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A B S T R A C T

Two numerical micromagnetic methods most suitable for calculation of the high frequency magnetic suscept-
ibility of nanocrystalline thin films were considered in detail. The methods are based on the Landau–Lifshitz
equation, linearized around the equilibrium state leading to an eigenvalue problem or solved using an un-
determined coefficients technique. An analysis and estimation of an efficiency of the methods were carried out.
Several conclusions about their advantages and shortcomings, as well as specifics of their practical application
were drawn.

1. Introduction

Nanocrystalline soft magnetic thin films are nowadays subject to an
intense research activity because of great prospects of their practical
applications [1,2]. High-frequency magnetic susceptibility studies of
nanocrystalline thin films provide relevant information on the strength
and dispersion of the anisotropy [3], the anisotropy nature [4], sa-
turation magnetization [5], as well as on the dynamical processes and
loss mechanisms [6]; all of them are important for technical applica-
tions [7].

The use of numerical methods of micromagnetic theory [8,9] makes
it possible to bring out these studies to a qualitatively new level. In
particular, with the help of the micromagnetic simulation, in nano-
crystalline thin magnetic films it was possible to investigate correlation
characteristics of a nonuniform magnetization and to advance our un-
derstanding of formation processes of a magnetic microstructure
[10–12], to study the magnetization reversal and to establish an in-
fluence of structural [12,13] and technological [14,15] parameters on
the coercive force and the residual magnetization.

However, the micromagnetic simulation of high-frequency proper-
ties of nanocrystalline thin magnetic films [16,17] is not so widely used
in practice because of the large computational difficulties encountered
in solving such problems. First, because magnetic anisotropy of in-
dividual crystallites distributed randomly in the film, the investigation
of magnetization dynamics in the non-uniform film is possible only
statistically. Consequently, to obtain relevant and reliable results from
modelling it is necessary to consider a large (statistically significant)

number of nanocrystallites in a model. Second, fluctuations of an in-
ternal magnetic field in nanocrystalline thin magnetic films lead to an
almost continuous spectrum of magnetization oscillations excited by a
homogeneous alternating magnetic field. Therefore, as a rule, it is im-
possible to use only individual components of this spectrum in the study
of high-frequency properties of nanocrystalline films, as this may result
in significant errors.

In this paper we consider in detail two numerical micromagnetic
methods which can equally be used to study the magnetization dy-
namics of uniform and nonuniform ferromagnetic objects of arbitrary
shape and volume. However, the main focus of the paper is on the study
and analysis of the capabilities of these methods for solving magneti-
zation dynamics problems in nanocrystalline thin films. In Section 2 we
first consider a micromagnetic model of a nanocrystalline thin film and
carry out the linearization of the Landau-Lifshitz equation. Then in this
section we consider two methods for solving a system of linearized
Landau-Lifshitz equations: a method based on eigenmodes series ex-
pansion of the solution and an undetermined coefficients method.
Section 3 presents results of the numerical simulation of the high-fre-
quency magnetic susceptibility of nanocrystalline thin films obtained
using these methods. An analysis and estimation of an efficiency of the
methods are carried out. Finally, several conclusions about their ad-
vantages and shortcomings, as well as specifics of their practical ap-
plication are drawn.
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2. Magnetic susceptibility calculations

2.1. Micromagnetic model

To investigate the properties of nanocrystalline thin magnetic films
we will use the following expression for the free energy F given by the
micromagnetic theory [8].
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In this expression, the first term describes the Zeeman energy due to
an external magnetic field H; the second describes the energy of the
exchange interaction with the exchange stiffness constant A; the third
term describes the energy of the demagnetizing field Hm; the fourth
term describes the energy of the overall for the film uniaxial magnetic
anisotropy with a constant Ku and an easy axis unit vector n. The last
term of the expression represents the energy of the uniaxial magnetic
anisotropy K with the random orientation of easy axes of magnetization
l= l(r) in crystallites. The distribution of magnetization is described by
the M(r) vector, which modulus is a constant =t MM r| ( , )| s.

The demagnetizing field Hm is determined from the following
magnetostatic Maxwell equations: rot(Hm)= 0 and div(Hm)= –4π div
(M). In the general case, Hm can be expressed through a symmetric
tensor which describes magnetostatic interaction Gm∈ℝ3×3 [18]
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In our discrete model we subdivide the continuous thin film into N
identical cuboid cells with the volume V0 and magnetization vectors Mi

(i=1,2,…,N). It is assumed that the magnetization inside each cell is
homogeneous. In this case, the expression for the free energy (1) can be
written as [13].
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where Gij is a 3×3 tensor which describes interactions between i and j
discrete elements. The tensor Gij does not depend on the magnetization
orientation, it is only determined by intrinsic properties of the in-
vestigated magnetic system: = + + +G G G G Gij ij
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m ∈ ℝ3×3 characterize respectively the exchange and
magnetostatic interactions, Gij
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film's overall and random uniaxial magnetic anisotropies. The elements
of the symmetric tensors which represent the exchange interaction and
uniaxial magnetic anisotropies are given by
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where J=A/d2, d is the distance between neighbor cells, E is an
identity matrix of size 3×3, the sign ⊗ means tensor product, and δij is
the Kronecker delta.

The energy of the demagnetizing field associated with the magne-
tostatic interaction between i and j discrete elements is represented by a
symmetric tensor
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Its components are usually calculated using either exact analytical
expressions obtained in Ref. [18], or an approximation where the in-
teraction between a pair of point magnetic dipoles is considered [13].
Because of the long-range nature of the magnetostatic interaction the

matrix =G G( )m
ij
m ∈ ℝ3N×3N will be dense. In contrast, according to (4),

the matrices related to the exchange interaction and magnetic aniso-
tropy will have relatively small number of nonzero elements. However,
as matrix elements ≡ −G G r r( )ij

m m
i j depend only on a difference vector

between centers of the cells i and j, the demagnetizing field (2) can be
calculated with the knowledge of only a part of the matrix elements Gij

m,
using, for example, the convolution theorem [19].

2.2. Linearization of the Landau–Lifshitz equation

The equation of the magnetization dynamics of the ith cell (i=1,
…,N) is described by the Landau–Lifshitz equation
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Here, the first term represents the magnetization precession around
the local effective magnetic field
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the second term describes the damping in the system, where γ is the
gyromagnetic ratio, and α is a damping parameter.

Eq. (6) is nonlinear, therefore the method of successive approx-
imations is usually used to solve it [20]. By considering both the
magnetization and effective magnetic field as the sum of static and
dynamic parts, the solution of Eq. (6) is sought in the form
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where M0i is the equilibrium magnetization of ith cell, which, as shown
in Ref. [13], can be found from the system of linear inhomogeneous
equations with undetermined Lagrange multipliers νi:
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According to Eqs. (7) and (9), the static and dynamic parts of the
effective field is given by
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linearizing of Eq. (6) leads to the following linear system:
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The resulting system of equations underlies some of the methods for
calculating the dynamic properties of ferromagnets. In this paper, we
consider two of them: the solution of Eq. (12) by (i) the eigenvalue-
based approach, and by (ii) undetermined coefficients method.

2.3. Solution of the linearized Landau-Lifshitz equation by eigenvalue-based
approach

The well-known method to solve system (12) is associated with
finding the eigenvectors Vm and eigenvalues λm of the matrix
B=(Bij)∈ℝ3N×3N [21–25]. According to this approach, the general
solution of system (12) can be written as an expansion in terms of the
linearly independent eigenvectors of normal magnetic oscillation
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where Vm=[Vm1; Vm2; …; VmN], and Vm1; Vm2; …; VmN are the am-
plitudes of magnetization oscillations in each cell at a frequency of the
mth mode, M is the number of oscillation modes taken into account in
the calculation (M≤ 2N). If the magnetic system is excited by the
homogeneous alternating magnetic field = −t eh h( )rf iωt

0 with a fre-
quency ω, in the steady-state regime cm(t) is given by Ref. [25].
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Vectors Um=[Um1; Um2; …; UmN] in Eq. (14) are determined from
condition U=(VT·V)−1 VT (here, ‘T’ denotes the transposition, and ‘–1’
indicates the inverse matrix), where U=(Umi)∈ℂM×3N, and
V=(Vmj)∈ℂM×3N.

The complex eigenvalue of the mth mode is related to the resonance
frequency ωm and the damping Δωm of the mode by the expression
λm= Δωm–iωm. The mth mode will be excited when the so-called ‘ex-
citation integral’ in the numerator of Eq. (14) has a nonzero value.
When the external field h0 is homogeneous, the ‘excitation integral’ can
be expressed as a dot product of vectors h0 and = ∑ = Nw Um i

N
mi i1 . In this

case, the modulus of vector wm Am=|wm| characterizes the amplitude
of a uniform excitation of the mth mode.

The averaging of mj(t) over the volume V leads to
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It is then straightforward to write an expression for the high fre-
quency susceptibility tensor
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2.4. Solution of the linearized Landau–Lifshitz equation by undetermined
coefficients method

In another, more simple method [26–29], by substituting
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is reduced to the system of linear inhomogeneous equations
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Thereafter system (17) can be solved by using standard numerical
methods of linear algebra, for example, conjugate gradient or minimal
residual methods. It is important to note that, because of the limitation

= MM| |i s, only 2N of all 3N equations of system (17) are linearly in-
dependent. This makes it possible to reduce the number of unknowns
from 3N to 2N. One way to do this is to transform all magnetic moments
to local coordinates, in which the z-axis coincides with the equilibrium
direction of the magnetic moment M0i at this point: ′ = Tm mi i i0 0 ;

′ = Th hi i i0 0 . For this case the transformation matrix Ti can be written as
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where φi and θi are the azimuthal and polar angles of the vector M0i. In
the new coordinate system, the problem become two dimensional, that
is, only x and y components of vectors and tensors are considered.

Therefore, we have
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And system (17) then can be written as
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where ′ = ′ − + ′A G ν δ E iωδ Lij ij i ij ij .
It is convenient to rewrite system (20) in the compact matrix form as

Ax= b, where = ′A A( )ij ∈ ℂ2N×2N, = ′x m( )j0 ∈ ℂ2N×1, = − ′b h( )i0 ∈
ℂ2N×1. The solution of this system and the subsequent transformation
to the coordinate system related to the investigated film by

= ′Tm mi i
T

i0 0 gives the solution of the original system of Eq. (17).
For a given pumping field h0k and a given angular frequency ω, the

method enables us to calculate the dynamic magnetization m0i(ω). By
considering an orthogonal basis of excitation vectors h h h( , , )i i i0
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and the high frequency susceptibility tensor averaged over the film's
volume will be
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It should be noted that methods considered in this paper enable
study of magnetization dynamics not only in nanocrystalline thin
magnetic films but also in any ferromagnetic objects of arbitrary shape,
including multilayer thin-film structures.

3. Numerical simulations

3.1. Modelling details

We have implemented the methods described in the previous sec-
tion to calculate the high frequency magnetic susceptibility of nano-
crystalline thin films. For brevity, we will refer to the eigenvalue-based
approach hereinafter as Method 1 and mark it on figures as ‘M1’ while
the method of undetermined coefficients for solving of the system of
linearized Landau–Lifshitz equations will be denoted as Method 2 or
‘M2‘.

The investigated films were monolayers of close-packed nano-
particles with the random distribution of the uniaxial anisotropy axes.
The number of particles N were 128×128×1 and 1024×1024×1.
The size of nanoparticles D coincided with the size of discrete cells and
varied from 12 to 100 nm. We used two-dimensional periodic boundary
conditions for the exchange and magnetostatic interactions to eliminate
the edge effects originating from an inhomogeneity of an internal
magnetic field in samples of finite size [31]. For definiteness we chose
the film's magnetic parameters corresponding to the well-known na-
nocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 [32]: the saturation magneti-
zation Ms=955 emu/cm3 (955 kA/m), the exchange constant
A=1×10−6 erg/cm (1× 10−11 J/m), and the local uniaxial aniso-
tropy field Ha=2K/Ms= 171.7 Oe (K=8200 J/m3). In all calcula-
tions, we used the same random distribution of the anisotropy axes. The
overall for the entire film uniaxial magnetic anisotropy Ku was not
taken into account to ease an analysis of simulation results. The ex-
ternal in-plane magnetic field H=94.744 Oe (7.54 kA/m) was applied
along the x-axis while the in-plane alternating homogeneous field h0

was applied along y-axis. The damping parameter α=0.005.
In this study, we only consider the frequency dependence of the
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averaged scalar dynamic susceptibility χ along applied alternating
field. For both Methods 1 and 2, we used the following formula to
calculate χ

∑= ⋅
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χ
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m h
h

1
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.
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N
i i

i1

0 0

0
2 (23)

To understand the limitations which are met during modelling
process let us estimate the computational effort of each method. In
Method 1, for computing M eigenvectors of size 2N×1 it is required O
(M×2N) operations and bytes of RAM. The computation of all mag-
netic oscillation modes leads to the estimate of O(4N2). In Method 2, it
is required to calculate only 2N unknown amplitudes of the dynamic
magnetization which results in the estimate of O(2N) for the compu-
tational cost. For this reason, when modelling dynamical processes in
nanocrystalline magnetic films with the help of Method 1 we used only
128×128×1 discrete elements. On the other hand, the use of Method
2 allowed us to model films with the number of elements
128×128×1 and 1024×1024×1.

3.2. Numerical results and discussion

According to the phenomenological theory of homogeneous ferro-
magnetic resonance in an isotropic uniformly magnetized thin magnetic
film, the imaginary part of the magnetic susceptibility = ′ − ″χ χ iχu u u
can be expressed as [20].
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where ωM= γ4πMs, ωH= γH, and the resonance frequency
= = +ω πf ω ω ω2 ( )H M H0 0 . For our parameters Ms=955 emu/cm3

and H=94.744 Oe the resonance frequency f0 is equal to 3 GHz. The
maximum value of ″χ u observed on the resonance frequency is

″ = ″ ≈ ≈χ χ ω M πH α( ) / /2 179u u s0 0 .
In nanocrystalline thin films the random magnetic anisotropy can

substantially affect the behavior of χ(ω). This is confirmed by the si-
mulation results demonstrated in Figs. 1–3. In particular, insets of Fig. 1
show reduced to ″χ u0 dependences (24) (solid lines) and dependences

″ ″χ χ/ u0 calculated by using Method 1 for various sizes of crystallites D
(circle markers). All modes of magnetization oscillation were taken into
account in the simulation (M= 2N), where the number of cells was
N=128×128×1.

To analyze the obtained results, we additionally calculated the ratio
between the exchange energy Fe= –VJ= –VA/D2 and the energy of the
random uniaxial magnetic anisotropy Fa= –VK= –VMsHa/2 (see
Table 1). It is evident from the figures that in films with the ratio Fe/
Fa>1 the exchange interaction between crystallites considerably sub-
dues the influence of the local anisotropy. It is especially noticeable for
the film with D=12 nm, whose exchange energy is more than eight
times larger than the energy of the random uniaxial magnetic aniso-
tropy. Its magnetic characteristics are close to that of an isotropic
uniformly magnetized film; its dependence of the magnetic suscept-
ibility on frequency is almost identical to the curve obtained using
expression (24).

With the increase of the crystallites size the random uniaxial ani-
sotropy energy begins to dominate over the energy of the exchange
interaction. This results in a significant broadening and asymmetry of
the χ''(f) line, as well as in a shift of the resonance frequency. If the size
of crystallite is larger than the exchange correlation length – which is
true for the film with D=100 nm, whose random anisotropy energy is
more than eight times larger than the exchange energy – then the
amplitude of spatial fluctuations of magnetization considerably in-
creases. This results in the maximal transformation of χ″(f) behavior.

Method 1 has an important advantage over Method 2 since it allows
one to calculate the high frequency magnetic susceptibility of nano-
crystalline films as well as the structure of the spectrum of resonant

Fig. 1. The frequency distribution of amplitudes Am of the uniform excitation of
normal magnetic oscillation modes for nanocrystalline films with crystallite size
D=12, 24, 32, 42, 56 and 100 nm. Insets show the frequency dependence of
the imaginary part of the reduced magnetic susceptibility for a uniform (line)
and nanocrystalline (circle markers) thin films.

Fig. 2. Frequency dependences of the imaginary (above) and real (below) parts
of the reduced high-frequency magnetic susceptibility of nanocrystalline films
with crystallite size D=12, 24 and 32 nm.

Fig. 3. Frequency dependences of the imaginary (above) and real (below) parts
of the reduced high-frequency magnetic susceptibility of nanocrystalline films
with crystallite size D=42, 56 and 100 nm.
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modes excited by an external alternating magnetic field. As an example,
Fig. 1 shows the frequency distribution of amplitudes Am of the uniform
excitation of normal magnetic oscillation modes for various crystallite
sizes. The increase of the crystallites size leads to a sharp increase in a
number of excited modes and a sharp rise in their amplitudes. For the
film with D=12 nm merely four first lowest modes form the dynamic
susceptibility spectrum almost completely. On the contrary, for the film
with D=100 nm practically all modes contribute to the resulting
spectrum. It is important to note the additional peak which was re-
vealed in the Am(ωm) distribution for the film with D=24, 32 and
42 nm (marked in figures by an arrow). The nature of this peak and its
influence on the magnetic susceptibility will be considered in our
subsequent paper.

To compare, analyze and verify methods considered in this paper
the real and imaginary parts of the magnetic susceptibility were cal-
culated for different sizes D (see Figs. 2 and 3). The reduced de-
pendences ″ ″χ f χ( )/ u0 and ′ ″χ f χ( )/ u0 calculated using Method 1 are
shown in the figures by circle markers. These results were obtained for
the numerical model of the film with the number of crystallites equal to
128×128×1, all M=2N=32768 modes were taken into account.
The same dependences obtained with the help of Method 2 are shown
as solid black lines. It is evident that the both methods give the identical
results.

However, the time taken to calculate the magnetic susceptibility
using Method 1 was more than ten times greater than for Method 2. The
common approach for reducing the computational cost (as noted ear-
lier, O(M×2N) for Method 1) is to decrease the number of modes M
used in the calculation. To study the effect of decreasing the number of
modes on the accuracy of obtained results we additionally calculated
the dependences ″ ″χ f χ( )/ u0 and ′ ″χ f χ( )/ u0 for two values of M < 2N
(see Figs. 2 and 3). Analysis of the obtained data allows us to draw a
general conclusion: for films with the exchange energy larger than the
energy of the random uniaxial magnetic anisotropy (Fe/Fa>1) a sa-
tisfactory accuracy of the χ(f) calculation can be achieved for M of
about 0.1% of the total number of modes 2N. For films with Fe/Fa<1 it
is impossible in general to make such an estimate.

For the film model of size N=128×128×1 noticeable ‘oscilla-
tions’ can be observed on χ(f) curve which are most pronounced for the
films with ‘large’ crystallites. We assume that the source of this ‘oscil-
lations’ is the insufficient averaging of integral magnetic characteristics
of the film because of a small number of crystallites used in the model.
The results of χ(f) calculations (plotted by dash line in Figs. 2 and 3)
obtained with the use of Method 2 for N=1024×1024×1 confirm
this suggestion. It can be seen that the calculation of the magnetic
susceptibility for the film models with a larger number of crystallites
results in smoother curves.

4. Conclusion

In this paper, two numerical micromagnetic methods for calculation
of the high frequency magnetic susceptibility of nanocrystalline thin
films were considered in detail. An analysis of the methods enabled us
to draw several conclusions about their advantages and shortcomings
and specifics of their practical application.

The method based on series expansion of the solution of the system
of linearized Landau–Lifshitz differential equations in terms of

eigenvectors of the normal magnetic oscillations modes has an im-
portant advantage. This method makes it possible to calculate not only
the magnetic susceptibility of the nanocrystalline films but also to de-
termine the structure of the spectrum of resonance modes excited by an
external alternating magnetic field. In particular, this enabled us to
reveal an additional excitation peak in the spectrum of nanocrystalline
films which nature will be considered in our subsequent paper.

The main drawback of this method is its high requirements to
memory capacity and calculation time. The computation of all eigen-
modes in the general case of N computational cells required O(4N2)
operations and bytes of RAM. The commonly used in practice approach
for reducing the computational cost by decreasing the total number of
eigenmodes used in calculation is applicable only to nanocrystalline
films with the exchange energy larger than the energy of the random
magnetic anisotropy.

On the other hand, the undetermined coefficients method for the
solution of the system of linearized Landau–Lifshitz equations has a
lower computational complexity. The computational time and memory
of the method scale as O(2N). Therefore, the undetermined coefficients
method is more suitable to model high frequency characteristics of real
thin nanocrystalline magnetic films.

Acknowledgments

This work was supported by the Ministry of Education and Science
of the Russian Federation, № RFMEFI60417X0179.

References

[1] J. Petzold, Advantages of softmagnetic nanocrystalline materials for modern elec-
tronic applications, J. Magn. Magn Mater. 242–245 (2002) 84, https://doi.org/10.
1016/S0304-8853(01)01206-9.

[2] M. Yamaguchi, K.H. Kim, S. Ikedaa, Soft magnetic materials application in the RF
range, J. Magn. Magn Mater. 104 (2006) 208, https://doi.org/10.1016/j.jmmm.
2006.02.143.

[3] V. Dubuget, S. Dubourg, P. Thibaudeau, F. Duverger, Magnetic anisotropy disper-
sion with exchange energy in soft ferromagnetic thin films, IEEE Trans. Magn. 46
(2010) 1139, https://doi.org/10.1109/TMAG.2010.2040187.

[4] B.A. Belyaev, A.V. Izotov, P.N. Solovev, Competing magnetic anisotropies in ob-
liquely deposited thin permalloy film, Physica B 481 (2016) 86, https://doi.org/10.
1016/j.physb.2015.10.036.

[5] X. Ou, J. He, Z. Xia, J. Hao, Yu Wang, J. An, S. He, D. Zhao, Improvement of
microwave permeability spectra in high stacking density FeNi nanoparticle films
prepared by electric field-assisted deposition, Appl. Phys. A 123 (2017) 406,
https://doi.org/10.1007/s00339-017-1023-1.

[6] F. Xu, S. Li, C.K. Ong, Extrinsic damping contribution in soft magnetic thin films
detected by permeability spectra, J. Appl. Phys. 109 (2011) 07D322, https://doi.
org/10.1063/1.3549611.

[7] A.N. Lagarkov, K.N. Rozanov, High-frequency behavior of magnetic composites, J.
Magn. Magn Mater. 321 (2009) 2082, https://doi.org/10.1016/j.jmmm.2008.08.
099.

[8] W.F. Brown, Micromagnetics, Wiley, New York, 1963.
[9] D. Kumar, A.O. Adeyeye, Techniques in micromagnetic simulation and analysis, J.

Phys. D Appl. Phys. 50 (2017) 343001, https://doi.org/10.1088/1361-6463/
aa7c04.

[10] D.V. Berkov, N.L. Gorn, Numerical simulation of the magnetization structures in
thin polycrystalline films with the random anisotropy and intergrain exchange, J.
Appl. Phys. 83 (1998) 6350, https://doi.org/10.1063/1.367913.

[11] B.A. Belyaev, A.V. Izotov, P.N. Solovev, Numerical simulation of magnetic micro-
structure in nanocrystalline thin films with the random anisotropy, J. Siberian
Federal Univ. - Math. Phys. 10 (2017) 132, https://doi.org/10.17516/1997-1397-
2017-10-1-132-135.

[12] S.V. Komogortsev, V.A. Fel’k, R.S. Iskhakov, G.V. Shadrina, Micromagnetism in a
planar system with a random magnetic anisotropy and two-dimensional magnetic
correlations, J. Exp. Theor. Phys. 125 (2017) 323, https://doi.org/10.1134/
S1063776117070196.

[13] B.A. Belyaev, A.V. Izotov, An. A. Leksikov, Micromagnetic calculation of the
equilibrium distribution of magnetic moments in thin films, Phys. Solid State 52
(2010) 1664, https://doi.org/10.1134/S1063783410080160.

[14] P.N. Solovev, A.V. Izotov, B.A. Belyaev, Microstructural and magnetic properties of
thin obliquely deposited films: a simulation approach, J. Magn. Magn Mater. 429
(2017) 45, https://doi.org/10.1016/j.jmmm.2017.01.012.

[15] P.N. Solovev, A.V. Izotov, B.A. Belyaev, Micromagnetic simulation of magnetization
reversal processes in thin obliquely deposited films, J. Siberian Federal Univ. -
Math. Phys. 9 (2016) 524, https://doi.org/10.17516/1997-1397-2016-9-4-524-
527.

[16] R.D. McMichael, D.J. Twisselmann, A. Kunz, Localized ferromagnetic resonance in

Table 1
The ratio between the exchange energy Fe and the energy of the random uni-
axial magnetic anisotropy Fa of nanocrystalline thin magnetic films for different
sizes of crystallites D.

D 12 nm 24 nm 32 nm 42 nm 56 nm 100 nm

Fe/Fa 8.47 2.12 1.19 0.69 0.39 0.12
Fa/Fe 0.12 0.47 0.84 1.45 2.57 8.2

A.V. Izotov et al. Physica B: Condensed Matter 556 (2019) 42–47

46

https://doi.org/10.1016/S0304-8853(01)01206-9
https://doi.org/10.1016/S0304-8853(01)01206-9
https://doi.org/10.1016/j.jmmm.2006.02.143
https://doi.org/10.1016/j.jmmm.2006.02.143
https://doi.org/10.1109/TMAG.2010.2040187
https://doi.org/10.1016/j.physb.2015.10.036
https://doi.org/10.1016/j.physb.2015.10.036
https://doi.org/10.1007/s00339-017-1023-1
https://doi.org/10.1063/1.3549611
https://doi.org/10.1063/1.3549611
https://doi.org/10.1016/j.jmmm.2008.08.099
https://doi.org/10.1016/j.jmmm.2008.08.099
http://refhub.elsevier.com/S0921-4526(18)30801-9/sref8
https://doi.org/10.1088/1361-6463/aa7c04
https://doi.org/10.1088/1361-6463/aa7c04
https://doi.org/10.1063/1.367913
https://doi.org/10.17516/1997-1397-2017-10-1-132-135
https://doi.org/10.17516/1997-1397-2017-10-1-132-135
https://doi.org/10.1134/S1063776117070196
https://doi.org/10.1134/S1063776117070196
https://doi.org/10.1134/S1063783410080160
https://doi.org/10.1016/j.jmmm.2017.01.012
https://doi.org/10.17516/1997-1397-2016-9-4-524-527
https://doi.org/10.17516/1997-1397-2016-9-4-524-527


inhomogeneous thin films, Phys. Rev. Lett. 90 (2003) 227601, https://doi.org/10.
1103/PhysRevLett.90.227601.

[17] N.G. Chechenin, Ultra-soft magnetic films: micromagnetism and high frequency
properties, Microelectron. Eng. 81 (2005) 303, https://doi.org/10.1016/j.mee.
2005.03.024.

[18] A.J. Newell, W. Williams, D.J. Dunlop, A generalization of the demagnetizing tensor
for nonuniform magnetization, J. Geophys. Res. 98 (1993) 9551, https://doi.org/
10.1029/93JB00694.

[19] B. Van de Wiele, F. Olyslager, L. Dupre´, D. De Zutter, On the accuracy of FFT based
magnetostatic field evaluation schemes in micromagnetic hysteresis modeling, J.
Magn. Magn Mater. 322 (2010) 469, https://doi.org/10.1016/j.jmmm.2009.09.
077.

[20] A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves, (1996) Boca
Raton, Florida, United States.

[21] M. Grimsditch, L. Giovannini, F. Monotcello, F. Nizzoli, G.K. Leaf, H.G. Kaper,
Magnetic normal modes in ferromagnetic nanoparticles: a dynamical matrix ap-
proach, Phys. Rev. B 70 (2004) 054409, https://doi.org/10.1103/PhysRevB.70.
054409.

[22] K. Rivkin, J.B. Ketterson, Micromagnetic simulations of absorption spectra, J.
Magn. Magn Mater. 306 (2006) 204, https://doi.org/10.1016/j.jmmm.2006.02.
245.

[23] M. d'Aquino, C. Serpico, G. Miano, C. Forestiere, A novel formulation for the nu-
merical computation of magnetization modes in complex micromagnetic systems, J.
Comput. Phys. 228 (2009) 6130, https://doi.org/10.1016/j.jcp.2009.05.026.

[24] A.V. Izotov, B.A. Belyaev, A method for computing the microwave absorption

spectrum in a discrete model of a ferromagnetic, Russ. Phys. J. 53 (2011) 900,
https://doi.org/10.1007/s11182-011-9508-4.

[25] B.A. Belyaev, A.V. Izotov, Micromagnetic calculation of magnetostatic oscillation
modes of an orthogonally magnetized disk of yttrium iron garnet, Phys. Solid State
55 (2013) 2491, https://doi.org/10.1134/S1063783413120068.

[26] S. Labbe, P.-Y. Bertin, Microwave polarizability of ferrite particles with non-uni-
form magnetization, J. Magn. Magn Mater. 206 (1999) 93, https://doi.org/10.
1016/S0304-8853(99)00537-5.

[27] N. Vukadinovic, O. Vacus, M. Labrune, O. Acher, D. Pain, Magnetic excitations in a
weak-stripe-domain structure: a 2D dynamic micromagnetic approach, Phys. Rev.
Lett. 85 (2000) 2817, https://doi.org/10.1103/PhysRevLett.85.2817.

[28] N. Vukadinovic, Dynamic micromagnetic simulations of susceptibility spectra in
thin films with nonuniform magnetization distributions, IEEE Trans. Magn. 38
(2002) 2508, https://doi.org/10.1109/TMAG.2002.801908.

[29] C. Vaast-Paci, L. Leylekian, Numerical simulations of isolated particles suscept-
ibilities: effects of shape and size, J. Magn. Magn Mater. 237 (2001) 342, https://
doi.org/10.1016/S0304-8853(00)01362-7.

[30] N. Vukadinovic, High-frequency response of nanostructured magnetic materials, J.
Magn. Magn Mater. 321 (2009) 2074, https://doi.org/10.1016/j.jmmm.2009.01.
049.

[31] K.M. Lebecki, M.J. Donahue, M.W. Gutowski, Periodic boundary conditions for
demagnetization interactions in micromagnetic simulations, J. Phys. D Appl. Phys.
41 (2008) 175005, https://doi.org/10.1088/0022-3727/41/17/175005.

[32] G. Herzer, Nanocrystalline soft magnetic materials, J. Magn. Magn Mater. 157/158
(1996) 133, https://doi.org/10.1016/0304-8853(95)01126-9.

A.V. Izotov et al. Physica B: Condensed Matter 556 (2019) 42–47

47

https://doi.org/10.1103/PhysRevLett.90.227601
https://doi.org/10.1103/PhysRevLett.90.227601
https://doi.org/10.1016/j.mee.2005.03.024
https://doi.org/10.1016/j.mee.2005.03.024
https://doi.org/10.1029/93JB00694
https://doi.org/10.1029/93JB00694
https://doi.org/10.1016/j.jmmm.2009.09.077
https://doi.org/10.1016/j.jmmm.2009.09.077
http://refhub.elsevier.com/S0921-4526(18)30801-9/sref20
http://refhub.elsevier.com/S0921-4526(18)30801-9/sref20
https://doi.org/10.1103/PhysRevB.70.054409
https://doi.org/10.1103/PhysRevB.70.054409
https://doi.org/10.1016/j.jmmm.2006.02.245
https://doi.org/10.1016/j.jmmm.2006.02.245
https://doi.org/10.1016/j.jcp.2009.05.026
https://doi.org/10.1007/s11182-011-9508-4
https://doi.org/10.1134/S1063783413120068
https://doi.org/10.1016/S0304-8853(99)00537-5
https://doi.org/10.1016/S0304-8853(99)00537-5
https://doi.org/10.1103/PhysRevLett.85.2817
https://doi.org/10.1109/TMAG.2002.801908
https://doi.org/10.1016/S0304-8853(00)01362-7
https://doi.org/10.1016/S0304-8853(00)01362-7
https://doi.org/10.1016/j.jmmm.2009.01.049
https://doi.org/10.1016/j.jmmm.2009.01.049
https://doi.org/10.1088/0022-3727/41/17/175005
https://doi.org/10.1016/0304-8853(95)01126-9

	Numerical calculation of high frequency magnetic susceptibility in thin nanocrystalline magnetic films
	Introduction
	Magnetic susceptibility calculations
	Micromagnetic model
	Linearization of the Landau–Lifshitz equation
	Solution of the linearized Landau-Lifshitz equation by eigenvalue-based approach
	Solution of the linearized Landau–Lifshitz equation by undetermined coefficients method

	Numerical simulations
	Modelling details
	Numerical results and discussion

	Conclusion
	Acknowledgments
	References




