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Abstract Taking into account the real crystalline structure of the CuO2 plane and
the strong spin-fermion coupling, we study the influence of the intersite Coulomb
repulsion between holes on the Cooper instability of the spin-polaron quasiparticles
in cuprate superconductors. The analysis shows that only the superconducting d-
wave pairing is implemented in the whole region of doping, whereas the solutions
of the self-consistent equations for the s-wave pairing are absent. It is shown that
intersite Coulomb interaction V1 between the holes located at the nearest oxygen ions
does not affect the d-wave pairing, because its Fourier transform Vq vanishes in the
kernel of the corresponding integral equation. The intersite Coulomb interaction V2 of
quasiparticles located at the next-nearest oxygen ions does not vanish in the integral
equations, however, but it is also shown that the d-wave pairing is robust toward this
interaction for physically reasonable values of V2.

Keywords Cuprate superconductors · Unconventional superconductivity ·
Spin-charge coupling · Spin polarons · Intersite Coulomb interaction

1 Introduction

An analysis of the normal phase of cuprate superconductors has proved the Mott–
Hubbard-type insulator ground state [1–4] of these materials. When this conclusion
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was reached, it became clear that one should study cuprates at low doping on the
basis of the Hubbard model [3] in the regime of strong electron correlations (SEC). In
Ref. [1], the subsystem of copper spin momenta was considered within the resonating
valencebond theory and the charge excitations arising from thedopingwere interpreted
as a fermionic subsystem exhibiting the Cooper instability. Such a mechanism of
superconductivity was of electronic nature and resulted in high values of the critical
temperatures Tc.

Since a number of experimental data indicated that the main dynamics of Fermi
excitations takes place in the CuO2 planes [5,6], the 2D Hubbard model on a sim-
ple square lattice was widely used to describe unconventional superconductivity in
cuprates [7–16]. An important issue concerning the role of the long-range part of
Coulomb interaction in the problem of unconventional superconductivity was raised
in Ref. [17]. The authors noted that the majority of previous investigations was limited
to the short-range Coulomb interaction U having in mind the computational difficul-
ties connected with taking into account the Fourier transform of the intersite Coulomb
repulsion Vq. The rising interest in the role of the intersite Coulomb interaction in
the structure of the phase diagram of high-temperature superconductors has made the
extended Hubbard model (the Shubin–Vonsovsky model [18]) popular [19–22]. This
model takes into account not only one-site Hubbard repulsion, but the interaction of
electrons at different sites of the crystalline lattice within several coordination spheres.
In Refs. [20–22], a phase diagram presenting the result of competition of supercon-
ducting phases with different types of order parameter symmetry was calculated in
the Born weak-coupling approximation.

However, along with a number of important results on the normal and supercon-
ducting properties of cuprates obtained in the framework of the Hubbard model and
extended Hubbard model, it appeared that one had not taken into account specific
features of the real structure of materials. A minimal realistic microscopic model
for cuprates was proposed by Emery [23]. The three-band Emery model takes into
account the real structure of the CuO2 plane which is characterized by the spatial sep-
aration of the subsystem of oxygen holes and the subsystem of the localized copper
spins. Besides, this model considers the dx2−y2 -orbitals of copper ions and px - and
py-orbitals of oxygen ions (Fig. 1). An account for the on-site Coulomb correlations
allowed one to pass to the regime of SEC and describe theMott–Hubbard ground state
in the case of one hole per unit cell. In Ref. [24], it was shown that doping of one extra-
hole in the CuO2 plane leads to the formation of a spin-singlet state of a copper hole
and a hole moving along the binding oxygen orbital (the Zhang–Rice singlet). In this
context, investigations concerning the possibility of obtaining the effective one-band
Hubbard-like models for cuprate superconductors have been carried out [25–28]. As
a result, a number of studies in this direction were performed in the framework of the
t − J and t − J ∗ models on a simple square lattice. Within such an approach, the same
fermions formed both the charge and the spin subsystems, and the superconducting
d-wave pairing was initiated by the exchange and the spin-fluctuation mechanisms
[29–33].

Thus, on the fundamental level, it would seem that the nature of an effective
attraction between the Hubbard fermions was revealed. However, there remained
a problem related to the intersite Coulomb repulsion of oxygen holes. The point
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Fig. 1 Structure of CuO2 plane.
Here V1 denotes the Coulomb
interaction between holes
located at the nearest-neighbor
oxygen sites, V2 and V ′

2 are the
interactions between holes at the
next-nearest-neighbor oxygen
sites (Color figure online)

is that the Cooper pairing of fermions caused by the kinematic [9], exchange and
spin-fluctuation mechanisms considered in the Hubbard [34,35], t − J [30–33],
or t − J ∗ [36,37] models is suppressed by the intersite Coulomb repulsion V1 of
charge carriers located at the neighboring sites. This effect is most pronounced in the
superconducting d-wave channel [38,39] and, as a result, the Cooper instability dis-
appears completely at V1 ranging from 1 to 2 eV. Hence, in order to compensate
the strong repulsive interaction, it was necessary to take into consideration addi-
tional contributions connectedwith the electron-phonon [40], spin-fluctuation [41] and
charge-fluctuation interactions [38,39,42]. In Refs. [38,39,42], the value V1 = 0.2
eV for the intersite Coulomb interaction was used. Such a value, which was found
for holes located at the nearest-neighbor unit cells in the framework of the cluster
perturbation theory [27,43], is significantly less than the value of spin-fluctuation
pairing gs f = 1.5 eV, therefore the superconducting d-wave pairing was preserved.
Indeed, the Wannier transform of the Hamiltonian reduces the initial value of the
intersite interaction to V1 ≤ 0.3eV, but at the same time generates the Coulomb
interactions between holes located at the distant sites [44]. Such distant interac-
tions are always ignored within the cluster calculations, despite the fact they result
in significant renormalization of the Fermi excitation spectrum [45]. Though, the
cluster perturbation theory takes into account the strong intra-atomic interactions rig-
orously, the correct description of the Coulomb interaction between fermions located
at the nearest-neighbor and especially distant unit cells remains problematical (see,
for example, [46]). For the superconducting s-wave pairing caused by the kinematic
interaction [9], Cooper pairing was implemented even at high values of V1. It should
be noted that an argument connected with the screening of the Coulomb interaction
was sometimes used. However, in this case, it is not very convincing, as it relates to
the repulsion between holes at the nearest distances [34] and the case of low densi-
ties [47].

The problem of neutralization the Coulomb repulsion between oxygen holes
demanded a revision of existing theories of the Cooper instability in cuprates. In
this regard, it is pertinent to note that a similar problem existed in the past in the theory
of classical superconductors (see, for example, review [48]). The problem was solved
by the authors of Refs. [49,50], who showed that electron-phonon interaction in some
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region of the momentum space initiates an effective attraction between fermions. This
effective attraction can compensate the bare Coulomb repulsion.

In our previous paper [51], it has been shown that the solution for the problem of the
superconducting d-wave pairing stability toward the intersite Coulomb interaction in
cuprates is connected with the rejection of the Hubbard model as well as its effective
low-energy variants and a return to the model describing the real structure of the
CuO2 plane. As such a model, the spin-fermion model (SFM) [46,52–57] was used
which was obtained in the early stages of the development of cuprate superconductors
theory. The SFM follows directly from the Emerymodel [23] and takes into account by
perturbation theory the effects of covalentmixing between copper and oxygen orbitals.
It is essential that the SFM takes into account the two-orbital character of the oxygen
subsystem and the spatial separation between the oxygen and copper subsystems. In
Ref. [51] it was shown that an account of the above-mentioned features of the SFM
leads to the stability of the superconducting dx2−y2 -wave pairing with respect to the
intersite Coulomb repulsion.

However, in Ref. [51] the mentioned stability was proved only for the case of
intersite Coulomb repulsion of holes located at the nearest-neighbor oxygen ions V1,
while the role of repulsion between holes located at the more distant oxygen ions
remains unclear (the influence of V2 on the superconducting d-wave pairing has been
also mentioned in Ref. [42]). Additionally, the possibility of the superconducting s-
wave pairing in the SFM remains unclear. Note that in Refs. [38,39,42] it was claimed
that for the Hubbard model in the limit of SEC, where the projected electron operators
are used, the s-wave pairing is prohibited since it violates the fundamental rigorous
restriction of no double occupancy of a quantum state at any lattice site. However,
such a restriction is absent in the SFM, since the carriers are the holes moving over
oxygen ions.

In this paper, we study the influence of the Coulomb interaction between holes
at the next-nearest-neighbor oxygen ions of the CuO2-plane on the superconducting
dx2−y2 -wave and s-wave pairings.

2 Spin-Fermion Model

It is known that the main features of the electronic structure of the CuO2 planes can be
described by the Emery model [23,47]. In accordance with experimental data, without
doping (one hole per unit cell), the ground state of the system is the Mott–Hubbard
insulator [2]. In the Emery model, the regime of SEC

�pd, (Ud − �pd) � tpd > 0 (1)

corresponds to such a ground state. These inequalities, on the one hand, require rig-
orous accounting of the Coulomb correlations and, on the second hand, allow one to
reduce the Emery Hamiltonian and obtain the SFM [46,52–57] describing the subsys-
tem of oxygen holes interacting with the localized copper spins. The Hamiltonian is
given by
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Ĥsp− f = Ĥh + Ûp + V̂pp + Ĵ + Î , (2)

where

Ĥh =
∑

kα

(
ξkx a

†
kαakα + ξky b

†
kαbkα + tk(a

†
kαbkα + b†kαakα)

)
,

Ûp = Up

N

∑

1,2,3,4

[
a†1↑a

†
2↓a3↓a4↑ + (a → b)

]
δ1+2−3−4,

V̂pp = 4V1
N

∑

1,2,3,4
αβ

φ3−2 a
†
1αb

†
2βb3βa4α δ1+2−3−4

+V2
N

∑

1,2,3,4
αβ

θ
xy
2−3 a

†
1αa

†
2βa3βa4α δ1+2−3−4

+V2
N

∑

1,2,3,4
αβ

θ
yx
2−3 b

†
1αb

†
2βb3βb4α δ1+2−3−4,

Ĵ = J

N

∑

f kqαβ

ei f (q−k)u†kα(S f σαβ)uqβ,

Î = I

2

∑

f δ

S f S f +2δ.

Here

ξkx(y) = εp + 2Vpd + τ(1 − cos kx(y)) − μ, tk = (2τ − 4t)sk,x sk,y,

sk,x = sin
kx
2

, θ
xy(yx)
k = V ′

2

V2
eikx(y) + e−iky(x) , ukβ = sk,xakβ + sk,xbkβ,

τ = t2pd
�pd

(
1 − �pd

Ud − �pd − 2Vpd

)
, J = 4t2pd

�pd

(
1 + �pd

Ud − �pd − 2Vpd

)
.

(3)

The Hamiltonian Ĥh describes the oxygen holes in the momentum representation.
Here a†kα(akα) are the hole creation (annihilation) operators in the oxygen subsystem

with the px -orbitals (Fig. 1), α = ±1/2 is the spin projection. Similarly, b†kα(bkα)

are operators in the oxygen subsystem with the py-orbitals. The bare one-site energy
of oxygen holes is εp, μ is the chemical potential, and t is the hopping integral. The
operator Ĵ describes the exchange interaction between the oxygen subsystem and
the subsystem of the spins localized at copper ions. Here, S f is the operator of a
spin localized at the site with index f and σ = (σ x , σ y, σ z) is the vector of the
Pauli matrices. The operator Î describes the superexchange interaction between the
neighboring copper spins arising in the fourth order of the perturbation theory. The
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intersite Coulomb interaction between holes (Fig. 1) is described by the operator V̂ .
In the Hamiltonian, n̂ f +x(y)/2 = ∑

σ n̂ f +x(y)/2,σ are the operators of the number of
holes at the oxygen site f + x(y)/2. Here, x = (1, 0) and y = (0, 1) are the lattice
basis vectors in the units of the lattice parameter.

Whenwriting theHamiltonian (2), we take into account that the hopping integrals in
the first and the second terms can have different signs for different hopping directions
owing to the different phases of the wave functions. For the sake of compactness,
we denote momenta over which the summation is performed by numbers 1,…,4. The
Dirac delta-function δ1+2−3−4 takes into account the momentum conservation law.

Below,we use the commonly accepted set of parameters for the Emerymodel: tpd =
1.3 eV, �pd = 3.6 eV,Ud = 10.5 eV, Vpd = 1.2 eV [58,59]. For the hopping integral
of the holes, we use the value t = 0.12 eV [60] and suppose that the superexchange
parameter I = 0.136 eV (1570 K) in accordance with experimental data on cuprate
superconductors [59]. For the parameters of the intersiteCoulomb interactions,we sup-
pose that V1 is ranging from 1 to 2 eV [61] and V2 and V ′

2 are ranging from 0.5 to 1 eV.

3 Equations for Green’s Functions

It is important that the exchange energy between the localized and itinerant spins
within the SFM is large, namely, J = 3.38 eV � τ ≈ 0.47 eV. Therefore, to describe
the dynamics of oxygen holes it is necessary to take into consideration the exchange
interaction rigorously. This problem can be solved in the framework of the Zwanzig–
Mori projection technique [62,63]. The calculation method of the energy structure of
the spin-polaron quasiparticles based on this technique within the SFMwas described
in detail inRefs. [60,64–66]. In accordancewith thismethod, it is essential to introduce,
besides akα and bkα , another operator

Lkα = 1

N

∑

f qβ

ei f (q−k)(S f σαβ)uqβ, (4)

which describes the strong spin-charge coupling. To consider the Cooper instability,
it is required to supply the basis set {akα, bkα, Lkα} by the operators

a†−kᾱ, b†−kᾱ, L†
−kᾱ, (5)

where ᾱ = −α. Supplementation of these operators allows one to study not only the
normal, but the anomalous thermodynamic means within an unified approach.

In the framework of the projection technique [62,63], the system of equations for
Green’s functions can be represented in the matrix form

ω Ĝ(k, ω) = K̂ (k) + D̂(k)K̂−1(k) Ĝ(k, ω), (6)

where the retarded Green’s functionmatrix is determined by the elementsGi j (k, ω) =
〈〈Aik |A†

jk〉〉ω, and the elements of energetic D̂(k) and normalization K̂ (k) matrices
are given by the expressions
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Di j (k) =
〈
{[Aik, Ĥsp− f ], A†

jk}
〉
, Ki j (k) =

〈
{Aik, A

†
jk}

〉
. (7)

The operators Aik on the right side of the expressions (7) run over the set of six basis
operators

{ak↑, bk↑, Lk↑, a†−k↓, b†−k↓, L†
−k↓}, (8)

and the brackets 〈. . .〉 denote the thermodynamic mean.
After the calculation of the elements (7) and the substitution to the matrix equation

(6), the set of equations for the normal Gi j and anomalous Fi j Green’s functions can
be represented in the form ( j = 1, 2, 3)

(ω − ξx )G1 j = δ1 j + tkG2 j + JxG3 j + �1k F1 j + �2k F2 j ,

(ω − ξy)G2 j = δ2 j + tkG1 j + JyG3 j + �3k F1 j + �4k F2 j ,

(ω − ξL)G3 j = δ3 j Kk + (JxG1 j + JyG2 j )Kk + �5k

Kk
F3 j ,

(ω + ξx )F1 j = �∗
1kG1 j + �∗

3kG2 j − tk F2 j + Jx F3 j ,

(ω + ξy)F2 j = �∗
2kG1 j + �∗

4kG2 j − tk F1 j + Jy F3 j ,

(ω + ξL)F3 j = �∗
5k

Kk
G3 j + (Jx F1 j + Jy F2 j )Kk . (9)

Here, G11 = 〈〈ak↑|a†k↑〉〉, G21 = 〈〈bk↑|a†k↑〉〉, and G31 = 〈〈Lk↑|a†k↑〉〉. The func-
tions Gi2 and Gi3 are determined in a similar way with the only difference that a†k↑ is

replaced by b†k↑ and L†
k↑, respectively. The anomalous Green’s functions are defined

as F11 = 〈〈a†−k↓|a†k↑〉〉, F21 = 〈〈b†−k↓|a†k↑〉〉, F31 = 〈〈L†
−k↓|a†k↑〉〉. For Fi2 and Fi3,

the same type of notation regarding the second index is used. The functions involved
in the system (9) are given by the expressions

ξx(y) = ξ0(kx(y)), Jx(y) = Jsk,x(y), Kk =
〈
{Lk↑, L†

k↑}
〉
= 3

4
− C1γ1k,

ξL(k) = εp − μ − 2t + 5τ/2 − J + [(τ − 2t)(−C1γ1k + C2γ2k)

+ τ

2
(−C1γ1k + C3γ3k) + JC1(1 + 4γ1k)/4 − IC1(γ1k + 4)]K−1

k . (10)

Here, γ jk are the square lattice invariants: γ1k = (cos kx + cos ky)/2, γ2k =
cos kx cos ky , γ3k = (cos 2kx + cos 2ky)/2.

The introduced superconducting-order parameters � j,k

�1k =
〈
{[ak↑, Ĥsp− f ], a−k↓}

〉
, �4k =

〈
{[bk↑, Ĥsp− f ], b−k↓}

〉
,

�2k =
〈
{[ak↑, Ĥsp− f ], b−k↓}

〉
, �5k =

〈
{[Lk↑, Ĥsp− f ], L−k↓}

〉
,

�3k =
〈
{[bk↑, Ĥsp− f ], a−k↓}

〉
, (11)
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are related to the anomalous averages as follows

�1k = − 2

N

∑

q

(Up

2
+ V2 cos(ky − qy) + V ′

2 cos(kx − qx )
) 〈
aq↑a−q↓

〉
,

�2k = −4V1
N

∑

q

φk−q
〈
aq↑b−q↓

〉
,

�3k = −4V1
N

∑

q

φk−q
〈
bq↑a−q↓

〉
,

�4k = − 2

N

∑

q

(Up

2
+ V2 cos(kx − qx ) + V ′

2 cos(ky − qy)
) 〈
bq↑b−q↓

〉
,

�5k = 1

N

∑

q

{
Ik−q

(〈
Lq↑L−q↓

〉 − C1
〈
uq↑u−q↓

〉) + 8IC1
〈
uq↑u−q↓

〉}

+ J

N

∑

q

{
−2γ1q

〈
Lq↑L−q↓

〉 + (
3/2 − 4C1γ1k

) 〈
uq↑u−q↓

〉}

+ 2

N

∑

q

(
ξ(qx )sq,x + tqsq,y

) 〈
aq↑L−q↓

〉

+ 2

N

∑

q

(
ξ(qy)sq,y + tqsq,x

) 〈
bq↑L−q↓

〉

−Up

N

∑

q

{(
3/8 − C1

2
cos kx

) 〈
aq↑a−q↓

〉+
(
3/8 − C1

2
cos ky

) 〈
bq↑b−q↓

〉}

−V1
N

∑

q

{
(3/4 − 2C1γ1k + C2γ2k)ψq + C2 sin kx sin kyφq

}(〈
aq↑b−q↓

〉

+ 〈
bq↑a−q↓

〉) − 1

N

∑

q

{
V2(C1 cos ky − C2γ2k) cos qy

+V ′
2

(
−3

8
+ C1 cos kx − C3

2
cos 2kx

)
cos qx

} 〈
aq↑a−q↓

〉

− 1

N

∑

q

{
V2(C1 cos kx − C2γ2k) cos qx

+V ′
2

(
−3

8
+ C1 cos ky − C3

2
cos 2ky

)
cos qy

} 〈
bq↑b−q↓

〉
. (12)

Here Ik = 4Iγ1k , φk = cos
kx
2

cos
ky
2
, ψk = sin

kx
2

sin
ky
2
, and the average

〈
uq↑u−q↓

〉 = − s2q,x

〈
aq↑a−q↓

〉 − s2q,y

〈
bq↑b−q↓

〉

−ψq
(〈
aq↑b−q↓

〉 + 〈
bq↑a−q↓

〉)
. (13)
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When deriving the system (9), we assume that the state of the localized momenta
corresponds to the quantum spin liquid. In this case, the spin correlation functions
C j = 〈S0Sr j 〉 arising in (10) and (12) satisfy the relations

C j = 3
〈
Sx0 S

x
r j

〉
= 3

〈
Sy0 S

y
r j

〉 = 3
〈
Sz0S

z
r j

〉
, (14)

where r j is the position of a copper ion within the coordination sphere j . Besides,
〈Sxf 〉 = 〈Syf 〉 = 〈Szf 〉 = 0.

In the course of deriving the fifth equation in (12), the relation
〈(
S f σ↓αckα

) (
Sgσ↑βcpβ

)〉 = 2
〈(
S f Sg

)
ck↑cp↓

〉

− 〈(
S f σ↓αcpα

) (
Sgσ↑βckβ

)〉
(15)

is used for the averages with operators not reducing to the basis ones. Here, we
mean summation over indices α and β. The relation (15) is justified within the
SU(2)-invariant phase and allows one to express some average through an average
consisting of the basis operators. The use of relation (15) for the component of the
superconducting-order parameter�5k under summation sign in (12) leads to an appear-
ance of the anomalous average 〈Lq↑L−q,↓〉 playing the key role in the implementation
of the superconducting d-wave pairing in an ensemble of the spin-polaron quasiparti-
cles. For the thermodynamic means consisting of the scalar product of spin operators,
the decoupling procedure is used. As a result, the magnetic correlator C1 appears in
the first term on the right of the expression for �5k .

Directly after calculation of the commutators, the contribution of the intersite
Coulomb interaction to �5k has the form

−4V1
N

∑

1,2,3,4
αβ

φ1−2s1x s3yδ1−2+3−4
[〈
(Sk−1σ↑αa2α)(S−k−3σ↓βb4β)

〉

+ 〈
(Sk−3σ↑αb4α)(S−k−1σ↓βa2β)

〉]
, (16)

where Sk = 1

N

∑
f
e−ik f S f is the Fourier transform of a spin operator. As far as the

operators standing under the average cannot be reduced to the basis operators, even
after the use of the relation (15), we perform the decoupling procedure to the averages
(16) taking into account the SU(2)-invariance of the spin subsystem. This procedure
gives rise to the term proportional to V1 in the fifth equation (12).

Note that we neglect the contributions proportional to “density–density” correlators
arising as a result of decoupling of the averages in (10) and (12), because we consider
the case of low doping.

It follows from the analysis of the system (9) in the normal phase that the fermionic
excitations spectrum of the quasiparticles within the SFM is determined by the solu-
tions of the dispersion equation

detk(ω) = (ω − ξx )(ω − ξy)(ω − ξL) − 2Jx Jytk Kk

−(ω − ξy)J
2
x Kk − (ω − ξx )J

2
y Kk − (ω − ξL)t2k = 0. (17)
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The spectrum consists of three bands ε1k , ε2k and ε3k [66]. The branch ε1k with the
minimum at a point close to (π/2, π/2) of the Brillouin zone arises owing to the strong
spin-fermion coupling inducing both the exchange interaction between holes and the
localized spins at the nearest copper ions and spin-correlated hoppings. At the low
doping, the dynamics of holes is determined by the lower band ε1k .

4 Equations for the Components of the Superconducting-Order
Parameter

To analyse theCooper instability, we express the anomalousGreen’s functions in terms
of the �∗

lk parameters in the linear approximation

Fi j (k, ω) =
3∑

i, j=1

5∑

l=1

S(l)
i j (k, ω)

Detk(ω)
�∗

lk . (18)

Actual Green’s functions are F11(k, ω), F12(k, ω), F21(k, ω), F22(k, ω), F31(k, ω),
F32(k, ω) and F33(k, ω). Here, Detk(ω) = −detk(ω)detk(−ω), while the correspond-
ing functions S(l)

i j (k, ω) are listed in “Appendix”.
Using the spectral theorem [67], we find the expressions for the anomalous

averages and finally arrive at the closed set of uniform integral equations for the
superconducting-order parameters (l = 1, . . . , 5)

�∗
1k = − 2

N

∑

lq

(
Up

2
+ V2 cos ky cos qy + V ′

2 cos kx cos qx

)
M (l)

11 (q)�∗
lq ,

�∗
2k = −4V1

N

∑

lq

φk−qM
(l)
21 (q)�∗

lq ,

�∗
3k = −4V1

N

∑

lq

φk−qM
(l)
12 (q)�∗

lq ,

�∗
4k = − 2

N

∑

lq

(
Up

2
+ V2 cos kx cos qx + V ′

2 cos ky cos qy

)
M (l)

22 (q)�∗
lq ,

�∗
5k = − 1

N

∑

lq

R(l)
0 (q)�∗

lq + 1

N

∑

lq

Ik−q R
(l)
1a (q)�∗

lq

+ cos kx
1

N

∑

lq

R(l)
1b (q)�∗

lq + cos ky
1

N

∑

lq

R(l)
1c (q)�∗

lq

− γ2k
1

N

∑

lq

R(l)
2 (q)�∗

lq − sin kx sin ky
1

N

∑

lq

φq R
(l)
3 (q)�∗

lq

− cos 2kx
1

N

∑

lq

R(l)
4a (q)�∗

lq − cos 2ky
1

N

∑

lq

R(l)
4b (q)�∗

lq , (19)
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where the following functions are introduced:

R(l)
0 (q) = 3

4
V1ψqM

(l)
ab (q) + 2Jγ1qM

(l)
33 (q)

− (8IC1 + 3J/2)M (l)
uu (q) + 3

8
Up(M

(l)
11 (q) + M (l)

22 (q))

− 2
(
ξ(qx )sq,x + tqsq,y

)
M (l)

31 (q) − 2
(
ξ(qy)sq,y + tqsq,x

)
M (l)

32 (q)

− 3

8
V ′
2 cos qxM

(l)
11 (q) − 3

8
V ′
2 cos qyM

(l)
22 (q),

R(l)
1a (q) = M (l)

33 (q) − C1M
(l)
uu (q),

R(l)
1b (q) = C1

(
V1ψqM

(l)
ab (q) − 2JM (l)

uu (q) +UpM
(l)
11 (q)

− V ′
2 cos qxM

(l)
11 (q) − V2 cos qxM

(l)
22 (q)

)
,

R(l)
1c (q) = C1(V1ψqM

(l)
ab (q) − 2JM (l)

uu (q) +UpM
(l)
22 (q)

−V2 cos qyM
(l)
11 (q) − V ′

2 cos qyM
(l)
22 (q)),

R(l)
2 (q) = C2

(
V1ψqM

(l)
ab (q) − V2 cos qyM

(l)
11 (q) − V2 cos qxM

(l)
22 (q))

)
,

R(l)
3 (q) = V1C2M

(l)
ab (q),

R(l)
4a (q) = −V ′

2

2
C3 cos qxM

(l)
11 (q),

R(l)
4b (q) = −V ′

2

2
C3 cos qyM

(l)
22 (q),

M (l)
uu (q) = − s2qx M

(l)
11 (q) − s2qyM

(l)
22 (q) − ψqM

(l)
ab (q),

M (l)
ab (q) = M (l)

21 (q) + M (l)
12 (q),

M (l)
nm(q) = S(l)

nm(q, E1q) + S(l)
nm(q,−E1q)

4E1q(E2
1q − E2

2q)(E
2
1q − E2

3q)
tanh

(
E1q

2T

)
. (20)

Here E jq are the branches of the Fermi excitation spectrum which can be found from
the dispersion equation Detk(ω) = 0 in the superconducting phase. Below, we use
the system (19) to find the critical superconducting temperature of the spin-polaron
quasiparticles with specified types of the order parameter symmetry.

5 Implementation of the Superconducting d- and s-Wave Pairings of
Spin Polarons

One can see from the system (19) that the kernels of the integral equations are split.
Therefore, we can seek a solution of (19) in the form

�1k = B11 + B12 cos kx + B13 cos ky,

�2k = B21φk + B22ψk,

�3k = B31φk + B32ψk,
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�4k = B41 + B42 cos kx + B43 cos ky,

�5k = B51 + B52 cos kx + B53 cos ky + B54 cos kx cos ky
+ B55 sin kx sin ky + B56 cos 2kx + B57 cos 2ky, (21)

where the seventeen amplitudes B define the contribution of the corresponding basis
functions in the expansion of the order parameter components. Substituting these
expressions into (19) and equating the coefficients of the corresponding trigonometric
functions, we obtain the system of seventeen algebraic equations for the amplitudes
B. Solving this system with regard to the equation for the chemical potential μ, we
find the doping dependence of the critical temperature of the transition to the super-
conducting phase Tc(x) for different types of the order parameter symmetry. When
obtaining the equation for μ, we take into account that in the limit of T → Tc all the
components of the order parameter � jk → 0. As a result, we obtain the equation for
the chemical potential

x = 2

N

∑

q

f (ε1q)
[
Q3x (q, ε1q) + Q3y(q, ε1q)

]
(
ε1q − ε2q

) (
ε1q − ε3q

) , (22)

where x is the doping level, f (E) = (eE/T + 1)−1 is the Fermi–Dirac distribution
function and functions Q3x (k, ω) and Q3y(k, ω) are given in “Appendix”.

The self-consistent solutions of the seventeen equations for the amplitudes B with
regard to the equation for the chemical potential are presented in Fig. 2. The thin black
dashed curve shows the critical temperature for the transition to the superconducting

0 0.1 0.2 0.3 0.40

50

100

150

x

Tc , K

Fig. 2 Critical temperatures for the transition to the superconducting dx2−y2 phase versus doping x

calculated for the set of parameters J = 3.38, τ = 0.10, t = 0.12, I = 0.136 at Up = V2 = V ′
2 = 0 (thin

black dashed curve), Up = 0, V2 = V ′
2 = 0.1 (thin magenta dash-dotted curve), Up = 3, V2 = V ′

2 = 0
(bold blue dashed curve), Up = 3, V2 = V ′

2 = 0.1 (bold green dash-dotted curve), Up = 0, V2 = V ′
2 =

0.8 (thin brown curve) andUp = 3, V2 = V ′
2 = 0.5 (bold red curve). All the parameters are given in units

of eV (Color figure online)
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dx2−y2 phase versus doping at Up = V1 = V2 = V ′
2 = 0. An important aspect of

our approach is that an accounting for the Coulomb interaction between the nearest
neighbors V1 does not affect the dependence Tc(x) for the dx2−y2 -wave pairing, i.e.,
the thin black dashed curve is robust with respect to taking into account V1 �= 0 [51].
The cause of such a behavior can be revealed after analysis of the solutions (21) of
the system (19). In the range of doping, where the d-wave pairing is implemented
at T � Tc, the solutions of the algebraic system for the amplitudes B show that
only four of them B52, B53, B22, B32 are not equal to zero, besides, B52 = −B53,
B22 = −B32 and |B52|/|B22| ∼ 103. Thismeans that the quasimomentumdependence
of the superconducting gap is mainly caused by the fifth component of the order
parameter �5k which has the form

�
(d)
5k = B52 · (cos kx − cos ky). (23)

For the d-wave pairing at Up = V2 = V ′
2 = 0 the amplitudes B52 and B53 in

the equation for �5k are defined by the exchange coupling constant I rather than
by parameter V1. Therefore, we come to the conclusion that the intersite Coulomb
repulsion between holes located at the nearest oxygen sites does not suppress the
superconducting dx2−y2 -wave pairing [51].

Thus, in the case of the d-wave pairing at Up = V2 = V ′
2 = 0, instead of the

system of seventeen equations, we can obtain and solve a simple equation for the
critical temperature Tc [66,68,69]. This equation follows from the fifth equation of
the system (19) and has the form

1 = I

N

∑

q

(cos qx − cos qy)
2
(
M (5)

33 (q, ε1q) − C1M
(5)
uu (q, ε1q)

)
. (24)

In particular, it follows from (24) that the exchange interaction between the spin
momenta of copper ions acts as a mechanism enhancing the Cooper instability, in a
way that this interaction is transformed into an effective attraction owing to the strong
spin-charge coupling. Naturally, the solution of Eq. (24) and the system of seventeen
equations for the d-wave pairing is exactly the same and is shown with the thin black
dashed curve in Fig. 2.

Accounting for the Coulomb repulsion Up between two holes located on the same
oxygen ion in contrast to the intersite Coulomb interaction V1 leads to the suppression
for the superconducting d-wave pairing. However, the comparison of the bold blue
dashed curve (Up = 3 eV, V2 = V ′

2 = 0) and the thin black dashed curve (Up = V2 =
V ′
2 = 0) in Fig. 2 shows that this suppression is not crucial for the implementation of

high-temperature superconductivity, because at the optimal doping level x � 0.16 the
critical temperature holds high values.

It follows from the system (19) that one should seek the solution for the supercon-
ducting s-wave pairing in the form

�
(s)
1k = �

(s)
4k = B1,

�
(s)
2k = �

(s)
3k = 0,
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�
(s)
5k = B3 + 2Bcxγ1k + Bccγ2k . (25)

The calculations show that in this case the system of seventeen equations for the
amplitudes B has no nontrivial solutions. Consequently, within the SFM, which takes
into account the exchange energy between the localized and itinerant spins rigorously,
the superconducting s-wave pairing is not implemented. This is the main difference
of our theory of high-temperature superconductivity from theories based on effective
single-bandmodels of strongly correlated electrons on a square lattice, in which, along
with the superconducting d-wave pairing, there always exists a solution for the s-wave
pairing.

Let us consider the influence of the intersite Coulomb repulsion V2 and V ′
2 between

holes located at the next-nearest-neighbor oxygen ions of the CuO2 plane on super-
conducting pairing. In Fig. 2, the thinmagenta dash-dotted line depicts the dependence
Tc(x) obtained forUp = 0, V2 = V ′

2 = 0.1 eV and the thin brown curve corresponds
to Tc(x) forUp = 0, V2 = V ′

2 = 0.8 eV. One can see that the inclusion of V2 and V ′
2,

in contrast to the interaction V1, leads to the suppression of the dx2−y2 -wave pairing.
Besides, this suppression becomes stronger ifUp �= 0 (the bold green dash-dotted and
the bold red curves). However, the superconducting dx2−y2 -wave pairing appears to be
robust toward the influence of the intersite Coulomb repulsion between holes located
at the next-nearest-neighbor oxygen ions of the CuO2 plane and can be suppressed
only at unrealistic large values V2, V ′

2 > 0.5 eV.

6 Conclusion

In conclusion, we have shown that the neutralization of the negative influence of
the intersite Coulomb interaction in the superconducting d-wave channel of cuprate
superconductors is caused by two factors. The main factor is connected with the
consideration of the real crystalline structure of theCuO2 plane. In accordancewith this
factor, the Coulomb repulsion between fermions in the oxygen sublattice is described
by the corresponding Fourier transform

Vq = 4V1 cos(qx/2) cos(qy/2).

The second factor is caused by strong electron correlations. These correlations lead
to the appearance of the strong coupling between the localized copper spins and
the oxygen holes. As a result, the formation of spin-polaron quasiparticles occurs
in the system, and the Cooper instability appears between these quasiparticles. In
this case, the Coulomb repulsion between bare holes with the Fourier transform Vq
is renormalized into the interaction between the spin-polaron quasiparticles in such
a way that the quasimomentum dependence of this effective interaction corresponds
to the structure of the copper ions sublattice. As a result, it occurs that the effective
repulsion between spin polarons vanishes in the equation for the superconducting d-
wave pairing. At the same time, for the Cooper instability in the s-wave channel, the
contribution of the noted effective repulsion remains.
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Despite this fact, our self-consistent calculations show that within the spin-fermion
model only the superconducting d-wave pairing is implemented, whereas solutions for
the s-wave pairing are absent for all admissible doping levels. These results agree with
the experimental data on cuprate superconductors. In this connection, it should benoted
that in the framework of the t − J model in the region of doping levels relevant for the
cuprates, the superconducting s-wave pairing is implemented and the corresponding
critical temperatures significantly exceed Tc for the d-wave pairing. Concerning the
differences that arose, it is appropriate to point out that within our approach the copper
spins subsystem plays an essential role. This subsystem is separated from that of holes
at oxygen ions, whereas within the t − J model, the electron and spin degrees of
freedom refer to the same fermions.

Finally, we have shown that the intersite Coulomb repulsion between holes located
at the next-nearest-neighbor oxygen ions of the CuO2 plane suppresses the dx2−y2 -
wave pairing only at unphysically large values of these interactions. Taking into
account our previous result [51] on neutralization for the effect of the Coulomb inter-
action V1 for the nearest-neighbor oxygen sites, we conclude that accounting for the
real structure of the CuO2 plane leads to stability of the dx2−y2 -wave pairing toward the
strong intersite Coulomb repulsion. It is obvious that taking into account the Coulomb
interaction V3 does not affect the superconducting d-wave pairing because of the same
symmetry reason as that for V1 [51].

Note that the difference in the contributions of the Coulomb interaction to the
implementation of different superconducting phases also manifests itself in the Kohn–
Luttinger theory of superconductivity [70]. In this theory, the long-range Coulomb
repulsions within the lattice models usually contribute only to certain pairing channels
and do not affect the other channels. At the same time, the polarization contributions
have components in all the channels, and more than one of them usually plays in favor
of attraction. As a result, according to the authors [20–22], the intersite Coulomb
repulsion either does not affect at all the main component of the effective interaction
leading to pairing, or it suppresses the principal component without influencing the
secondary ones. However, in our case, the key role is played by the spatial separation
between two types of oxygen orbitals.
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Appendix

The functions S(l)
i j (k, ω) in anomalous Green’s functions Fi j (k, ω) have the form

S(1)
11 (k, ω) = Q3y(k,−ω)Q3y(k, ω),

S(2)
11 (k, ω) = S(1)

21 (k, ω) = Q3(k,−ω)Q3y(k, ω),
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S(3)
11 (k, ω) = S(1)

12 (k, ω) = S(2)
11 (k,−ω),

S(4)
11 (k, ω) = S(2)

12 (k, ω) = S(3)
21 (k, ω) = S(1)

22 (k, ω) = Q3(k,−ω)Q3(k, ω),

S(5)
11 (k, ω) = −Qy(k,−ω)Qy(k, ω),

S(3)
12 (k, ω) = Q3y(k,−ω)Q3x (k, ω),

S(2)
21 (k, ω) = S(3)

12 (k,−ω),

S(4)
12 (k, ω) = S(3)

22 (k, ω) = Q3(k,−ω)Q3x (k, ω),

S(4)
21 (k, ω) = S(2)

22 (k, ω) = S(4)
12 (k,−ω),

S(5)
12 (k, ω) = −Qy(k,−ω)Qx (k, ω),

S(5)
21 (k, ω) = S(5)

12 (k,−ω),

S(4)
22 (k, ω) = Q3x (k,−ω)Q3x (k, ω),

S(5)
22 (k, ω) = −Qx (k,−ω)Qx (k, ω),

S(1)
31 (k, ω) = −KkQy(k,−ω)Q3y(k, ω),

S(2)
31 (k, ω) = −KkQx (k,−ω)Q3y(k, ω),

S(3)
31 (k, ω) = S(1)

32 (k, ω) = −KkQy(k,−ω)Q3(k, ω),

S(4)
31 (k, ω) = S(2)

32 (k, ω) = −KkQx (k,−ω)Q3(k, ω),

S(5)
31 (k, ω) = Qxy(k,−ω)Qy(k, ω),

S(3)
32 (k, ω) = −KkQy(k,−ω)Q3x (k, ω),

S(4)
32 (k, ω) = −KkQx (k,−ω)Q3x (k, ω),

S(5)
32 (k, ω) = Qxy(k,−ω)Qx (k, ω),

S(1)
33 (k, ω) = −K 2

k S
(5)
11 (k, ω),

S(2)
33 (k, ω) = K 2

k S
(5)
12 (k,−ω),

S(3)
33 (k, ω) = S(2)

33 (k,−ω),

S(4)
33 (k, ω) = K 2

k S
(5)
22 (k, ω),

S(5)
33 (k, ω) = Qxy(k,−ω)Qxy(k, ω). (26)

where

Qx(y)(k, ω) = (ω − ξx(y))Jy(x) + tk Jx(y), Qxy(k, ω) = (ω − ξx )(ω − ξy) − t2k ,

Q3x(3y)(k, ω) = (ω − ξL)(ω − ξx(y)) − J 2x(y)Kk, Q3(k, ω) = (ω − ξL)tk + Jx JyKk .
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