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The Z2 topological invariant is defined in the chiral d-wave superconductor having a triangular lattice in
the presence of the 120-degree magnetic ordering. Analyzing the Z2 invariant, we determine the condi-
tions of implementing topological phases in the model with regard to superconducting pairings between
the nearest and next nearest neighbors. It is often supposed in such a system that the pairing parameter
between the nearest neighbors should be equal to zero due to the intersite Coulomb interaction. We show
that taking into account even weak pairings in the first coordination sphere leads to the disappearance of
the gapless excitations of the bulk spectrum in the wide region of the parameter space. Thus, topological
invariants can be defined in this region. In solving the problem of open edges it is shown that the zero
energy modes are realized basically in the topologically nontrivial phases. Such zero modes are topolog-
ically protected Majorana modes. A connection between the Z2 invariant and the integer topological
invariant of the ground state of the 2D lattice is established in the presence of the electron–hole symme-
try and noncollinear magnetic ordering.
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1. Introduction

Recently, much attention has been paid to topological super-
conductors supporting Majorana zero modes. In pioneering works
[1,2], such quasiparticles were predicted in the p-wave and effec-
tive p-wave superconductors. However, this type of superconduc-
tivity is still rather exotic for real materials. For the systems with
s-wave pairing several mechanisms have been proposed for the
formation of the Majorana zero modes. One of the mechanisms is
characterized by the proximity-induced triplet px þ ipy pairings
on the surface layer of a topological insulator in the s-wave super-
conductor/topological insulator hybrid structures [3]. Another
mechanism is connected with the combined influence of strong
spin–orbit interaction, proximity-induced superconductivity, and
magnetic field [4–6]. In this case the Majorana zero modes arise
when the external (or exchange) magnetic field is greater than
some critical field.

At present, a new mechanism of the formation of the Majorana
edge states in topological spin-singlet superconductors due to the
presence of the long-range magnetic order is often considered
[7–10]. The symmetry of the superconducting state is considered
to be chiral dx2�y2 þ idxy supporting the non-trivial topology and
edge states [11]. It should be noted that the time-reversal
symmetry is broken in such a state. It is widely believed that the
chiral d-wave superconductivity may be realized in materials with
a triangular lattice (for example, NaxCoO2 [8]) and hexagonal
lattice (graphene [10]).

For the topological classification of the systems with many
degrees of freedom as well as in the systems with strong electron
correlations the topological invariant N3 expressed in terms of the
Green functions was derived [12,13]. Using this invariant the quan-
tum topological phase transitions were studied in liquid helium
3He-B [14], semiconducting nanowires [15], and quantum Hall
systems. It should be noticed that the N3 topological invariant is
introduced for the gapped ground state in the systems with
2þ 1-dimensions [13].

The non-zero values of N3 indicate the non-trivial topology and
the possibility of the edge state formation. For 1D systems with the
particle-hole symmetry the well-known Z2 invariant (Majorana
number) was proposed [2]. This invariant expressed in terms of
the Pfaffian of the Bogoliubov Hamiltonian in the Majorana repre-
sentation allows one to study the conditions supporting the Majo-
rana zero modes in the systems with the gapped bulk excitation
spectrum. Later, the connection between N3 and Z2 numbers was
established for the noncentrosymmetric superconductors with
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the broken time-reversal symmetry [15]. The main result is that
the Majorana zero modes is expected to appear in the states with
the odd N3 invariant.

On a triangular lattice the appearance of the Majorana zero
modes was demonstrated in Ref. [8] for the coexistence phase of
dx2�y2 þ idxy-wave superconductivity and non-collinear stripe mag-
netic ordering. The superconducting pairings between the nearest
neighbors were assumed to be suppressed by the intersite Cou-
lomb interaction. Therefore, the pairing interaction between the
next nearest neighbors was considered.

Recently, by solving self-consistent integral equations for the
coexistence phase in the framework of the t � J � V model it has
been shown that in the presence of the stripe magnetic ordering
the superconducting order parameter does not have the chiral
structure. Thus, the conditions for the realization of the Majorana
zero modes on the triangular lattice were analyzed for the coexis-
tence phase of chiral superconductivity and 120� magnetic ordering
[17]. In Ref. [17], as well as in Ref. [8], the superconducting pairings
in the second coordination sphere were only considered. It turns
out that the analysis of the topological phases in such a model is
complicated due to the fact that there is a continual range of the
parameters for which the bulk excitation spectrum is gapless. This
is rather rare since topological indices are usually introduced for a
set of parameters in which the bulk excitation spectrum is gapped.
Therefore, the edge states with the zero excitation energy have
been found in the region with the gapped bulk spectrum.

In this paper we study the conditions supporting the Majorana
zero modes on the triangular lattice in the coexistence phase of
chiral d-wave superconductivity and 120� spin ordering with
regard to the superconducting pairing in the second and first coor-
dination spheres. It is shown that taking into account the pairing
between the nearest neighbors with an arbitrarily small amplitude
D21 leads to the disappearance of the continuous parameter region
with the gapless bulk excitations. As a result, the Majorana number
and N3 topological invariant for the 2D lattice are calculated. A ser-
ies of the topological phase transitions upon changing the chemical
potential and exchange field is demonstrated. The connection
between the N3 and Z2 invariants is determined in the presence
of noncollinear magnetism. Topologically, the non-trivial phases
with the Majorana number equal to �1 and odd N3 invariant coin-
cide with each other as well as with the parameter regions sup-
porting the Majorana zero modes which are found by solving the
problem with open boundary conditions.
2. Model and method

Let us consider the model describing the coexistence phase of
chiral superconductivity and noncollinear magnetic order in the
mean-field approximation on the triangular lattice. It is assumed
that superconductivity is proximity-induced with the dx2�y2 þ idxy

symmetry of the order parameter. We consider the superconduct-
ing pairings between the nearest and next-nearest neighbors. This
assumption allows us to study the topological phases of the system
in a relatively simple manner. However, it should be noted that the
coexistence phase is caused not only by the proximity effect but
also as a consequence of the internal electron interactions [16].

The long-range magnetic ordering is considered in the mean-
field approximation assuming that an average magnetic moment
Sf
� � ¼ M cosðQRf Þ;� sinðQRf Þ;0

� �
is formed at the lattice site f.

Here, Q is the magnetic structure vector, M is the average on-site
magnetization. Hereinafter, we consider the 120� spin ordering
with Q ¼ ðQ ;QÞ;Q ¼ 2p=3 and define the coordinates in the real
and quasi-momentum space as Rf ¼ na1 þma2;k ¼ k1b1 þ k2b2,
where ai and bi are the basic and reciprocal vectors of the triangu-
lar lattice, respectively. The Hamiltonian has the form:
H ¼ �l
X
fr

cyfrcfr þ
X
fmr

tfmc
y
frcmr

þ h Qð Þ
X
f

expðiQRfÞcyf"cf# þ expð�iQRfÞcyf#cf"
� �

þ
X

fm
Dfmcf"cm# þ D�

fmc
y
m#c

y
f"

� �
; ð1Þ

where l is the chemical potential, tfm and Dfm are the electron hop-
ping and superconducting pairing amplitudes, respectively. The
exchange field parameter is defined as follows:

h Qð Þ ¼ M=2
X
m

Ifm expð�iQ ðRf � RmÞÞ: ð2Þ

Ifm is the parameter of the exchange interaction, being considered
within the two coordination spheres. An important difference
between the system (1) and the model studied in [17] is the consid-
eration of the superconducting pairings between the nearest neigh-
bors. Hereinafter, the model is considered both in the case of the
periodic boundary conditions along the direction a2 (the cylinder
topology), and in the case of the periodic boundary conditions in
two spatial directions (the torus topology). In both cases, the oper-
ator part of the Hamiltonian (1) has the form:

H ¼ 1
2

X
k

C kð Þþ � H kð Þ � C kð Þ;

HðkÞ ¼

nk h 0 Dk

hþ nk�Q �DT
�kþQ 0

0 �D�
�kþQ �n��kþQ �hþ

Dþ
k 0 �h �n��k

0BBBBBB@

1CCCCCCA; ð3Þ

where CðkÞ ¼ ck"; ck�Q#; cþ�kþQ"; c
þ
�k#

� �T
.

In the case of the cylinder topology the operator C has 4N1 com-
ponents, where N1 is the number of sites along the a1 direction.

Then, the N1 by N1 matrices n̂k; D̂k and ĥ in the Hamiltonian (3)
have the form (k � k2):

n̂k2 ¼

tk2 � l Tk2 Ck2 0 0

T�k2
. .
. . .

. . .
.

0

C�k2
. .
. . .

. . .
.
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. . .

. . .
.
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tk2 � l
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;

ĥ ¼ h � diag eiQ ; e2iQ ; . . . ; eN1 iQ
� �

;
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22e

ik2 0 0

w�
k2

. .
. . .

. . .
.

0

D�
22e

�ik2 . .
. . .

. . .
.

D�
22e

ik2

0 . .
. . .

. . .
.

w�
�k2

0 0 D�
22e

�ik2 w�
k2

~D�
k2

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð4Þ

Here

tk2 ¼ 2t1 cosðk2Þ þ 2t3 cosð2k2Þ; ~Dk2 ¼ 2D21 cosðk2Þ;
Tk2 ¼ t1 1þ expðik2Þð Þ þ t2 expð�ik2Þ þ expð2ik2Þð Þ;
Ck2 ¼ t2 expðik2Þ þ t3 1þ expði2k2Þð Þ;
Wk2 ¼ D22 expði2p=3Þ expði2k2Þ þ expði2p=3� ik2Þð Þ

þ D21 expði2p=3Þ 1þ expði2p=3þ ik2Þð Þ;



Fig. 1. The conditions for the realization of the zero energy excitations obtained
with the consideration of the periodic boundary conditions along a2 (thin blue
lines), h is the exchange field, l is the chemical potential, t1 is the hopping
parameter between the nearest neighbors. The parameters are
t1 < 0; t2 ¼ t3 ¼ 0;D22 ¼ 0:3jt1j;D21 ¼ 0:05jt1j;N1 ¼ 48. The red bold lines show a
boundary between the phases with different values of the topological Z2 invariant
M ¼ 	1.
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and t1; t2; t3 are the hopping parameters for the first, second, and
third coordination spheres. The parameters D21 and D22 denote
the amplitudes of the superconducting pairings of the d-wave sym-
metry (angular momentum l ¼ 2) which are implemented between
the nearest and next-nearest neighbors, respectively.

The eigenvalues and eigenstates of the Hamiltonian (3) deter-
mine the spectrum of elementary excitations as well as the ampli-
tudes of the Bogoliubov quasiparticles:

ak2j ¼
XN1

n¼1

Ajn;k2cnk2" þ Bjn;k2cn;k2�Q2# þ Cjn;k2c
y
n;�k2# þ Djn;k2c

y
n;�k2þQ2"

� �
:

ð5Þ
Considering the lattice with the torus topology the value of h is

determined by the expression (2), nk � tk � l;Dk � �D�
k, and func-

tions tk and Dk are the Fourier transforms of the hopping integral
and the superconducting order parameter with the dx2�y2 þ idxy

symmetry type, respectively. It should be noted that the pairing
interaction in the first coordination sphere is considered to be suf-
ficiently suppressed by the inter-site Coulomb interaction, so
D21 � D22 [8,18].

3. Hamiltonian symmetry and Z2 topological invariant

Regardless of the consideration of the system with the cylinder
or torus topology the Hamiltonian (3) has the symmetry:

KHðkÞK ¼ �H�ð�kþ QÞ; K ¼ 0̂ bIbI 0̂

 !
; ð6Þ

where 0̂ and bI are the zeros and identity matrices of the correspond-
ing size (2� 2 for the torus topology and 2N1 � 2N1 for the cylinder
topology). Due to this symmetry the eigenvalues of the Hamiltonian
HðkÞ are grouped in pairs enðkÞ and �enð�kþ QÞ. Following the
paper [15], let us consider the particle-hole invariant momenta K
(PHIM points) of the Brillouin zone when K ¼ �K þ Q þ G
holds, where G is a reciprocal-lattice vector. At these points the
Hamiltonian has the particle-hole symmetry. In the case of
the cylinder topology K2 ¼ �2p=3;p=3, while in the case of the
torus topology we have four PHIM points K ¼ ð�2p=3;�2p=3Þ;
ð�2p=3;p=3Þ; ðp=3;�2p=3Þ; ðp=3;p=3Þ. Then, we can define the
matrices

WðkÞ ¼HðkÞK; fW ðkÞ ¼ RTWðkÞR;

R ¼ 1ffiffiffi
2

p
bI �ibIbI ibI

 !
;

which satisfy the relations WðkÞ ¼ �WTð�kþ QÞ;fW ðkÞ ¼
�fWTð�kþ QÞ. These matrices are antisymmetric at the PHIM

points. It can be shown that the matrix fW coincides with the
Hamiltonian (3) at the PHIM points if the Majorana representation
is used in the expression (3):

ckr ¼ cAkr þ icBkr; cþkr ¼ cA�kr � icB�kr: ð7Þ
Thus, following Kitaev [2], one can introduce the Z2 Pfaffian

invariant MðK2Þ in the cylinder topology only for the PHIM points
K2 ¼ �2p=3;p=3:

MðK2Þ ¼ PðK2;K1 ¼ �2p=3ÞPðK2;K1 ¼ p=3Þ; ð8Þ
where PðKÞ is the fermionic parity of the ground state of the system
with the torus topology:

PðKÞ ¼ sign Pf �ifW ðKÞ
� �� �

: ð9Þ
IfMðK2Þ ¼ �1 the system is in the topologically nontrivial phase
supporting the Majorana zero modes. Otherwise, if MðK2Þ ¼ 1 the
ground state is topologically trivial and there are no topologically
protected edge states with the zero excitation energy. Note that
the bulk spectrum should be gapped to define the Majorana num-

ber. In general, PðKÞ ¼ sign h2 � n2K � jDKj2
� �

and it can be shown

by direct calculations that PðK2 ¼ p=3;K1 ¼ �2p=3Þ ¼
PðK2 ¼ p=3;K1 ¼ p=3Þ. It means that at K2 ¼ p=3 there are no
Majorana zero modes in the system considering the cylinder
topology.

At K2 ¼ �2p=3 the Majorana number is defined by the relation
M¼ sign h2�ð3t1�6t2þ3t3þlÞ2
� �

� h2�ðt1�2t2�3t3�lÞ2
��

�4 2D22�D21ð Þ2
��

: ð10Þ

In Fig. 1 the parameters for which the Majorana number (10)
changes the sign are depicted by the bold lines. As is shown in
the last section the bulk excitation spectrum becomes gapless for
these parameters. The conditions for which the gapless elementary
excitations occur on the triangular lattice with the cylinder topol-
ogy and N1 ¼ 48 are shown by thin lines (curves hðlÞ). It can be
seen that the majority of the zero modes lies in the topologically
nontrivial phase. AsN1 increases, the distribution of the zero energy
curves becomes dense and all of them are found in the topologically
nontrivial phases with M ¼ �1. The more N1 decreases, the more
zero modes appear in the topologically trivial phase. These modes
are not topologically protected. This indicates that the correspon-
dence between the bulk and boundary is well established when
considering a sufficiently large number of sites. The set of the
parameters is chosen as D21 ¼ 0:05jt1j;D22 ¼ 0:3jt1j; t2 ¼ t3 ¼ 0.

It should be noted that changing the parameters in the topolog-
ically nontrivial phase leads to the oscillations of the minimal exci-
tation energy e0 and its dropping to zero on the lines of the zero
modes (thin lines in Fig. 1). At the points where e0 ¼ 0 the quan-
tum phase transition is realized: the ground state containing a



Fig. 3. Spatial distribution of the sum of the Bogoliubov coefficients pnðhÞ (color
bar) vs exchange field h at l=jt1j ¼ 4. Other parameters are the same as in Fig. 1. The
darkest and lightest areas correspond to the largest and smallest values of pn ,
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superposition of states with an even number of fermions is
replaced by a state with an odd number of fermions and vice versa.
Such switching of the fermionic parity was obtained for the Kitaev
model [19] and it may be a general property of the finite quasi-
one-dimensional systems in the topologically nontrivial phase.

It is sufficient that all the zero modes shown in Fig. 1 are the
edge ones. This is an important difference from the case D21 ¼ 0
considered in [17] where the continual region with the bulk gap-
less excitations appears in the space of the parameters h and l.
As a result, the zero energy modes of the system with the cylinder
topology which are found in this region are not the edge ones and
represent the bulk excitations modified due to the boundary
effects. With regard to the weak nearest neighbor superconducting
pairing D21 � D22 all the zero modes in the topologically nontrivial
phases become the edge ones.

In Figs. 2, 3 the realization of the edge states is demonstrated for
D21 – 0 in the topological phase. We consider the dependence of
the site-dependent parameter
respectively.
pnðhÞ ¼ jA0n;K2 j2 þ jB0n;K2 j2 þ jC0n;K2 j2 þ jD0n;K2 j2 ð11Þ
on the exchange field h and number of sites n. The Bogoliubov coef-
ficients appearing in (11) correspond to the elementary excitation
with a minimal energy e0 and K2 ¼ �2p=3. Such dependencies are
shown for l ¼ 2jt1j and l ¼ 4jt1j. Other parameters are the same
as in Fig. 1. In these cases the transition between the topologically
trivial and nontrivial phases corresponds to h ¼ t1. It is seen in
Fig. 3 that the edge states including the Majorana zero modes are
realized in the phase with M ¼ �1 of the Z2 topological invariant
(8). In Fig. 2 the edge states and zero modes are found even in the
phase with M ¼ 1. As it is shown in the next section the edge states
can exist in this region but the zero modes are not topologically
protected. Upon increasing N1 the Majorana zero modes become
more localized at the edges.

The following two features deserve mentioning. First, the topo-
logically protected edge states with the non-zero excitation energy
can be realized even if the value of the Z2 invariant corresponds to
the topologically trivial phase (M ¼ 1, see Fig. 2). This result is in
agreement with the calculation of the N3 invariant for the 2D sys-
tem considered below. Second, in the considered system the edge
states with the zero energy can be realized with the quasi-
momenta k2 – � 2p=3 but such states are not topologically pro-
tected ones.
Fig. 2. Spatial distribution of the sum of the Bogoliubov coefficients pnðhÞ (color
bar) vs exchange field h at l=jt1j ¼ 2. Other parameters are the same as in Fig. 1. The
darkest and lightest areas correspond to the largest and smallest values of pn ,
respectively.
4. The topological invariant N3 of the 2D lattice and its
connection with the Z2 invariant. The analysis of the bulk
spectrum

It is known that topological transitions changing the topological
index occur when the gap closes in the bulk spectrum. For the sys-
tem under consideration, the bulk spectrum has the form:

E	
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

n2k þ n2k�Q þ 2h2 þ Dkj j2 þ D�kþQ

		 		2� �
	 v2

k

r
; ð12Þ

where

m2k ¼
1
4

n2k �n2k�Q þjDkj2�jD�kþQ j2
� �

þh2 nk þnk�Q
� �2þ DkþD�kþQ

		 		2h i
 �1=2

:

ð13Þ
The conditions for the zero energy in the bulk spectrum are

described by the equation:

jh2 � nknk�Q � DkD
�
�kþQ j2 þ jnkD�kþQ � nk�QDkj2 ¼ 0:

At the PHIM points K ¼ �Kþ Q þ G the second term in the
equation is also equal to zero, and the first term is the same as

PfðfW ðKÞÞ
� �2

. Thus, at the symmetric points of the Brillouin zone

the change in the sign of the Majorana number (8), as it should
be, is accompanied by the existence of the zero energy in the bulk
spectrum at these points.

In the case when k – � kþ Q , the equations determining the
conditions for the realization of the gapless bulk excitations have
the form:

h2 � nknk�Q � ReðDkD
�
�kþQ Þ

jnkD�kþQ � nk�QDkj
ImðDkD

�
�kþQ Þ

ð14Þ

The formation of the gapless bulk excitations at the non-PHIM
points according to the solution of Eqs. (14) also leads to topolog-
ical phase transitions. However, at this transition the Z2 invariant
(8) does not change. A characteristic which allows one to identify
such transitions in two-dimensional systems (including the sys-
tems with the interaction) is the topological invariant of the
ground state introduced in Ref. [12]:

N3 ¼ 1
24p2 elmk

Z 1

�1
dx

Z p

�p

Z p

�p
dk1dk2Tr G@lG

�1 � G@mG�1G@kG
�1

� �
;

ð15Þ
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where l; m; k ¼ 1;2;3; elmk is antisymmetric Levi-Civita tensor,
@1 ¼ @=@k1 ; @2 ¼ @=@k2 ; @3 ¼ @=@x. By the repeated indices we mean
the summation. In the system of non-interacting electrons the
matrix Green function G is a matrix 4� 4 for the torus topology

and it has the form G ¼ ixI � HðkÞ½ 
�1.
The non-zero integer values of the invariant N3 (15) determine

the topologically nontrivial phases in which the edge states can
form. In Ref. [15] a connection between the Z2 invariant (8) and
topological invariant N3 (15) was established in the case of noncen-
trosymmetric systems with the broken time-reversal symmetry
though preserving the electron–hole symmetry. It is shown that
the product of the Majorana numbers (8) at the points
k ¼ �kþ G coincides with the parity of the topological index N3.
In the system with magnetic ordering this relation is generalized:

ð�1ÞN3 ¼ sign
Y

K¼�KþQþG

Pf fW ðKÞ
� � !

: ð16Þ

The phase diagram with different topological phases in the
space of the chemical potential l and exchange field h is shown
in Fig. 4. In each phase the values of the topological invariant N3

are marked. The solid lines defining the boundaries between differ-
ent topological phases are obtained as the solutions of the system
of Eqs. (14) which are determined in the presence of the bulk gap-
less excitations. The parameters are the same as in Fig. 1. It should
be noted that this invariant is ill-defined at the topological transi-
tion point. In the vicinity of the transition the calculation of the
invariant requires increased accuracy. As can be seen from Fig. 4
the increase of the chemical potential leads to a series of topolog-
ical transitions. The topologically trivial phase with N3 ¼ 0 at
l < �2jt1j is implemented when the chemical potential intersects
the bottom of the bare electron band (not shown in the Figure).

As is well known, the difference between the values of the N3

invariant in the neighboring phases determines the values of the
topological invariants of the Fermi points in which the bulk spec-
trum has the zero energy at the transition between the phases.
In the model under consideration the invariants of the Fermi points
are equal to 	1. There is only one exception at the transition
between the phase with N3 ¼ 0 to the phase with N3 ¼ 4 at nega-
tive l (not shown in Fig. 4) where the invariant of each of the two
Fermi points is 2. Thus, in other cases, the difference corresponds
to the number of the nodal points of the bulk spectrum at the topo-
logical transition.
Fig. 4. The diagram of the topological phases with different N3 (15) in the variables
h;l, where h is the exchange field, l is the chemical potential. The parameters are
the same as in Fig. 1. The phases with the odd N3 value correspond to the phases
with the Majorana zero modes in Fig. 1 having M ¼ �1 (8).
The excitation spectrum in the coexistence phase of supercon-
ductivity and noncollinear magnetic order differs from the spec-
trum in the superconducting phase. Moreover, the spectrum in
the coexistence phase is determined by two superconducting order
parameters Dk;D�kþQ , which have different systems of the nodal
points. This leads to several significant differences in the analysis
of the zeros of the bulk spectrum. The spectrum in superconduc-
tors has zero energy at the boundaries and in the middle of the
Brillouin zone only when the chemical potential intersects the
bottom or the top of the bare electron band. In the coexistence
phase due to the exchange field the spectrum has zero energy at
these points, when the chemical potential lies inside the band.
Such a picture can be seen in Fig. 4 at the transition from the
phase with N3 ¼ �2 to the phase with N3 ¼ �3 when the gap
closes at the point ð�2p=3;�2p=3Þ under the condition
h ¼ jlþ 3t1 � 6t2 þ 3t3j. This point corresponds to the one of the
nonequivalent points lying at the intersection of the edges of the
hexagonal Brillouin zone. In this case Dk ¼ D�kþQ ¼ 0. The second
analogous transition is realized between the phases with N3 ¼ 3
and N3 ¼ 1 when the spectrum becomes gapless at the points
ð0;0Þ and ð2p=3;2p=3Þ. At small values of D21 the phase with
N3 ¼ 3 is rather narrow and lies between the phases with
N3 ¼ �3 and N3 ¼ 1. This narrow phase is schematically shown
in Fig. 4. For a superconductor without magnetic ordering the
intersection of the nodal points of the superconducting order
parameter by the Fermi contour leads to the gapless excitations.
When noncollinear magnetism is taken into account this condition
is not satisfied due to the parameter D�kþQ . However, there are
conditions when the energy spectrum is equal to zero at the points
in which Dk;D�kþQ – 0. This picture corresponds to the remaining
transitions in Fig. 4. It should be noted that disregarding D21, the
relation Dk ¼ D�kþQ is satisfied, and, as a result, the energy
spectrum is considerably simplified. When D21 is taken into
account the condition Dk ¼ D�kþQ – 0 is valid only at the points
ð�2p=3;p=3Þ; ðp=3;�2p=3Þ; ðp=3;p=3Þ. The zeros of the spectrum
at these points are realized, for example, at the transition
from the phase with N3 ¼ �8 to the phase with N3 ¼ �5 upon
increasing h.

From Eq. (16) we conclude that the Majorana modes exist in the
phases with the odd N3. The transition to such phases is accompa-
nied by the gap closing in the bulk spectrum in the odd number of
points in the Brillouin zone. In the phases with the even N3 the
edge states can arise but the topologically protected zero modes
are not found. This agrees with the calculation results shown in
Figs. 1–3. These conclusions indicate that the definition of the
topological invariant (15) allows one to search for possible condi-
tions of the realization of the Majorana modes in electron systems
with interaction and magnetic order.
5. Conclusions

The topological properties of the coexistence phase of the
dx2�y2 þ idxy-wave superconductivity and noncollinear 120� mag-
netic ordering on a triangular lattice are studied. When the super-
conducting pairings are taken into account only in the second
coordination sphere, the gap in the bulk excitation spectrum is
closed in the continuous region of the parameter space. This fea-
ture means that the topological invariants cannot be introduced
in a standard way, in spite of the fact that the edge zero modes
are found in the system. In the present work it is shown that taking
into account the arbitrarily small superconducting amplitude,
induced by the pairing interaction in the first coordination sphere,
leads to a gap opening in the bulk spectrum. The bulk spectrum
becomes gapless only on the boundaries between topologically
different phases. This allows us to introduce the Z2 topological
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invariant M (the Majorana number) and to analytically determine
the conditions of implementing the topologically nontrivial phases
with M ¼ �1.

Considering the triangular lattice with the periodic boundary
conditions along the basic vector a2, the zero modes are found to
exist on the specific curves in the parameter space of the chemical
potential and exchange field. It is shown that for the lattice with a
finite number of sites N1 along the direction a1 the zero modes can
arise in the topologically trivial phase. Such zero modes are not
topologically protected. However, the majority of the zero modes
(the Majorana modes) at large N1 is found in the topologically non-
trivial phase with M ¼ �1.

The topological invariant N3 of the 2D lattice expressed in terms
of the Green functions is calculated for the coexistence phase. We
find a series of topological transitions in the coexistence phase
upon increasing the chemical potential. The relationship between
two topological invariants M and N3 is determined with regard to
the noncollinear magnetism. It is shown that the topologically
nontrivial phases with the Majorana number equal to �1 corre-
spond to the phases with the odd N3. In the topologically nontrivial
phases with the even N3 the edge states can exist but they cannot
be the topologically protected Majorana edge states with the zero
excitation energy.
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