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Using the single-ion approximation, the weak ferromagnetic moment rZ(Fe
2+) along the third-order axis

of FeBO3 crystals, which is caused by the contribution of Fe2+ ions, has been investigated in the frame-
work of the model Fe2+ impurity ion –BO3 vacancy. The extreme low-temperature behavior of the total
magnetic moment due to the strong dependence of the Fe2+ion contribution is predicted.

� 2018 Published by Elsevier B.V.
1. Introduction

Iron borate crystals were synthesized fairly long ago and have
been well-studied, but still attract close attention of researches
as suitable objects for the development of various magnetism-
related models. These crystals have a relatively simple lattice, high
Neel temperature, narrow antiferromagnetic resonance lines, and a
series of isostructural diamagnetic analogs. In particular, in 2014,
Dmitrienko et al. [1] determined first the sign and value of the vec-
tor components in the Dzyaloshinskii–Moriya interaction using
iron borate crystals. Kalashnikova et al. [2] lately observed the
effect of pulse excitation of interacting magnetic moments by the
linearly polarized light in FeBO3. In addition, using the isostruc-
tural diamagnetic analogs with the trivalent iron impurity and
the electron spin resonance technique (ESR), the uniaxial magnetic
anisotropy (the c3 third-order axis in the basal plane) in magneto-
concentrated crystals with ions in the S state was quantitatively
described [3]. In contrast to the uniaxial anisotropy [3], the mag-
netic system of the crystal, despite its simple crystal lattice (calcite
structure), exhibits a relatively complex behavior upon rotation of
the antiferromagnetism vector l ¼ ðM1 �M2Þ=M in the (1 1 1)
plane [4,5]. Such a complex behavior is typical, in particular, of
the ferromagnetism vector m ¼ ðM1 þM2Þ=M ðM ¼ 2jM1j ¼
2jM2jÞ with regard to the last term in free energy (1) written by
Dzyaloshinskii:
U ¼ ð1=2ÞBm2 þ ð1=2Þa cos2 hþ ð1=2Þc cos4 h
þ d sin hðmy cos/�mx sin/Þ þ q sin3 h cos h cos 3/

þ tmz sin
3 h sin 3/ ð1Þ

Here, the first term characterizes the isotropic exchange energy
of the crystal; the second and third terms, the uniaxial anisotropy;
the fourth term, the Dzyaloshinskii interaction leading to the onset
of weak ferromagnetism in the (1 1 1) basal plane; the last two
terms, the anisotropy energy in the (1 1 1) plane; h and u are the
polar and azimuthal angles of the vector l, which are counted from
the third-order (z) axis and from the crystal symmetry plane
(x axis), respectively. Note that the weak ferromagnetism of the
crystals was thoroughly investigated by Turov [5].

The phenomenological expression for the relative weak ferro-
magnetic moment along the c3 axis is obtained by minimizing free
energy (1) with respect to mz:

mz ¼ ð�t=BÞ sin3 h sin 3u: ð2Þ
The measured weak ferromagnetic moment along the c3 axis

has the form rzðTÞ ¼ mzM [6]. However, as was observed in
different experiments [7,8], the basal anisotropy caused by the
next-to-last term in Eq. (1) changes from one sample to another
and contains the uniaxial component [7] in the (1 1 1) plane of
the FeBO3 crystals.

2. Impurity anisotropy. Phenomenological description

In this work, we discuss the weak ferromagnetic moment along
the third-order axis in the framework of the model BO3 vacancy –
Fe2+ ion. The BO3�

3 ions are tightly covalently bound and can exist
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in the melt–solution at the crystal growth temperatures as a
whole. The ions are spatially extended and therefore hardly incor-
porate into a growing crystal. As a result, vacancies of these groups
and, consequently, the Fe2+ impurity, occur. A part of these vacan-
cies will apparently be compensated by divalent lead ions, the
oxide and fluoride of which was used as solvents during the FeBO3

crystal growth [9]. The relative concentration of the BO3 vacancies
is � 1. A vacancy is surrounded by six nearest iron ions, one of
which is Fe2+ (Figs. 1 and 2).

Upon rotation of the external field in the basal plane (in the
experiment) or in the case when the effective basal anisotropy
becomes equal to the potential barrier under the action of temper-
ature, the electron motion around the BO3 vacancy will be
observed.

Figs. 1 and 2 show the distribution of crystal field axes by means
of the BO3 vacancy on the Fe2+ iron ions. Dashed and solid arrows
have the negative and positive components on the Z axis, respec-
tively. The Z axis is perpendicular to the figure plane. In the figure,
ZH coordinates of borate groups and iron ions along the third-order
axis in the hexagonal setting are presented. The X axis lies in the
crystal symmetry plane.

The analogous axes distribution follows from the ESR data for
the Fe3+ and Mn2+ ions surrounded by the BO3�

3 ions and by the

CO2�
3 ions in MBO3 ðM ¼ Ga; Sc; Þ [10] and isostructural CaCO3

[11]. In the model used, we will take into account the magnetic
anisotropy of the Fe2+ ions, while the Fe3+contribution will be
ignored. The iron ions in positions 1 and 2 are assumed to be anti-
ferromagnetically ordered. The point local symmetry of the Fe2+

ion positions is c1 and the basal anisotropy is therefore described
by the triclinic symmetry tensor. The anisotropy energy in the
X0Y 0Z0 moving coordinate system located on ions in positions 1
and 2 is Ek ¼

P
nlBknlMknMkl. Here, k can take the values from 1 to

3 (complex 1) and from 10 to 30 (complex 2) for all iron ions
involved in redistribution of Fe2+ and surrounding the BO3 vacan-
cies in positions 1 and 2 (Figs. 1 and 2); n; l ¼ X0;Y 0; Z0 ! 1;2;3
and 10;20;30; Mkn;Mkl are the projections of a unit sublattice mag-
netic moment k of the ion onto the corresponding X0Y 0Z0 system
axes; and Bknl is the tensor of the basal anisotropy of triclinic sym-
metry in the X 0Y 0Z0 coordinate system of the k ion. We write the
anisotropy energy in the unified coordinate system. We transform
Bknl at the rotation of the X0Y 0Z0 coordinate system [12] around the
Fig. 1. Distribution of the crystal field axes on Fe2+ ions by
third-order axis c3 by angles aþ b and a� b (here, a introduced
instead of k takes values of 0;�120;�240�). The counterclockwise
rotation direction is assumed to be positive. During rotation, the X 0

axis coinciding with the projection of solid axes 1;2;3 (Fig. 1) and
dashed axes 10;20;30 (Fig. 2) onto the (1 1 1) plane lied in the X axis;
thus, taking into account that in the description of the experiment
the anisotropy tensor should have a symmetry center, we obtain in
the polar system of coordinates for one ion

Eia ¼ ð1=2ÞðB11 þ B22Þ þ ½B33 � ð1=2ÞðB11 þ B22Þ� cos2 h0i
þ ð1=2ÞðB11 � B22Þ cos 2ðu0

i þ aþ biÞ sin2 h0i

þ B12 sin 2ðu0
i þ aþ biÞ sin2 h0i þ B13 cosðu0

i þ aþ biÞ sin 2h0i
þ B23 sinðui þ aþ biÞ sin 2h0i; ð3Þ

for Fe2+ in the first position ðþb; i ¼ 1Þ (Fig. 1) and for Fe2+ in the
second position ð�b; i ¼ 2Þ (Fig. 2). Here, h01; h

0
2 and u0

1;u0
2 are the

polar and azimuthal angles for the sublattice magnetic moments
of the Fe2+ ions, respectively. When writing Eq. (3), we took into
account the correlation between the constants in accordance with
[13]. Introducing the angles u0

1 ¼ u0; u0
2 ¼ u0 þ p, and a part of

angles h01 ¼ h0; h02 ¼ p� h for the antiferromagnetism vector so that
the terms at cos h01 þ cos h02 and expressions with the angular vari-
ables 2ðu0 þ aÞ were kept, we obtain from (3) for one ion

Ea ¼ ð1=2ÞðB11 þ B22Þ þ ½B33 � ð1=2ÞðB11 þ B22Þ� cos2 h0

þ ð1=2ÞðB11 � B22Þ cos 2b cos 2ðu0 þ aÞ sin2 h0 þ B12

� cos 2b sin 2ðu0 þ aÞ sin2 h0 � B13 sinbðcos h01 þ cos h02Þ
� sinðu0 þ aÞ sin h0 þ B23 sin bðcos h01 þ cos h02Þ cosðu0

þ aÞ sin h0 ð4Þ

with regard to

sin2 h01 þ sin2 h02 ffi 2 sin2 h0; sin2 h01 � sin2 h02 ffi 0
sin2h01 � sin 2h02 ffi sin 2h0; sin 2h01 þ sin 2h02 ffi 2 sin h0ðcos h01 þ cos h02

Note that, in Eq. (4), the account for the expressions with the
arguments 2ðu0 þ aÞ, which intersect with the term at
ðcos h01 þ cos h02Þ due to the quadratic contribution in (5) (see
means of the BO3 vacancy of the BO3�
3 ion (complex 1).



Fig. 2. Distribution of the crystal field axes on Fe2+ ions by means of the BO3 vacancy of the BO3�
3 ion (complex 2).
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below), leads to the formation of the angular dependence of the
basal anisotropy energy caused by the weak ferromagnetic
moment along the third-order axis m0

zðFe2þÞ.
We designate the divalent iron ions lying in the directions

a ¼ 0;�120;�240� as a ! n ! 1, 2, 3 for the first sublattice
(Fig. 1) and 10;2030 for the second sublattice (Fig. 2) and determine
the relative concentration n in the cn direction from the kinetic
equations, as was made in [14]. We will consider electron hoppings
between ions 1� 2� 3 (Fig. 1) and 10 � 20 � 30 (Fig. 2) in accor-
dance with the symmetry of the BO3�

3 vacancies. In this case, the
electron hoppings will be correlated (due to the long-range order)
by the simultaneous motion, e.g., in positions 1 ! 2 (Fig. 1) and
10 ! 20 (Fig. 2). In the experiment, in the applied magnetic field
with a certain value rotating in the basal crystal plane, the electron
will move around the vacancies in complexes1 and 2. At certain
values of the external magnetic field rotating in the basal plane,
temperature, and crystal complex parameters, both the hexagonal
and uniaxial anisotropies will be observed. The uniaxial anisotropy
occurs due to the electron hopping freezing at low temperatures.

We denote the potential barrier overcome by electrons during
their hoppings by Eb and the anisotropy energy for each direction
in the crystal lattice, by Enðn ¼ 1;2;3Þ. Then, the rate of variation
in the Fe2+ concentration _cn, e.g., in direction 1, will be proportional
to the electron hopping frequency, Boltzmann factor, and cn in the
corresponding positions:

_c1 ¼ �2m0c1 exp½�ðEb � E1Þ=kT� þ m0c2 exp½�ðEb � E2Þ=kT� þ m0c3
� exp½�ðEb � E3Þ=kT�;

where m0 is the frequency of electron hoppings between positions at
kT � jEb � Enj; k is the Boltzmann constant, T is the temperature,
and c3 is the concentration (in contrast to the designation of the
third-order axis). The total system of linear differential equations
will have the form

_c1
_c2
_c3

0
B@

1
CA ¼ m

�2expðE1=kTÞ expðE2=kTÞ expðE3=kTÞ
expðE1=kTÞ � 2expðE2=kTÞ expðE3=kTÞ
expðE1=kTÞ expðE2=kTÞ � 2expðE3=kTÞ

0
B@

1
CA

c1
c2
c3

0
B@

1
CA

Here, m ¼ m0 expð�Eb=kTÞ:
Solving the system of linear differential equations using a stan-
dard technique from [15], obtain

c1 ¼ B1 þ B2 expðpmt0Þ þ B3 expðrmt0Þ

c2 ¼ A1B1

A2
þ 3A1 þ p
3A2 þ p

B2 expðpmt0Þ þ 3A1 þ r
3A2 þ r

B3 expðrmt0Þ;

c3 ¼ A1B1

A3
þ 3A1 þ p
3A3 þ p

B2 expðpmt0Þ þ 3A1 þ r
3A3 þ r

B3 expðrmt0Þ;

where An ¼ expðEn=kTÞ;

p ¼ �ðA1 þ A2 þ A3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3 � ðA1A2 þ A1A3 þ A2A3Þ

q
;

r ¼ �ðA1 þ A2 þ A3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2 þ A2
3 � ðA1A2 þ A1A3 þ A2A3Þ

q
;

B1; B2;B3 are the constants determined from the limit conditions,
and t0 is the time parameter.

Let us consider the equilibrium state (t ¼ 1). Then,

B1 ¼ c01 ¼ ð1=A1Þ=
X
n

ð1=AnÞ; c0n ¼ ð1=AnÞ=
X
n

ð1=AnÞ:

The impurity anisotropy energy per mole of the FeBO3 crystal
substance can be presented accurate to the quadratic expansion
term as

E ¼ Nc0
X3
n¼1

c0nEn ’ ðNc0=3Þ
X
n

En � ð1=kTÞ
X
n

E2
n

" #
: ð5Þ

Here, c0 ¼ ðN0=NÞ, N is the Avogadro number, N0 is the number
of Fe2+ ions in one mole of FeBO3, and c0n is the relative equilibrium
concentration of Fe2+ ions in direction n. Energy (5) can be rewrit-
ten after regrouping the expansion terms in the form

E ¼ �Nc0½2B12B23 � B13ðB11 � B22Þ�ð1=kTÞ sinb cos 2bm0
zðFe2þÞ

� sin3 h0 sin 3u0 � Nc0½2B12B13 þ B23ðB11 � B22Þ�ð1=kTÞ
� sinb cos 2bm0

zðFe2þÞ sin3 h0 cos 3u0 þ Nc0½B33 � ð1=2ÞðB11

þ B22Þ� cos2 h0;

Here, according to the definition, cos h01 þ cos h02 ¼ 2m0
zðFe2þÞ.

We present the free energy U0 in form (6), where we introduce
the isotropic exchange term, phase angle w, and constant
A ¼ �½2B12B23 � B13ðB11 � B22Þ�, D ¼ �½2B12B13 þ B23ðB11 � B22Þ�:
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U0 ¼ ð1=2ÞB0m02ðFe2þÞþNc0½B33 �ð1=2ÞðB11 þB22Þ�cos2 h0

þNc0½Asin3u0 þDcos3u0�cos2bsinbm0
zðFe2þÞ½1=kT�sin3 h0

¼ ð1=2ÞB0m02ðFe2þÞþNc0½B33 �ð1=2ÞðB11 þB22Þ�cos2 h0

þNc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þD2

q
sinbcos2bm0

zðFe2þÞ½1=kT�sin3 h0

� cosð3u0 �w0ÞB0 Fe2þ; Fe2þ � Fe3þ � Fe2þ;cosð3u0 �w0Þ
¼ cos3u0 cosw0 þ sin3u0 sinw0

¼ ðcos3u0ÞðD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þD2

q
Þþ sinð3u0ÞðA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þD2

q
Þ; ð6Þ

tgw0 ¼ ðA=DÞ ¼ 2B12B23 � B13ðB11 � B22Þ
2B12B13 þ B23ðB11 � B22Þ

Here, B’ is the exchange constant of the Fe2+ impurity deter-
mined by the interaction Fe2+– Fe3+– Fe2+. In the basal plane of
the FeBO3 crystal, there are two types of nonequivalent directions
determined by the crystal symmetry: three symmetry planes and
three second-order axes. Let w0 ¼ 90� in Eq. (6), which, in the long
run, will be consistent with Eq. (2). The constant D is zero due to
the crystal symmetry.

Minimizing (6) with respect to m0zðFe2þÞ, we find the relative
weak ferromagnetic moment along the third-order axis of the
FeBO3 crystal:

m0
zðFe2þÞ ¼ 	jðNc0A=kTB0Þ sinb cos 2bj sin3 h0 sin 3u0 ð7Þ
In (7), the parentheses indicate the absolute value.
3. Impurity anisotropy. ‘‘Microscopic description

Let us consider the effect of Fe2+ impurity ions on the tempera-
ture dependence of the weak ferromagnetic moment along the
third-order axis of the FeBO3 crystals. According to [16], the Fe2+

ion can be in the singlet or doublet ground orbital state, depending
on whether the axial electric field potential along the trigonal axis
is minimum or maximum. Calculation of the coefficient ð1=2ÞB0

2

[17] in the expression for the potential [18] yields the positive sign.
Therefore, the potential in its form presented in [16,18] will be
minimum and, according to [16,18], the three lower energy levels
can be described by the effective spin s0 ¼ 1.

The Hamiltonian for the Fe2+ impurity ion in the single-ion
approximation in the case of the lowest symmetry has the form [19]

H ¼ glBH
eff
i s0i þ A0

2O
0
2i þ A1

2O
1
2i þ A2

2O
2
2i þ ~A1

2
~O1
2i þ ~A2

2
~O2
2i;

where i ¼ 1 and 2 correspond to the first and second positions. The
first expression is the isotropic exchange energy in the molecular

field approximation. Here, Heff
i is the exchange field caused by the

effect of the Fe3+ ions on the Fe2+ ion and s0i is the spin of the Fe2+

ion. The operators Ol
j and ~Ol

j were given, e.g., in [19]. The solution
of the problem on the eigenvalues of this Hamiltonian yields the
expression for energy levels obtained in the first order of the pertur-
bation theory

Eiami
¼ glBH

eff
i mi þ A0

2

2
ð3 cos2 h0i � 1Þ

"

þA1
2

4
sin 2h0i cosðu0

i þ a	 bÞ þ
~A1
2

4
sin 2h0i sinðu0

i þ a	 bÞ

þA2
2

2
sin2 h0i cos 2ðu0

i þ a	 bÞ þ
~A2
2

2
sin2 h0i sin 2ðu0

i þ a	 bÞ
#

� ð3m2
i � 2Þ ð8Þ
Here, a indicates the directions in the (1 1 1) plane and amounts
to 0, ð�Þ120; ð�Þ240�, +b is the angle for the first position and �b is
the angle for the second position, and lB is the Bohr magneton.

The temperature dependence of the phenomenological aniso-
tropy constants follows from the comparison of Eqs. (3) and (8)
with regard to the calculated free energy

FðFe2þÞ ¼ �ðNc0kT=2Þ
X
i

ln Zi; Zi ¼
X
am0

i

expð�Eiam0
i
=kTÞ:

Here,m0
i is the magnetic quantum number of the ith ion, N is the

Avogadro number, c0 is the Fe2+ ion concentration in the crystal, T
is the temperature, and k is the Boltzmann constant. The analogous
calculation of F was described in detail in [6]. The phenomenolog-
ical constants of the anisotropy tensor and their ‘‘microscopic”
expressions (for one ion) are related as

B33 � ð1=2ÞðB11 þ B22Þ ¼ ð3=2ÞA0
2ðz01=z00Þ;

B13 ¼ ð1=4ÞA1
2ðz01=z00Þ;

B23 ¼ ð1=4Þ~A1
2ðz01=z00Þ;

ð1=2ÞðB11 � B22Þ ¼ ð1=2ÞA2
2ðz01=z00Þ;

B12 ¼ ð1=2Þ~A2
2ðz01=z00Þ;

where

ðz01=z00Þ ¼ ð1� Y 0Þ2=ð1þ Y 0 þ Y 02Þ;Y 0

¼ exp½�glBH
eff ð0ÞB5=2ðxÞ=kT�;Heff ð0Þ ¼ 3 
 106Oe:

Using the results obtained, for the measured impurity weak fer-
romagnetic moment along the third-order axis per mole of the
FeBO3 crystal substance, we have

r0
zðFe2þÞ ¼ m0

zðFe2þÞM0ðFe2þÞ

¼ 	 Nc0jA0
impj

kTHeff ð0ÞB5=2ðxÞ
z01
z00

� �2

sin3 h0 sin 3u0:

Here, M0 ¼ Nc0glBs
0B1ðxÞ, s0 ¼ 1, g is the spectroscopic splitting

factor, B1ðxÞ is the Brillouin function for the spin equal to 1, jA0
impj

is the absolute value of the constant including the constants of
energy levels (8) per one ion with the squared energy dimension-
ality, and k is the Boltzmann constant. Since in the experiment the
weak ferromagnetic moment along the c3 axis is measured in the
fields much stronger than the basal anisotropy, we can use the uni-
fied coordinates in rzðTÞ, including the contributions of the Fe2þ

and Fe3þ ions [6].

4. Discussion of the results

Fig. 3 shows the calculated temperature dependence propor-
tional to the weak ferromagnetic moment along the third-order
axis c3 of the FeBO3 crystals

f ðFe2þ; TÞ ¼ 	jCjfðz01=z00Þ2=½TB5=2ðxÞ�g ð9Þ
in units of jCj emu=g, where jCj is the constant. It can be seen from
Eq. (9) and [6] that there are two variants of the temperature behav-
ior of the contributions of Fe2+ and Fe3+ ions to the weak ferromag-
netic moment along the c3 axis. As follows from Fig. 3, at the
competition between the Fe2þ and Fe3þ contributions [6] one of
the variants can lead to the existence of a compensation point
and the other, to the significant increase in rzðTÞ at low
temperatures.

Note that at present there exists a theoretical quantitative esti-
mation of the single-ion contribution to the weak ferromagnetic
moment along the c3 axis rzðFe3þÞ ¼ mzM, which yields



Fig. 3. Temperature dependence of f ðFe2þ; TÞ ¼ 	jCjfðz01=z00Þ2=½TB5=2ðxÞ�g. The Bril-
louin function is taken to be unity due to the weak dependence in the investigated
temperature range.
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2:4 
 10�3emu 
 g�1 [6] at a temperature of T = 0 K. The experimental
value is rzðFe3þ; T ¼ 77KÞ ¼ 1:3 
 10�3emu 
 g�1 [20,21]. In addition,
note that in the FeBO3 crystals with regard to the next-to-last term
in Eq. (1) the point of compensation of the hexagonal anisotropy
energy was experimentally observed at low temperatures [8].

5. Conclusions

As follows from Eq. (9) and Fig. 3, the maximum contribution at
low temperatures will be given by the Fe2+ ions due to the strong
1=T dependence.

To explain more fully the temperature behavior of the weak fer-
romagnetic moment along the third-order axis of the FeBO3 crys-
tals, additional experimental investigations are needed. The
discrepancy between the experimental and calculated values for
the Fe3+ ions can be related, in particular, to different temperatures
of their estimation and single-ion exchange contributions of Fe3+

ions [3,22].
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