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Abstract Order-disorder transitions of a vortex lattice
transfer type-II superconductors from a low critical current
state to a high one. The similar transition between different
current states can be caused by electromagnetic granularity.
A sigmoid curve is proposed to describe the correspond-
ing peak in a field dependence of the macroscopic critical
density. Using the extended critical state model, analytic
expressions are obtained for the field dependencies of the
local critical current density, the depth of equilibrium sur-
face region, and the macroscopic critical current density.
The expressions are well fit to published data.

Keywords Peak effect · Fishtail · Magnetization · Critical
current · Order-disorder transition · Boltzmann function ·
Extended critical state model · Phase separation · Type II
superconductor

1 Introduction

Some superconducting samples have magnetization loops
with a second peak (fishtail peculiarity) in high magnetic
fields. Reasons of the peak effect are generally attributed to
a phase transition of vortex lattice [1–4] or a magnetic phase
separation [5–7].
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Earlier, the critical state model [8–12] and the extended
critical state model [13, 14] were used to describe the peak
effect without considering underlying mechanisms. In these
works nonmonotonic dependencies of the critical current
density jc on magnetic field B are suggested. The depth of
equilibrium surface region ls shrinks at the magnetic field
range corresponding to the peak effect that is accounted
by the extended critical state model. To obtain the peak
at high fields, a bell-shaped function fpeak(B) is added
to a monotonic decreasing function jc(B). The fpeak(B)

function provides the growing part of the resulted non-
monotonic j

peak
c (B) function at high fields. The decreasing

part of the fpeak(B) function is not important to reveal
the peak because the unperturbed jc(B) dependence pro-
vides fast decrease of the j

peak
c (B) dependence at high

fields. A nondecreasing function, e.g., the logistic function,
can be used as the fpeak(B) function to provide the peak.
Figure 1 demonstrates that the curve computed with a bell-
shaped fpeak(B) function (the Gauss function) and the curve
computed with the logistic function are quite similar.

The logistic function is a part of a Boltzmann sigmoid
function, which is typically used to describe crossovers
between phases [15–18]. The Boltzmann sigmoid function
is written as

Y (t) = Y1 + Y2 − Y1

1 + e−(t−ttr )/tw
, (1)

where Y1 and Y2 are some quantities characterizing cor-
respondingly two different phases, t is a variable, ttr is
the transition middle, and tw is the transition wide. In the
next section, we apply the Boltzmann sigmoid function to
describe the peak n the field dependence of the critical
current density.
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Fig. 1 Comparison of the Gauss function and the logistic function as
a source of the peak in j

peak
c (B) dependencies

2 Peak Effect and Critical Current

The order-disorder transition of the 2D vortex lattice results
in an increasing of the local critical current density jc [1, 3,
4]. The ordered phase is characterized by smaller values of
jc and the upper critical field Bc2 = μ0Hc2 than the dis-
ordered phase. Let us denote i = 1 for the ordered phase
and i = 2 for the disordered one, which realizes at higher
H . Then, the order-disorder transition is described by the
Boltzmann function:

j
peak
c (B) = jc,1(B) + jc,2(B) − jc,1(B)

1 + e−(|B|−Btr0)/Bw0
, (2)

where Btr0 is the transition field, Bw0 is the transition width.
The monotonic function jc,i(B) is given in Appendix.

The near-surface region of superconducting samples does
not pin Abrikosov vortices. In works [19, 20], this region
is named as the fluxoid-free region. The magnetization of
the near-surface region is equilibrium that is a reason of
the asymmetry of M(H) loops along the H axis. For gross
samples, an influence of the near-surface region on mag-
netization loops may be neglected. Then, the macroscopic
critical current density J bulk

c (H) is described by the jc(B)

function with B = μ0H . In smaller samples, the sur-
face noticeably affects on the macroscopic critical current
density Jc and the magnetization that is accounted by the
extended critical state model [21–23]. Due to avoiding the
near-surface region, the macroscopic critical current density
Jc(H) depends of the size and the form of samples:

Jc(H) = J bulk
c (H) (1 − ls(H)/R)n , (3)

where ls is depth of the equilibrium (fluxoid-free) region,
R is the radius of the current circulation, n is the index
defined by the geometry of the grain (n = 2 for a thin
plate, and n = 3 for a cylindrical sample). The depth ls(H)

inversely correlates with the jc(B) dependence. The peak
in the j

peak
c (B) dependence is accompanied by a decrease

of ls values such that ls,2/ls,1 ≈ jc,1/jc,2. This relation is
observed in asymmetric magnetization loops with the peak
effect [14, 24–27]. The depth of the equilibrium region
during the order-disorder transition changes as

l
peak
s (H) = ls,1(H) + ls,2(H) − ls,1(H)

1 + e−(|H |−Htr0)/Hw0
, (4)

where Htr0 = Btr0/μ0 and Hw0 = Bw0/μ0. The phe-
nomenological ls(H) function is suggested in Appendix.

Inserting functions (2) and (4) to (3), we obtain the
second peak in the macroscopic critical current density:

J
peak
c (H) = Jc,1(H) + Jc,2(H) − Jc,1(H)

1 + e−(|H |−Htr)/Hw
, (5)

with Jc,i(H) = J bulk
c,i (H)(1 − ls,i (H)/R)n, i = 1, 2, Hw is

about Hw0. The macroscopic critical current density under-
goes the transition with the middle at H = Htr, which is
some higher than Htr0.

Some explanations of the peak effect ground on idea of
electromagnetic granularity producing two current systems
[28, 29]. The electromagnetic granularity may emerge due
to phase separation in some superconductors. The phase
separation into the insulating and superconducting regions
is observed in Ba0.6K0.4BiO3 superconductor in the range
of fields and temperatures overlapping with the peak effect
[14]. A network consisting from non-superconducting and
superconducting clusters is formed in the sample due to
the phase separation. The number and the size of the clus-
ters depend on extrinsic parameters (temperature, transport
current, and magnetic field). Upon partial suppression of
superconductivity by the magnetic field or the temperature,
the volume share of superconducting clusters PS as well as
their size R increase that can be described by the Boltz-
mann sigmoid function (1). This is reflected as the second
peak in the magnetization loop without the peak in the jc(B)

dependence [14]. Given the i-th state is characterized by
PS = PS,i and R = Ri , the transition is also described by
(5) with Jc,i(H) = PS,i(H)J bulk

c (H) [1 − ls(H)/Ri(H)]n.

3 Discussion

Equations (2) and (4) require zero field values of jc,1, ls,1
and jc,2, ls,2 to fit experimental magnetization loops. The
one pair of the parameters is easy estimated from the width
and the asymmetry of magnetization loops. The other pair
is connected with an unclear value of the transition width
Bw0. So the ratio jc,2(0)/jc,1(0) is indeterminate. There is

the value of j
peak
c at zero field, j

peak
c (0) = jc0, which is

independent of Bw0. The parameter A = jc,2(0)/jc0 is easy
estimated from magnetization loops. The value of jc0 is a
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combination of jc,1(0) and jc,2(0). To operate with jc0 it
is convenient to use the sigmoid function, which equals to
0 at B = 0. We suggest the sigmoid function S(B) =
1/(1+ |B/Btr0|−Btr0/Bw0). This sigmoid function has S = 0
at B = 0, S = 0.5 at B = Btr0 and S(B) approaches to 1
at B � Btr0. Difference between curves computed with the
suggested sigmoid function and curves computed with the
Boltzmann sigmoid function is insignificant. From here, the
peak effect due to the order-disorder transition is described
by the functions:

j
peak
c (B) = jc0(B)

(
1 + A − 1

1 + |Btr0/B|Btr0/Bw0

)
; (6)

l
peak
s (H) = ls0(H)

⎛
⎝1 +

(
1
A

− 1
) (

1 − R
ls0(H)

H
Hirr

)
1 + |Htr0/H |Htr0/Hw0

⎞
⎠ ,(7)

where Hirr is the irreversibility field. With using these equa-
tions, the detailed parametrization of magnetization loops
is reached [27]. The expression for the macroscopic critical
current density is obtained from (3):

J
peak
c (H) = Jc0(H)

(
1 + AJ − 1

1 + |Htr/H |Htr/Hw

)
, (8)

where AJ = A((R − ls0/A)/(R − ls0))
n, Htr ≈ Htr0(R −

ls0/A)/(R − ls0) and Hw = Hw0Htr/Htr0.
Figure 2a shows the magnetization loops computed with

different depths of the surface equilibrium region for the
case of the order-disorder transition. For all the plotted
loops, the peak heightA equals to 15. All the loops are com-
puted with the same values of Hc2 and Htr0 = 0.01Hc2,
Hw0 = 0.5Htr0. The values of Hirr depend on the ls0/R

ratio: Hirr = 0.302Hc2 for ls0 = R/30, Hirr = 0.100Hc2

for ls0 = R/10, and Hirr = 0.029Hc2 for ls0 = R/3. It is
seen that the second peak is presented on both a magneti-
zation branch for the growing magnetic field and a branch
for the reversed magnetic field. Magnetization loops with
the higher ls0/R ratio are more asymmetric and have the
less pronounced second peak in the branch for the reversed
magnetic field. The macroscopic critical current density
corresponding to the magnetization loops in Fig. 2a is pre-
sented in Fig. 2b. The Jc(H) dependencies decrease faster
for the higher ls0/R ratio. The observed peak in the Jc(H)

dependencies moves to lowerH as the ls0/R ratio increases.
The position of the second peak depends on T and R [26,

27, 30, 31]. For thin superconducting films, small samples,
and polycrystalline samples consisting from small grains,
the second peak locates near zero H and may be unob-
servable. Also, the second peak position is expected to be
influenced by the angle between the magnetic field direction
and crystallographic planes of an anisotropic superconduc-
tor. Shift of Hpeak within a required field range may be
desirable for some applications.
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Fig. 2 Magnetization loops (a) and macroscopic critical current den-
sities (b) computed for various ls0. Arrows show the direction of
magnetic field change

4 Conclusions

The second peak in M(H) loops is resulted from the mag-
netic transition from the state with lower Jc0 values to
the state with the higher ones. This takes place due to the
order-disorder transition of the vortex lattice or to the phase
separation. The peak appearance request such a change of
some parameters (e.g. jc, ls , PS , R), that their evolutions are
described by the Boltzmann sigmoid function. The peak in
the Jc(H) dependence can occur without the corresponding
peak in the local critical current density jc(B).

The magnetization loops with the fishtail were com-
puted by using the extended critical state model and a
sigmoid function as the source of the peak. The simplicity
of (6), (7), and (8) make them suitable for parametrization
of magnetization loops. The presented approach repro-
duces various magnetization loops with the second peak.
Recently magnetization loops of Y1−xNdxBa2Cu3O7−δ

(x = 0.02, 0.11, 0.25) superconductors were successfully
described [26, 27].



1788 J Supercond Nov Magn (2018) 31:1785–1789

Appendix

The dependence of the local critical current density jc on the
inner magnetic field B is described by a decreasing func-
tion jc(B). The Kim [32], a power [33], and an exponential
[21] model are usually used. We support the following
generalized jc(B) dependence [34]:

jc(B) = jc0
1 − |B/Bc2|α
1 + |B/B0|α , (9)

where α is positive dimensionless coefficient. This func-
tion gives better agreement with experimental dependencies
in field range from 0 to Hc2 than the earlier generalized
dependence [35].

The simple phenomenological ls(H) dependence is writ-
ten as

ls(H) = ls0 (1 + |H |/H1) , (10)

where H1 is the increasing rate. The magnetization loops
becomes reversible in H higher than the irreversibility field
Hirr. So the ls(H) dependence increases from ls0 at H = 0
to R at H = Hirr. Equation (10) can be rewritten as

ls(H, T ) = ls0 + (R − ls0)|H |/Hirr . (11)

As distinct from H1, the value of Hirr depends on the size R.
Expressing Jc(H) at H = 0 as Jc0 = jc0(1 − ls0/R)n,

one obtains the magnetic field dependence of the macro-
scopic critical current density:

Jc(H) = Jc0
1 − |H/Hc2|α
1 + |H/H0|α (1 − |H/Hirr|)n . (12)

A scaling of pinning force at different temperatures is
resulted from this equation [34]. Equation (12) successfully
describes Jc(H) dependencies for most superconductors
without the peak effect.

References

1. Kierfeld, J., Vinokur, V.: Dislocations and the critical endpoint of
the melting line of vortex line lattices. Phys. Rev. B 61, R14928
(2000)

2. Chou, M.J., Horng, H.E.: The quasiorder-disorder phase transition
and peak effect in MgB2 type-II superconducting materials and
thin films. Ann. Phys. 19, 128 (2010)

3. Babich, I.M., Brandt, E.H., Mikitik, G.P., Zeldov, E.: Critical cur-
rent in type-II superconductors near the order-disorder transition.
Phys. Rev. B 81, 054517 (2010)

4. Zehetmayer, M.: How the vortex lattice of a superconductor
becomes disordered: a study by scanning tunneling spectroscopy.
Sci. Rep. 5, 9244 (2015)

5. Gorbatsevich, A.A., Kopaev, Y.V., Tokatly, I.V.: Stratification and
superconducting droplets in high-Tc superconductors. JETP Lett.
52, 95 (1990). [Pis’ma ZETF 52, 736 (1990)]

6. Nagaev, E.L.: Phase separation in high-temperature supercon-
ductors and related magnetic systems. Phys. Usp. 38, 497–520
(1995)

7. Kenzelmann, M.: Exotic magnetic states in Pauli-limited super-
conductors. Rep. Prog. Phys. 80, 034501 (2017)

8. Johansen, T.H., Koblischka, M.R., Bratsberg, H., Hetland, P.O.:
Critical-state model with a secondary high-field peak in jc(B).
Phys. Rev. B 56, 11273–11278 (1997)

9. Chandran, M.: Field distribution in thin superconductors with
secondary peak in magnetisation. Phys. C 304, 202–212 (1998)

10. Chaddah, P., Roy, S.B., Chandran, M.: Inferring equilibrium mag-
netization from hysteretic M-H curves of type-II superconductors.
Phys. Rev. B 59, 8440–8443 (1999)

11. Ravikumar, G., Bhagwat, K.V., Sahni, V.C., Grover, A.K.,
Ramakrishnan, S., Bhattacharya, S.: Phenomenological model for
history effects and metastability in weakly pinned superconduc-
tors. Phys. Rev. B 61, R6479–R6482 (2000)

12. Inanir, F., Celebi, S.: Model calculations for the high-field peak of
the fish-tail effect in the magnetostriction of type-II superconduc-
tors. J. Alloys Compd. 427, 1–4 (2007)

13. Gokhfeld, D.M.: Secondary peak on asymmetric magnetization
loop of type-II superconductors. J. Supercond. Novel Magn. 26,
281–283 (2013)

14. Balaev, D.A., Gokhfeld, D.M., Popkov, S.I., Shaykhutdinov, K.A.,
Klinkova, L.A., Zherikhina, L.N., Tsvokhrebov, A.M.: Increase
in the magnetization loop width in the Ba0.6K0.4BiO3 supercon-
ductor: possible manifestation of phase separation. JETP 118,
104–110 (2014)

15. Zablotskii, V.: Thermal partial vortex depinning and channel for-
mation in type-II superconductors. Supercond. Sci Technol. 14,
L25 (2001)

16. Sukhareva, T.V., Finkel, V.A.: Phase transition in the vortex struc-
ture of granular YBa2Cu3O7−δ HTSCs in weak magnetic fields.
JETP 107, 787–793 (2008)

17. Navarro-Verdugo, A.L., Goycoolea, F.M., Romero-Melendez, G.,
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