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A B S T R A C T

Coercivity of nanocrystalline magnetic alloys depends on the grain size D according to a power law Hc ∝ Dn

with n from 2 to 6. The law Hc ∝ D6 is derived based on the random magnetic anisotropy model and is clearly
manifested in experimental studies of some Finemet type alloys. In this letter using computer modeling
it is demonstrated that a power-law behavior with the exponent n less than 6 can be due to a grain-size
distribution. An increase of grain size variance results in a decrease of the exponent from 6 to the value of
about 3.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Nanocrystalline alloys are of increasing interest as soft magnetic
materials. The combination of an extremely low coercivity and a high
magnetic permeability along with low eddy current losses makes
them attractive for applications [1-6]. It was found that coercivity Hc

in nanocrystalline alloys dramatically depends on the grain size D if
D < L0 = v

√
A/K, where L0 is known as a basic exchange length, v is

a dimensionless parameter of the order of one [7], A is an exchange
stiffness constant and K is a magnetic anisotropy constant. A power
law Hc ∝ D6 was derived using the random magnetic anisotropy
(RMA) model [8,9]. It was confirmed on some Finemet type alloys
and nanocrystalline Ni [1,3,10]. Accumulated to the present moment
extensive experimental studies of nanocrystalline alloys yielded a
generalized power law Hc ∝ Dn, where the exponent n can vary from
2 to 6 [1,11]. Besides the grain size upper limit of L0 for the Hc ∝ Dn

applicability, there is experimentally revealed a lower one below
which coercivity varies very slightly. The one order of magnitude
variation in D within these limits results in the change of coercivity
up to six orders according to the law Hc ∝ D6. For such steep depen-
dence, a grain-size distribution should have a significant effect on the
Hc(D). A theoretical approach considering this effect was proposed in
Ref. [12].
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The fluctuations of magnetic anisotropy energy: [〈K〉Vex]2 =∑
Ni(ViK)

2, where Ni is a number of grains of the volume Vi within
the magnetic correlation volume Vex, were analyzed. Assuming that
Ni = Vex/Vi = (Lex/Di)3 and the grain size Di is always smaller than
the magnetic correlation length Lex, the dependence Hc ∝ 〈D〉6 was
obtained [13,14] as for the case of uniform grains. The variance of
grain sizes affected only the value of the proportionality coefficient.
Nevertheless, the influence of a grain-size distribution on coercivity
of nanocrystalline alloys within RMA model is more complicated.

The number of grains within the magnetic correlation volume is
N = Vex/V = (Lex/D)d for a system of exchange-coupled grains
of an arbitrary dimensionality d [11,15-19]. The coercivity is finally
expressed as follows [1,11,15-19]:

Hc ∝ 〈K〉
MS

=
K

MS
•

(
D√
A/K

) 2d
4−d

, (1)

where MS is a saturation magnetization. Indeed, observed coerciv-
ities of nanocrystalline thin films and nanowires, which both have
low-dimensional magnetization correlations, corresponded well to
power-law dependencies (1) with the exponents of 2 (d = 2) and of
2/3 (d = 1) respectively [1,15,20,21]. For bulk materials (d = 3) the
exponent of 6 is expected. Let us remind that Eq. (1) is valid if D < L0.
A grain-size distribution can lead to a violation of the requirement for
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some grains within the Vex that results in N = Vex/V < (Lex/〈D〉)3 for
the 3D case. This discrepancy can be resolved by the assumption of
N = (Lex/D)d with effective d < 3 if supposing the scaling approach
is still applicable. Thus, in bulk nanocrystalline alloys the power-
law behavior Hc ∝ Dn with n < 6 can be caused by a grain-size
distribution. This work is focused on the study of this opportunity
using compute modeling of major hysteresis loops of exchange-
coupled polydisperse ensembles of grains with the random magnetic
anisotropy.

An ensemble of close packed polyhedra was considered as a
model of a polycrystalline alloy. It was being constructed in two
stages. At the first one, a gradual pouring of spherical particles with
a lognormal distribution of diameters into a container was per-
formed using the molecular dynamic package LAMMPS [22]. After
that, in order to eliminate edge effects of pouring, the central part
of the ensemble was cut out and used further. It was close to a
cubic shape and consisted of at least 62,000 particles. At the sec-
ond stage, the radical Voronoi tessellation of the ensemble was done
using diameters of particles as weights and taking into account peri-
odic boundary conditions. This procedure was realized based on the
VORO++ library [23] which allowed to obtain all required statistics
for polyhedra (volumes, lists of neighbors, lists of contact areas, etc.).
A cross-section of the ensemble created as described above is shown
in Fig. 1 (a). It was able to tune polyhedra size distribution, which
satisfied well the lognormal one (Fig. 1 (b)), varying the spheres
size distribution at the first stage. Hereafter the quantity D = 3√V
was chosen as a characteristic size of a polyhedron. Besides polydis-
perse ensembles of polyhedra, an arranged monodisperse ensemble
of 64,000 rhombic dodecahedra (40 × 40 × 40) was considered [24].

For polydisperse ensembles the following statistics was obtained:
a mean grain size 〈D〉 = 1

N

∑N
i Di, a volume-weighted mean grain size

〈D〉V =
∑N

i miDi, a standard size deviation s =
√

1
N

∑N
i (Di − 〈D〉)2

and a volume-weighted one sV =
√∑N

i mi(Di − 〈D〉V )2, where N is a

number of particles and mi = Vi/
∑N

i Vi. The different types of aver-
aging are relevant for both a theoretical analysis of modeling and its
potential comparison with experiments (e.g. TEM and XRD provide
〈D〉 and 〈D〉V respectively).

It was assumed that each polyhedron has a uniform magnetiza-
tion changing by the coherent rotation. This assumption, that leads
us to the single-spin approximation [25,26], is valid if the inter-
atomic exchange within small grains is sufficiently strong to ensure
parallel spin alignment [27]. Exchange interaction between neigh-
boring grains i and j was simulated as a direct Heisenberg-like one
Eex = −JintSij(�li • �lj) [24-26], where Jint is an intergrain interaction
constant, Sij is a contact area between adjacent grains and �li,j are
unit vectors of magnetizations (the inset of Fig. 1 (a)). For the case
of ideal grain interface and the simple cubic crystal lattice the fol-
lowing equalities can be established: Jint = J/a2 = A/a, where J is
an exchange constant and a is an atomic lattice constant. Actually,
it is often assumed that Jint � J/a2 [24-29]. The uniaxial mag-
netic anisotropy with uniform constant K and randomly oriented
easy magnetization axes (EA) of grains was used in our modeling.
Magnetostatic interaction between grains was neglected. Hence, the
normalized energy of a grain i was calculated by the following:

4i = −(�li • �ni)2 − 2�li • �h −
Ni∑

j=1

JintSij

KVi
�li • �lj, (2)

where �ni is a unit vector, that is collinear to EA, �h = �H/Ha is an exter-
nal magnetic field reduced to the anisotropy one Ha = 2K/MS, Ni

is a number of neighboring grains and Vi is the grain volume. The
list of constants for modeling was the following: Jint = 1 erg/cm2,
MS = 103 emu/cm3 and K = 106 erg/cm3. Mean grain sizes 〈D〉
varied from 10 to 60 nm.

Fig. 1. A cross-section of a model polydisperse ensemble of grains (a). Its color pallet
corresponds to projections of unit vectors �ni,j , that are collinear to easy magnetization
axes (EA), on a normal of the cross-section plane. In the inset there is a 2D diagram
illustrating quantities used for energy calculations (2): �li,j are unit vectors of mag-
netizations, Vi is a volume of grain i, Sij is a contact area of adjacent grains i and j.
Histograms of grain sizes D, determined as 3√V , are presented for ensembles with
different standard size deviations s (b). Fits of lognormal distribution functions to
histograms are given with solid lines.

Equilibrium micromagnetic structures of ensembles were
obtained by reiterative subsequent energy (2) minimization for all
grains at each magnitude of magnetic field [24,30]. Since in our
model only adjacent grains interact with each other, the minimiza-
tion was realized taking into account periodic boundary conditions
for nearest neighbors only. During the procedure coordinates of vec-
tors �li,j were determined with uncertainty of 10−9; the number of
iterations was up to 103. These parameters along with the number
of grains provided the compromise between a computing time and
an accuracy of results.

Major hysteresis loops of the monodisperse ensemble and a series
of polydisperse ones with fixed s/〈D〉 were calculated using the
described above technique. In Fig. 2 only segments of the hystere-
sis loops near coercivity are presented. The coercivity decreased
and remanence increased with the decreasing 〈D〉. Demagnetization
curves of polydisperse ensembles (Fig. 2, bottom; s/〈D〉 = 0.16)
were flatter than the ones of the monodisperse ensemble at large
grain sizes (e.g. 60 nm).

Coercivities of both monodisperse Hc(D) and polydisperse ensem-
bles Hc(〈D〉) had close values approaching a limit (Fig. 3), which is
the coercivity of the Stoner-Wohlfarth ensemble HSW

c = 0.479 • Ha
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Fig. 2. Segments of major hysteresis loops of the monodisperse ensemble (top) and
the polydisperse one (bottom; s/〈D〉 = 0.16) calculated for different mean grain sizes
〈D〉 that are noted in nm near corresponding curves.

[31,32], at large grain sizes (D > 30 nm). The sharp power-law
decrease of coercivity Hc ∝ D6 of the monodisperse ensemble was
observed in the narrow grain size range from 21 to 30 nm. An
intersection of the HSW

c and the D6 trend was defined as the basic
exchange length L0 in our discretized model since its continuous-
based form v

√
A/K was nontrivial to adapt. This L0 value actually

determines the grain size below which average exchange energy
prevails over anisotropy one that provides the power-law coerciv-
ity regime of the monodisperse ensemble. Further changes of Hc(D)
with decreasing grain size (D < 21 nm) were smaller than ones sug-
gested by the power law (Fig. 3). This region of small grain sizes,
which typically has higher relative uncertainties [25,26], deviates

due to the effect of the modeling area finite size. With increasing
number of grains in the monodisperse ensemble, D6 coercivity trend
was extended to lower grain size values.

Coercivities of all polydisperse ensembles exceeded the monodis-
perse one at 〈D〉 < 30 nm and Hc(〈D〉) followed the power law 〈D〉n

with exponents n lower than 6 in extended ranges of 〈D〉. Data for
ensembles with s/〈D〉 = 0.02 and s/〈D〉 = 0.16 are shown in Fig. 3.
For them power laws Hc ∝ 〈D〉n with n = 4.5±0.1 and n = 3.2±0.1
were obtained respectively. Let us note that even a very small grain
size standard deviation resulted in a significant decrease of the expo-
nent from 6 and the bigger s/〈D〉 was the smaller n was. These
power laws 〈D〉n located mainly in the intervals of grain sizes where
all ones were lower than L0 (color filled regions in Fig. 3). It was
important also that observed power-law behavior was the same for
both Hc(〈D〉) and Hc(〈D〉V); there was just a parallel shift of coerciv-
ity toward the larger grain sizes if volume-weighted ones 〈D〉V were
used instead of 〈D〉 (it is demonstrated in Fig. 3 (b) with triangle sym-
bols). Based on this a recommendation of not mixing methods of
grain size estimation can be given for experiments.

Described results cannot be explained using the mentioned ana-
lytical approaches [12-14]. To demonstrate it we put in Fig. 3 dashed
curves that were calculated based on the expression following from
Ref. [13]:

Hc(〈D〉) =
(∫ ∞

0

√
H′

c(D)f (D)dD
)2

(3)

where a grain-size distribution function f(D) was chosen as a lognor-
mal one with appropriate s/〈D〉 and H′

c(D) was the spline interpola-
tion of the simulated result for the monodisperse ensemble. Let us
note that Eq. (3) is valid only if ∀Di < L0, so corresponding regions
were considered. Within them the dashed curves slightly deviate
from the H′

c(D) but they are far from the corresponding numeric data.
The exponent of Hc ∝ Dn for polydisperse ensembles is shown in
Fig. 4 versus the reduced grain size standard deviation. It sharply
decreased first and then it changed gradually reaching values of
about n = 3 with increasing s/〈D〉. The dependence n(sV/〈D〉V)
based on volume-weighted quantities varied slightly within uncer-
tainties in respect to n(s/〈D〉).

Power-law behavior of coercivity Hc ∝ 〈D〉n with the exponent
n less than 6 was observed in experiments [1,33]. The most exten-
sive discussions were dedicated to the frequent case of Hc ∝ 〈D〉3

[1,3,34,35]. A competition between random magnetic anisotropy and
induced one, in which easy axis is uniform within volumes much
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Fig. 3. Dependencies of reduced coercivity on mean grain size of the monodisperse ensemble (s = 0.0) and the polydisperse ones with s/〈D〉 = 0.02 (a) and s/〈D〉 = 0.16 (b).
Power laws Dn describing the dependencies are shown with solid lines. Triangle symbols (b) demonstrate the same coercivity dependence (s/〈D〉 = 0.16) plotted vs. volume-
weighted mean grain size 〈D〉V . The level HSW

c is a coercivity of the Stoner-Wohlfarth ensemble. L0 is the basic exchange length. The color filled regions correspond to ones where
all grain sizes are smaller than L0. Dash curves were calculated using numerically obtained H′

c(D) of the monodisperse ensemble in Eq. (3) with appropriate s/〈D〉.
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Fig. 4. The exponent n in coercivity dependence Hc ∝ 〈D〉n of nanocrystalline ensem-
bles with different grain size standard deviations (solid line is a guide for the eye). The
result obtained for the ensemble of polyhedra generated based on random points in a
cubic volume is marked with the square symbol.

larger than Vex, was proposed as a reason for such behavior [34,35].
Indeed, an induced magnetic anisotropy appears frequently in real
nanocrystalline alloys and therefore the explanation should be rec-
ognized as reasonable [1,3,34-36]. Presented numeric results bear
that a grain-size distribution can also cause the behavior Hc ∝ 〈D〉n

with n < 6. The problem statement for computer modeling did not
consider an induced anisotropy, so it did not contribute to the results.
According to Fig. 4 the exponent n ≈ 3 in nanocrystalline alloys can
be due to the wide grain-size distribution with s/〈D〉 > 0.1.

In addition, the exponent n can be influenced by the type of
grain-size distribution. It was tested using hysteresis loop calcula-
tions for an ensemble of polyhedra, that was generated by a different
algorithm than the described one, were performed. The ensemble
was created using Voronoi tessellation based on an array of random
points in a cubic volume. The grain-size histogram of this ensem-
ble was described well by the normal distribution function. A Hc(〈D〉)
was found to follow the power-law Hc ∝ 〈D〉n with n = 2.9 ± 0.1
(it is marked by the square symbol in Fig. 4). The result slightly but
definitely deviated from the main series of n(s/〈D〉) data obtained
for ensembles with the lognormal grain-size distribution.

In summary, the major hysteresis loops of the monodisperse and
polydisperse ensembles of exchange-coupled single-domain poly-
hedra with the random magnetic anisotropy was studied using
micromagnetic modeling. Different mean grain sizes 〈D〉 and stan-
dard deviations s/〈D〉 of ones were used in the calculations. The
power-law behavior of coercivity Hc ∝ 〈D〉n was observed in certain
grain-size ranges for all ensembles. There was a sharp decrease of
the exponent n from 6 to about 3 with increasing s/〈D〉. A deeper
understanding of reasons for such power-law behavior of coerciv-
ity would become an issue for further studies. We hope this work
contributed to the problem of power-law behavior of coercivity in
nanocrystalline alloys. It demonstrates that it is not only control of
mean grain sizes that is essential for development of new nanocrys-
talline materials with the best soft magnetic properties but grain-size
distributions in general.
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