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a b s t r a c t

We consider acoustic wave transmission in a non-axisymmetric
waveguide which consists of a cylindrical resonator of radius R and
length L and two cylindrical waveguides of radius r < R whose
axes are shifted relative to the axis of the resonator and relative to
each other by azimuthal angle ∆φ. We find multiple bound states
in the continuum (trapped modes) with nonzero orbital angular
momentumunder variation of L due to full destructive interference
of resonantmodes leaking intowaveguides. For∆φ = π/2we find
the degenerate bound states in the continuumwhose contribution
into the scattering wave function is complex and supports giant
vortical acoustic intensity spinning inside the resonator.

© 2018 Elsevier Inc. All rights reserved.

Considerable attention has recently been focused on bound states in the continuum (BIC) or the
trapped modes in perturbed acoustic waveguides. Many different geometrical configurations with
Neumann boundary conditions have been studied. These studies have shown that the existence of
trapped modes is very sensitive to choice of geometry. Up to now geometrical configurations were
chosen to reduce the effective dimension of the acoustic waveguide. Chronologically, the following
specific perturbed acoustic waveguides were considered. In 1951 Urcell [1,2] considered a sphere
placed on the axis of a cylindrical guide and shown that a trapped mode exists for selected radius of
the sphere. Linton andMcIver [3] proved the existence of an infinite number of trappedmodes for the
case of cylindrical waveguide containing an axisymmetric obstacle, in particular a thin circular sleeve.

Similarly, the dimension is reduced in acoustical waveguides of rectangular cross-section in y0z
plane and directed along the x-axis with obstacle shaped only in the x0y plane so that the thickness
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of the perturbed waveguide along the z-axis d is constant. Then the scattering channels are given
by the eigenmodes quantized along the z-axis with corresponding Neumann boundary conditions
at the walls positioned at z = ±d/2. The utmost case of these structures is a two-dimensional
acoustical waveguide formed by two infinite parallel lines at distance d containing a circle of radius
R < d [4] or multiple circles [5,6] positioned symmetrically between them. The trapped modes are
antisymmetric about the centerline of the guide to determine them as the symmetry protected BICs.
More sophisticated BICs of the same symmetry as the symmetry of the continuumwere demonstrated
recently in Refs. [7–9].

A different class is the fully three-dimensional systems. For example, in the case of
non-axisymmetric obstacle inside the cylindrical waveguide Hein and Coch [10] numerically com-
puted acoustic resonances and BICs by solving the eigenvalue problem. Here we consider similar
non-axisymmetric waveguide but without an obstacle inside as shown in Fig. 1. The axisymmetric
case shown in Fig. 1(a) preserves the orbital angular momentum (OAM) m because of the rotational
symmetry around the central axis that effectively reduces the dimension of the waveguide to two.
The BICs with m = 0 were shown to occur under variation of the length of the resonator [8] due to
full destructive interference of resonant states [11]. An equivalent explication of the BICs is that under
variation of the resonator length the eigenmodes ψ1, ψ2 of the same symmetry as the symmetry of
propagating modes of the waveguides become degenerate. Then the coupling of the superposed state
a1ψ1 + a2ψ2 with the continuum can be canceled by a proper choice of the superposition coefficients
a1 and a2 [12].

One can similarly consider BICs with m ̸= 0. As before these BICs occur due to the accidental
degeneracy of the inner eigenmodes of the cylindrical resonator ψmnl(r, φ, z) = Jm(µmnr)eimφψl(z)
and ψmn′ l′ (r, φ, z) = Jm(µmn′ r)eimφψl′ (z) under variation of the length. Because of the degeneracy of
the eigenmodes relative to ±m the BIC turns out to be degenerate relative to ±m in the form

ψm
BIC (r, φ, z) = [AJm(µmnr)ψl(z) + BJm(κmn′ r)ψl′ (z)]

{
cosmφ
sinmφ (1)

In this paper, we consider BICs with OAM in the cylindrical resonator with non-axisymmetrically
attached cylindrical waveguides of semi-infinite length as shown in Fig. 1(b) and (c). The lack of
rotational symmetry results in resonant excitation of eigenmodes with m ̸= 0 even if zero OAM
m = 0 mode is injected through the waveguide. Our primary goal is to consider BICs which can be
complex

ψBIC (r, φ, z) =

∑
ml

AmlJm(κmnr)ψl(z) exp(imφ) (2)

where coefficients of superposition |Amnl| ̸= |A−mnl|. Then the BIC can carry the vector of acoustic
energy flux which will be referred to the acoustic intensity vector [13]

−→
j = imag(ψ∗

∇ψ) = |ψ |
2
∇arg(ψ) (3)

spinning inside the resonator.
For analysis of the BICs we employ the coupled mode theory (CMT) adapted for the Neumann

BC [14]. The approach allows us to analytically predict the eigenfrequencies of the BICs as well as their
shape functions. Wewill demonstrate that our approach not only represents an alternative numerical
technique for finding BICs but provides an efficient analytical tool for calculation of the BICs in the
two-mode approximation for the case in Fig. 1(b) and the four-mode approximation for the case in
Fig. 1(c)).

1. Acoustic coupled mode theory for open cylindrical resonators

An unambiguous tool for analysis of BICs is the effective non Hermitian Hamiltonian derived for
open acoustic resonators in Refs. [8,14]. It is a result of the Feshbach projection [15,16] of the total
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Fig. 1. Cylindrical resonator of radius R and length L with two attached cylindrical waveguides of radius r < R. The whole
waveguide system is (a) axisymmetric, (b) non-axisymmetric with waveguides attached coaxially, and (c) non-axisymmetric
with the waveguide axis misaligned by azimuthal angle difference∆φ = π/2.

space resonator plus waveguides onto inner space of the resonator. The propagating modes in the
hard cylindrical waveguides with Neumann boundary conditions are described by

ψpq(r, φ, z) = φpq(r)
1

2π
√
kpq

exp(ipφ + ikpqz), (4)
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φpq(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2

J0(µ0q)
J0(µ0qr), p = 0,√

2
µ2

pq − p2
µpq

Jp(µpq)
Jp(µpqr), p = 1, 2, 3, . . . ,

where r , are φ the polar coordinates in the x0y-plane, µpq is the qth root of equation

dJp(µpqr)
dr

⏐⏐⏐⏐
r=1

= 0

imposed by the Neumann boundary condition on the walls of sound hard cylindrical waveguide.

k2pq = ω2
− µ2

pq (5)

The dimensional quantities r, z, kpq are measured in terms of the radius of the waveguide r and
frequency is measured in the terms of the ratio s/R where s is the sound velocity. The propagating
bands degenerate with the respect to the sign of OAM are classified by two indexes, the OAM index
p = 0,±1,±2, . . . and radial index q = 1, 2, 3, . . . . Profiles of propagating functions φmq(r) cos pφ
and φmq(r) sin pφ are depicted in Table 1. The inner Hilbert space of the closed cylindrical resonator is
given by the following eigenmodes

Ψmnl(r, φ, z) = ψmn(r)

√
1
2π

exp(imφ)ψl(z), (6)

where

ψmn(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2

J0(µ0nR)
J0(
µ0nr
R

),m = 0√
2

µ2
mn − m2

µmn

Jm(µmnR)
Jm(
µmnr
R

),m = 1, 2, 3, . . . ,

ψl(z) =

√
2 − δl,1

L
cos[π (l − 1)z/L], (7)

l = 1, 2, 3, . . . and z is measured in terms of the waveguide radius. The corresponding eigenfrequen-
cies are

ω2
mnl =

[
µ2

mn

R2 +
π (l − 1)2

L2

]
(8)

whereµmn is thenth root of the equation dJp(µmnr)
dr

⏐⏐⏐
r=R

= 0which follows from theNeumannboundary

condition on the walls of hard cylindrical waveguide.
Then the Feshbach projection of the total space of the open system onto the inner eigenmodes of

the closed cylindrical resonator (6) gives us the following non Hermitian Hamiltonian [8,14]

Ĥeff = ĤR − i
∑
C=L,R

∑
pq

kpqŴC,pqŴ+

C,pq. (9)

The matrix elements of Ŵ is given by overlapping integrals

W C
mnl;pq = ψl(z = zC )

∫ 2π

0
dφ′

∫ 1

0
r ′dr ′ψpq(r ′, φ′)Ψmn(r(r ′, φ′), φ(r ′, φ′)) (10)

where zC = 0, L are the position of edges of the resonator along the z-axis. Hence according to Eq. (7)
we have

ψl(0) =

√
2 − δl,1

L
, ψl(L) = ψl(0)(−1)l−1.
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Table 1
Cut-off frequencies and shapes of propagating modes.

Number of channel Cut-off frequency Indexes Mode shape

1 0 p = 0, q = 1

2 1.84118 p = ±1, q = 1

3 3.0542 p = ±2, q = 1

4 3.831706 p = 0, q = 2

5 4.2012 p = ±3, q = 1

6 5.3176 p = ±4, q = 1

7 5.33145 p = ±1, q = 2

Fig. 2. Circles show cross-sections of waveguides with unit radius and resonator with radius R. Filled area shows integration
area in Eq. (10).

Integration is performed over the cross section of the attached waveguides as shown in Fig. 2.
According to Fig. 2 one can link the polar coordinates of the resonator and of the waveguide through
the following equation

r sinφ = r0 + r ′ sinφ′, r cosφ = r ′ cosφ′. (11)

The formalism of the effective nonHermitian Hamiltonian forms a powerful basis for calculation of
transmittance of sound waves through the resonator via the scattering matrix (S-matrix) [17,18]. Its
matrix elements are given by the inversion of the matrix Ĝ = (Ĥeff −ω2)−1, i.e., by the Green function

SpqC;p′q′C ′ = −δC,C ′δp,p′δq,q′ − 2ikpq
∑
mnl

W C∗

pq;mnlGmnl;m′n′ l′W C ′

m′n′ l′;p′q′ . (12)

When thewaveguides are coaxially attached to the resonator as shown in Fig. 1(a) the azimuthal index
is preserved to havem = p. The total Hilbert space and respectively the S-matrix is decomposed into
the subspaces classified bym:

SpqC;q′C ′ = −δC,C ′δq,q′ − ikpq
∑
nl

W C∗

pq;nlG
p
nl;n′ l′W

C ′

n′ l′;pq′ . (13)
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Fig. 3. Transmittance of a cylindrical resonator with radius R = 2.5 for the case of non-axisymmetrically attached cylindrical
waveguides of unit radius vs. frequency and length of the resonator L. Both waveguides are shifted relative to central axis of the
resonator by a distance r0 = 1.1 but have∆φ = 0. The solid green lines show the eigenfrequencies of the closed resonator with
corresponding indexes mnl. The positions of four BICs are shown by closed white circles. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

The S-matrix (13) shows that for transmission of wave with the azimuthal index p there is no
scattering into other channels p′

̸= p for coaxial case.
For the non axisymmetrically attached waveguides as shown in Fig. 1(b) the S-matrix is not

diagonal in the azimuthal index p that substantially increases the computational costs. The advantage
of the effective Hamiltonian approach compared to other numerical methods (finite difference
methods, the mode-matching techniques etc.) is that we can truncate the matrix Ĥeff retaining only
those eigenmodes whose eigenfrequencies are close to the frequency of incident wave (resonant
approximation) [14,19].

2. BICs with orbital angular momentum

In what follows we restrict ourselves to the case of the first open channel p = 0, q = 1 in the
frequency domain 1.8412 > ω > 0 where the propagating wave in waveguide is independent of
r and φ as shown in Table 1. We take the following specific parameters of the axysymmetric open
cylindrical resonator: the radius R = 2.5, the waveguide shift relative to the resonator axis r0 = 1.1
while the length L is varied. All these quantities are measured in terms of the waveguide radius. Fig. 3
shows the transmittance of circular resonator calculated via Eq. (12) given by |S01L;01R|2. In Fig. 4 we
present the scattering function calculated through the Lippmann–Schwinger equation [14,20]

ψL(r ′, φ′, z) =
1

√
4πk01

[eik01zφ10 +

∑
pq

S01L;pqLe−ikpqzφpq(r ′, φ′)], z < 0,

ψmnl(r, φ, z) = −i
∑
m′n′ l′

Gmnl;m′n′ l′

√
kp
π

W L
m′n′ l′;01, 0 < z < L,

ψR(r ′, φ′, z) =
1

√
4πk01

∑
pq

S01L;pqReikpqzφpq(r ′, φ′), z > L. (14)

Only the real part of the function which is shown in the form of the pressure field at the surface of the
whole structure.

The complex eigenvalues zr of the effective Hamiltonian

Ĥeffψr (r, φ, z) = zrψr (r, φ, z) (15)
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Fig. 4. (Color online) Real part of scattering wave for ω = 0.7 (a) and ω = 1.5 (b). The length of resonator L = 3.

Fig. 5. (Color online) Evolution of resonant widths under variation of the resonator length.

correspond to the positions and widths of the resonant modes ψr (r, φ, z) [17]. The case Im(zBIC ) = 0
defines a BIC mode with zero resonant width and frequency ω2

BIC = zBIC [8]. The results of numerical
calculation of the resonantwidths as dependent on the resonator length L are presented in Fig. 5. There
are four events of the resonant width turning to zero marked by red open circles. They correspond
to four BICs listed in Table 1 and shown in Fig. 3 by closed white circles. As was discussed in the
Introduction the BICs are the result of accidental degeneracy of the eigenmodes of the same symmetry.
There are a few features worthy to discuss. (i) One can see from Fig. 3 that the BIC points are
slightly shifted from the degeneracy points because of the contribution of the evanescent modes to
the effective Hamiltonian (9) [12]. These evanescent modes contribute into the Hermitian resonator
Hamiltonian ĤR to modify as follows

ĤR = ĤR +

∑
C=L,R

∑
p>0,q

kpqŴC,pqŴ+

C,pq (16)

and respectively shift the points of degeneracy of the modified Hamiltonian ĤR. (ii) Among the
eigenfrequencies there are eigenfrequencies independent of L. As a result we obtain pairs of the BICs
with the eigenfrequencies close to each other as presented in Table 2 and seen from Fig. 3. (iii) The
modal expansion of the BICs has a property am,n,l = a−m,n,l resulting in the angular dependence of
the BICs in the form cosmφ as seen from the patterns in Fig. 6 and modal expansion coefficients
in Fig. 7. (iv) Besides the Fridrich–Wintgen BSCs there are numerous symmetry protected odd BICs
ψmn(r)ψl(z) sinmφ which have zero overlapping integral with the first propagating channel p =

0, q = 1 according to Table 1.

3. Spinning BICs

In previous section we considered the BICs for the case when both waveguides were attached to
the cylindrical resonator in a non-axisymmetric way as shown in Fig. 1(b) with∆φ = 0. That makes
the effect of both waveguides identical and summation over C = L, R in the effective Hamiltonian (9)
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Fig. 6. (Color online) Patterns of BICs from Table 2.

Table 2
Parameters of the BICs for ∆φ = 0.

BIC number ω L m n l

1 1.5506 4.733 0 2 1
±1 1 3

2 1.5522 4.037 0 2 1
0 1 3

3 1.6895 4.072 ±3 1 1
±1 1 3

4 1.691 3.7115 ±3 1 1
0 1 3

simply gives rise to a factor of 2. Let us nowattach thewaveguides in a non-coaxialwaywith azimuthal
angle difference ∆φ as shown in Fig. 1(c). Then the coupling matrices (10) become dependent on
the waveguide, either left or right. Because both waveguides are shifted relative to the axis of the
resonator by the same distance r0 as shown in Fig. 8 there is exact relation between the coupling
matrix elements

W L
mnl;01 = Wmnl, W R

mnl;01 = (−1)l−1eim∆φWmnl (17)

that results in the effective Hamiltonian

⟨mnl|Ĥeff |m′n′l′⟩ = ω2
mnlδmm′δnn′δll′ − ik01[1 + (−1)l+l′ei(m−m′)∆φ

]W L
mnlW

L
m′n′ l′

∗
. (18)

The transmittance is shown in Fig. 9. Fig. 10(a) shows the scattering function (14) that demonstrates
effect of twisted acoustic pressure field given by real part of ψ . This figure is complemented with
quiver plots of the acoustic intensity vector (3) in Fig. 10(b).

In the present paper we consider the case∆φ = π/2 as shown in Fig. 8. Numerical solution of Eq.
(15) reveals multiple BICs as shown in Fig. 11. Corresponding BICs embedded into the first channel
0 < ω < 1.84118 are listed in Table 3 and shown by closed white circles in Fig. 9. Surprisingly, the
number of the BICs increased compared to the former case of axisymmetric waveguide with∆φ = 0.
Some patterns of the most interesting BICs are presented in Fig. 12.
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Fig. 7. (Color online) Modal expansion coefficients |amnl| of BICs shown in Fig. 5 for the case∆φ = 0.

Fig. 8. (Color online) Waveguides attached with azimuthal angles difference∆φ.

Let us expand the BICs over the eigenmodes of the closed resonator

ψBIC (r, φ, z) =

∑
mnl

amnlψmnl(r, φ, z) (19)

and substitute into Eq. (15). Neglecting the evanescent modes we obtain the following equation for
the BIC

(ω2
mnl − ω2

BIC )amnl = ik10Wmnl

∑
m′n′ l′

[1 + (−1)l+l′ei(m−m′)∆φ
]am′n′ l′W ∗

m′n′ l′ . (20)

Introducing bmnl = amnlW ∗

mnl we rewrite this equation as follows

(ω2
mnl − ω2

BIC )bmnl = ik10|Wmnl|
2

∑
m′n′ l′

[1 + (−1)l+l′ei(m−m′)∆φ
]bm′n′ l′ . (21)
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Fig. 9. Transmittance of a cylindrical resonator with radius R = 2.5 vs. frequency and length of the resonator. Both waveguides
are shifted relative to central axis of the resonator by a distance r0 = 1.1 and have ∆φ = π/2. The solid green lines show
eigenfrequencies of closed resonator with corresponding indexes mnl. The positions of the BICs are shown by closed white
circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 10. (a) Real part of scattering function for ω = 1.83 and L = 4.56. (b) Phase of the scattering function shown in gray and
acoustic intensity vector at z = L/2. Open red circles mark points where the phase singularities (phase dislocations) cross the
plane z = L/2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. (Color online) Evolution of resonant widths and resonant frequencies under variation of the resonator length with
shifted waveguides.
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Table 3
Parameters of BICs for ∆φ = π/2.

BIC number ω L m n l

1 1.6907 3.7126 ±3 1 1
0 1 3

2 1.76 3.944 ±1 1 3
0 2 2

3 1.5523 4.0454 0 2 1
0 1 3

4 1.6894 4.157 ±1 1 3
±3 1 1

5 1.6894 4.1692 ±1 1 3
±3 1 1

6 0.748 4.2166 0 1 3
±1 1 1

7 1.4293 4.3972 0 1 3
±2 1 2

8 1.826 4.5624 ±2 1 3
±3 1 2

9 1.5526 4.6674 0 2 1
±1 1 3

Fig. 12. (Color online) Patterns of the BICs from Table 3.

The solution of Eq. (20) shows that only those eigenmodes of the closed resonator participate in
the BICs which undergo the degeneracy under variation of the length L of the resonator in full
correspondence with the FW scenario. The only difference with the standard FW theory is that each
eigenmode is degenerate in OAM ±m with the exception of BIC 7 which is formed by one double
degenerate eigenmode ±2, 1, 2 and one non degenerate eigenmode 0, 1, 3 as shown in Fig. 7. Let us
consider some interesting BICs in more detail.

3.1. BIC 5

Let us consider BIC 5 which is formed by four eigenmodes ±1, 1, 3 and ±3, 1, 1 as shown in Fig. 7.
We have from Eq. (21)

(ω2
113 − ω2

BIC )b113 = 2ik10|W113|
2(b113 + b−311),

(ω2
311 − ω2

BIC )b−311 = 2ik10|W311|
2(b113 + b−311),

(ω2
311 − ω2

BIC )b311 = 2ik10|W311|
2(b311 + b−113),
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Table 4
Modal expansion coefficients of BIC 5 from Table 3.

amnl m n l

0.688 −3 1 1
−0.163 3 1 1
0.136 −0.09i −1 1 3
0.163 1 1 3

(ω2
113 − ω2

BIC )b−113 = 2ik10|W113|
2(b311 + b−113). (22)

Here we took into account that the coupling matrix elements (10) are real and W−mnl = Wmnl. Eqs.
(22) are easily solved to give

b113 + b−311 = 0, b311 + b−113 = 0 (23)

and correspondingly the BIC frequency ωBIC = ω113 = ω311. Substituting here the eigenfrequencies
(8) we obtain for BIC 5

ωBIC =
µ31

R
= 1.68, Lc =

2πR√
µ2

31 − µ2
11

= 4.16, (24)

where the numerical values of µmn are listed in Table 1. Comparison with numerical data listed in
Table 3 shows a rather good agreement. Eq. (23) predicts for the modal expansion coefficients

a311W311 = −a−113W113, a−311W311 = −a113W−113, (25)

Numerical evaluation of the coupling matrix elements Wmnl;01 (10) gives us the following values
for W113 = 0.403,W311 = 0.174 and respectively according to Eq. (25) we obtain a311/a−113 =

a−311/a113 = −W113/W311 = 4. These relations are also close to numerical results in Table 3 obtained
with the use of the effective Hamiltonian (9) expanded onto 2016 eigenmodes andwith account of 71
evanescent modes (see Table 4).

Eq. (25) shows that at the point (24) we have two degenerate BICs which according to Eq. (19) can
be presented

ψBIC,1(r, φ, z) ≈ W311ψ11(r)ψ3(z)e−iφ
− W311ψ31(r)ψ1(z)e3iφ,

ψBIC,2(r, φ, z) ≈ W311ψ11(r)ψ3(z)eiφ − W311ψ31(r)ψ1(z)e−3iφ . (26)

The degeneracy of BIC 5 is related to the symmetry of the closed resonator relative to φ → −φ as
seen from Eq. (19). As the BIC point is approached in the parametric space the BIC solution dominates
in the scattering function

ψ ≈

∑
r=1,2

αrψBSC,r (r, φ, z). (27)

where the superposition coefficients tend to infinity and extremely sensitive to the way of ap-
proach [12]. This phenomenon constitutes the important effect of enhancement of the injected sound
within the resonator [12,21,22]. More interesting is that the scattering function (27) carries vortical
acoustic intensity (3) as demonstrated in Fig. 13. The intensity vector follows ∇arg(ψ) according to
Eq. (3). The phase of the scattering function arg(ψ)/π is shown by gray scale in Fig. 13(a) for z = L/2.

3.2. BIC 7

BIC 7 is given by two degenerate eigenmodes ±2, 1, 2 and single eigenmode 0, 1, 3. This BIC is
interesting since one of linear combinations of degenerate modes forms function J2(µ21r)ψ2(z) sin 2φ
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Fig. 13. (Color online) Phase of the scattering function and acoustic intensity at z = L/2 in the close vicinity to BICs 5 and 8.

Table 5
Modal expansion coefficients of BIC 7 from Table 3.

amnl m n l

0.5929 −2 1 2
0.5929 2 1 2
−0.537 0 1 3

which has zero coupling with both waveguides shifted by angle ∆φ = π/2 and therefore is a
symmetry protected BIC. Then the other two modes

ψ1 = J2(µ21r)ψ2(z) cos 2φ, ψ2 = J0(µ01ψ3(z)) (28)

become degenerate with variation of the resonator length L to yield

Lc =

√
3πR
µ21

= 4.46, ωBIC =
2π
Lc

= 1.41. (29)

This is also close to the numerical data in Table 3. Approximating BIC 7 mode by superposition

ψBIC ≈ a212
ψ212 + ψ−212

√
2

+ a013ψ013

we obtain from Eq. (21)

(ω2
212 − ω2

BIC )b212 = 2ik10|W212|
2(2b212 + b013),

(ω2
013 − ω2

BIC )b013 = 2ik10|W013|
2(b013 + 4b212). (30)

This equation gives for the modal expansion coefficients

2a212W212 = −a013W013 (31)

Numerical evaluation of the coupling matrix elements (10) gives us the following values for W212 =

0.117,W013 = 0.27 and subsequently according to Eq. (25) a212/a013 = −1.154. This ratio is also
close to numerical results in Table 5.

3.3. BIC 8

BIC 8 is given by a pair of double degenerate eigenmodes ±2, 1, 3, and modes ±3, 1, 2. The first
two degenerate modes forms function

J2(µ21r)ψ3(z) sin 2φ



A.A. Lyapina et al. / Annals of Physics 396 (2018) 56–70 69

Table 6
Modal expansion coefficients of BIC 8 from Table 3.

amnl m n l

0.671 −3 1 2
−0.671i 3 1 2
−0.128 + 0.18i −2 1 3
−0.128 + 0.18i 2 1 3

which has zero coupling with both waveguides shifted by angle ∆φ = π/2 and therefore is a
symmetry protected BIC. Then the other three eigenmodes

J2(µ21r)ψ3(z) cos 2φ, ψ±312(r, φ, z) (32)

become degenerate for variation L to yield

Lc =

√
3πR√

µ2
31 − µ2

21

= 4.71, ωBIC = 1.81, (33)

which again is a good agreement with the numerical data in Table 3. The BIC 8 shape function mode
is given

ψBIC ≈ a213
ψ213 + ψ−213

√
2

+ a312ψ312 + a−312ψ−312

. From Eq. (21) we have

(ω2
213 − ω2

BIC )b213 = ik10|W213|
2
[4b213 + (1 + i)b312 + (1 − i)b−312],

(ω2
312 − ω2

BIC )b312 = 2ik10|W312|
2
[(1 − i)b213 + b312],

(ω2
312 − ω2

BIC )b−312 = 2ik10|W312|
2
[(1 + i)b213 + b−312]. (34)

At the BIC point these equations give ωBIC = ω213 = ω312 and the following solution for BIC 8:

W312a312 = −(1 − i)W213a213,W312a−312 = −(1 + i)W213a213, a−312 = ia312. (35)

The numerical results in Table 6 deviate fromEqs. (35) for the frequency of BIC 8 frequency 1.81 is close
to the next propagating band at 1.84 where the contribution of the evanescent modes is important.

4. Conclusions

We considered acoustic trapped modes or bound states in the continuum in a non-axisymmetric
duct-cavity structure which consists of a cylindrical resonator and two cylindrical waveguides whose
axes are shifted relative to the axis of the resonator by a distance r0. Moreover the axes of the
waveguides can be shifted relative to each other by azimuthal angle ∆φ as shown in Fig. 1(c) and
8. The way of attachment does not change the eigenfrequencies of the closed resonator but changes
the effective non-HermitianHamiltonian. The eigenvalue spectrumof the resonator can be rearranged
in a realistic acoustic experiment by the use of piston-like hollow-stem waveguides tightly fit to the
interior boundaries of a cylindric cavity [8].

Even in the simplest case r0 ̸= 0,∆φ = 0 two cases the orbital angular momentum (OAM) m is
not preserved because of the lack of rotational symmetry. In that case we found multiple BICs with
nonzero OAM under variation of the resonator length L which differ from the BICs with zero OAM
found in the axisymmetric cylindricalwaveguide [8]. Irrespectively to the choice of r0 the BICs occur at
the points of degeneracy of two eigenmodes of the same symmetry of the closed cylindrical resonator.
That mechanism of wave localization was first described by [11] and has been so far experimentally
realized only in microwave set-ups [23,24].

Far more rich variety of the BICs is observed in the case when the axes of the waveguides are
shifted relative to each other by azimuthal angle ∆φ. The two resonance FW scenario is replaced by
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interference of three or four resonant modes with to form two degenerate complex BICs related to
each other by complex conjugation. Respectively the BICs carry the intensity vectors with opposite
direction. Independently of the choice of ∆φ or r0 the injected wave with zero orbital angular
momentum m = 0 transmits and reflects with same OAM when only the first channel is opened
for the frequency ω < 1.841. However the case ∆φ ̸= 0 is of special interest because of formation
of spiraling flows of acoustic intensity inside the resonator. In this case the chirality of the system
lifts the degeneracy of the resonant modes with respect to the sign of orbital angular momentum. The
spiraling acoustic intensity enhances enormously in the vicinity of the BIC points. This enhancement
can be controlled by simultaneous variation of the length of the resonator and rotation of one of the
waveguides. Presently a programmable spatial lightmodulator comprising a system of lenses, grating,
or phase-diffracting elements has been used to produce the spiraling acoustic beams [25–28]. The
present approachwhich exploits the acoustic BICs provides promising tool to generate orbital angular
momentum in acoustic.
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