7.

We now clarify the meaning of weak critical coupling. In one sense, WCC can be
easily understood by considering the limiting casewhere resonatorsA andB aremore
andmore decoupled (� → 0), but maintain finite damping γ . In this case, the system
is essentially a single resonator coupledwith the scattering channels,which is the case
usually described by radiofrequency and photonics texts about resonator coupling.
Equation (23.13) becomes γA,e = γA,i, which is the usual critical coupling formula.
All the energy entering the system through the radiation channels is dissipated within
the resonator itself. On the phase diagram, the decoupled system can be thought of
as the coupled system where the SCC branch gradually reduces towards a point, and
where the WCC hyperbola degenerates to a line (Fig. 23.8a, b). The physics does not
depend any more on γB,i, as resonator B couples less and less to resonator A and
eventually not even to the exterior. Thus, the definition of weak coupling is justified
from the fact that there is no coupling between the resonators.

In another sense, WCC can be viewed as occurring in a system which can show
strong coupling (finite �), but such that there is almost no internal dissipation of
resonator A (γA,i → 0). The situation is depicted in Fig. 23.8a, c. This single-peaked
critical coupling is quite counterintuitive, as it arises from a system where there are
still two resonators, yet leading to a single-peaked spectrum with perfect absorption.
The existence of a single peak is simply that we are considering a region of the
phase diagram where the damping—either the external damping of resonator A or
the internal damping of resonator B—are too large compared with the coupling �.
It is interesting to notice that the WCC condition now reads more simply

�2

γA,eγB,i
= 1,

which is a condition on the cooperativity C = �2/2γA,eγB,i = 1/2. Meanwhile, it is
also significant to observe that in the present case of zero internal losses of resonator
A, the boundarybetween the regions of single- anddouble-peakeduniversal lineshape

6Notice, however, that the curve which separates the single- from the double-peak region of
reflectance and transmittance spectra is different. See also [50] for a discussion on this topic.
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Fig. 23.7 Phase diagram for the two-oscillator Fano resonant system, following from the analysis
of its universal coherent absorption lineshapes. Depending on the relative values of the damping
rates γ and of the coupling strength �, different regimes are observed. Below the dashed line,
the absorption lineshape is double-peaked, above it is single-peaked; hence the dashed line can be
regarded as the boundary between weak and strong coupling. The solid lines identify the parameter
combinations that give rise to (coherent) perfect absorption. Two different regimes can be identified:
strong critical coupling, where the absorption is double-peaked, and weak critical coupling, where
the absorption is single-peaked. The panels to the right elucidate the behavior of the lineshapes
when exploring different paths in the parameter space

Fig. 23.8 Limiting cases highlighting the nature of weak critical coupling. The full phase diagram
a evolves either in those represented in (b) or in (c), where, respectively, � → 0 or γA,i → 0
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spectra is described by a simple circumference (see Fig. 23.8a, c), which in formula
reads

γ 2
A,e + γ 2

B,i = 2�2.

23.6 Conclusions

In conclusion, we have provided a unified vision of strong, weak and critical cou-
pling, based on a simple coupled oscillator model with a nonresonant background
usually employed to describe Fano resonances in nanophotonic structures. Explor-
ing the parameter space of the model two significant features emerged: lineshape
inheritance, and the universal absorption lineshape. Detailed analysis on the absorp-
tion lineshapes—here carried out in the general framework of coherent absorption
theory for two-port systems—reveals a further intriguing phenomenon, the strong
critical coupling. This regime, where two oscillators are strongly coupled each other
and perfectly coupled with the environment, has a novel character and may prove
extremely useful to design devices where the quantum physics of strong light-matter
coupling is optimally exploited thanks to an effective interface with the exterior. All
of this is coupled with the rich and intriguing physics of Fano interference, whose
characteristic lineshapes can be harnessed to develop, for instance, advanced filtering
functionalities.
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